
Designing a Problem Specific Design Process for Multi-AgentSystems

Massimo Cossentino
Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR)

Italian National Research Council (CNR)
Viale delle Scienze, 90128 - Palermo (Italy)

cossentino@pa.icar.cnr.it

Antonio Chella
Dipartimento di Ingegneria Informatica

University of Palermo
and Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR)

Italian National Research Council (CNR)
Viale delle Scienze, 90128 - Palermo (Italy)

chella@unipa.it

Abstract

Starting from the point that several design methodologies
have been conceived to design multi-agent systems and
nonetheless designers often prefer to create a new methodol-
ogy instead of studying and applying the existing ones, we
propose an extension to agents of the method engineering
process that has been successfully used in the object-oriented
context to easily compose new design process. The work re-
ports a detailed production process that allows the composi-
tion of new methodologies by reusing parts of existing ones.

Introduction
Our work starts from the consideration that almost twenty
different design methodologies can be found in literature for
MASs (Multi-Agent Systems). We think that this is the un-
questionable prove that agents designer (just like objectsde-
signer) in accomplishing their different tasks, and solving
specific problems in distinct production environments, often
prefer to setup an own methodology specifically tailored for
their needs instead of reuse existing ones. What seems to
be widely accepted is that an unique specific methodology
cannot be general enough to be useful to everyone without
some level of personalization.

In this scenario we can identify two contrasting elements:
first, in an interesting paper on object-oriented software (de-
velopment) processes, Fuggetta (Fuggetta 2000) states that
the research in this field is stuck and most technologies de-
veloped by the software process community have not been
adopted by the industrial world. Second, the AgentLink
community, in its roadmap (Luck, McBurney, & Preist
2003) for agent based computing, embodying the feelings
of a large part of the agent research and industrial commu-
nity, has identified the designation of a standard in design
methodologies as an essential demand.

In order to accomplish this request without neglecting the
important warnings coming from the OO world we want to
propose a quite open approach that allows the composition
of a very large repository of human experiences (design pro-
cess is first of all an human process) that could be expressed
in terms of a standard notation (we are trying to refer to ex-
isting standards from OO and in case extend them).

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

We believe that agent-based systems are by themselves
one of the aspects of the OO crisis solution and we are
also strongly persuaded that the future standard in design
methodologies will be a significant improvement in the
agent research and industrial applications. The benefits will
not only be limited to the dimension of the MAS that could
be managed (this is not a secondary aspect if we think about
the growing dimension of agent societies) but they will also
be related to the possibility of integrating existing (evennot
agent-based) systems with new features on the fly (Zam-
bonelli & Parunak 2002).

We think that the best solution that could be pursued to the
discussed situation consists in dismissing the existing strin-
gent design methodologies and allow the designer to rapidly
construct a new methodology that could fit their specific
needs. This implies that each methodology will be the re-
sult of a specific problem, developing environment (involved
stakeholders with their skills) and the chosen structure ofthe
system to be built (agents could be intelligent or purely re-
active, mobile or node-constrained, deterministic or not and
so on)

The approach that we describe in this paper is strongly re-
lated to the activity that the authors are carrying on within
the FIPA Methodology Technical where several researchers
and companies are trying to create common standards for the
creation of an unique database of pieces of design method-
ologies that could be used by everyone to prepare his own
design process.

The design process construction
In order to take advantage of the experiences done with ex-
isting methodologies we will adopt the method engineering
paradigm(Brinkkemper 1995)(Kumar & Welke 1992). Ac-
cording to this approach, the development methodology is
built by the developer (or by a method engineer) assembling
pieces of the process (method fragments) from a repository
of methods built up taking pieces from existing methodolo-
gies (Adelfe, AOR, Gaia, MESSAGE, PASSI, Tropos, ...).
In this way he/she could obtain the best process for his/her
specific needs.

In the last years, the method engineering approach proved
successful in developing object oriented information sys-
tems(Saeki 1994)(Tolvanen 1998). Its importance in the OO
context should be evaluated considering not only the direct



Existing
Methodo-

logies

Method
Base

Method
Fragments
Extraction

New
Method

Fragments

CAME tool Specific
Methodo-

logy

MAS
Meta-
Model

CASE tool Specific
problem

MAS running
on agent platforms

MAS
ModelDeployment

Figure 1: The proposed design methodology construction process

influence (not so much companies and individuals work in
this specific way) but the indirect consequence that now, the
most important and diffused development processes (for ex-
ample RUP, the Rational Unified Process) are not rigid but
they are a kind of framework within which the single de-
signer can choose his/hers own path.

It could seem that introducing the method engineering
paradigm in the AOSE context is a plain operation. But it is
not so, because in the OO context the construction of method
fragments (pieces of methodology), the assembling of the
methodology with them and the execution of the design rely
on a common denominator, the universally accepted concept
of object and related model of the object oriented system. In
the agent context, there is not an universally accepted defi-
nition of agent nor it exists any very diffused model of the
multi-agent system.

We think that designing a system (object or agent-
oriented) consists in instantiating the system meta-model
that the designer has in his/hers mind in order to fulfill the
specific problem requirements. This meta-model is the criti-
cal element in applying the method engineering paradigm to
the agents world.

Referring to a MAS meta-model we mean a structural
representation of the elements (agent, role, behavior, ontol-
ogy,. . . ) that compose the actual system with their compos-
ing relationships. Sometimes we can see that these concepts,
for example the behavior, are used with slightly different
meanings or granularity. We will provide an example of
MAS meta-model in the following.

In order to allow the composition of pieces coming from
different methodologies, it is necessary to express all of
them in a common way. The first step of this work consists in
the creation of the meta-model that will be used to describe
the existing methodologies and the multi-agent system struc-
ture (MAS meta-model). An important contribution to this
approach comes from an OMG specification, the Software
Process Engineering Metamodel (SPEM)(OMG 2002). This
is the natural candidate to be the meta-model adopted in this

activity for processes since it is already an accepted standard
in the OO context (and OO process are not too different from
the AO ones). Moreover from the analysis of many existing
approaches to these problem, Fuggetta (Fuggetta 2000) says
that Process Modeling Languages “must be easy to use, in-
tuitive, and tolerant”; all of these are properties that we can
find in SPEM.

We are currently evaluating the possibilities offered
by SPEM in the specific agent-oriented context obtain-
ing interesting results in the representation of the differ-
ent fragments of PASSI (Cossentino, Sabatucci, & Seidita.
2003b)(Cossentino, Sabatucci, & Seidita. 2003a).

From the descriptions of methodology processes we will
extract the method fragments. A method fragment is a
reusable part of a design process that taking some already
designed pieces of the system produces a new part of the de-
sign following a precise procedure. In this phase of the work
we will again be near to the FIPA Methodology Techni-
cal committe work by adopting its specitication of (method)
fragment that we therefore consider composed by (see also
the FIPA method fragment definition (FIPA 2003)):

1. A portion of process

2. One or more deliverables (artifacts like (A)UML/UML di-
agrams, text documents and so on). Some preconditions
(like the required input data or guard condition)

3. A list of concepts (related to the MAS meta-model) to be
defined/designed/refinedby executing the specific method
fragment.

4. Guideline(s) that illustrates how to apply the fragment and
best practices related to that A glossary of terms used in
the fragment

5. Other information (composition guidelines, platform to
be used, application area and dependency relationships
useful to assemble fragments) complete this definition.

These fragments will be collected in a method base. This in-
troduces a new important step of our plan: the study of pos-



Figure 2: The PASSI process

sible technological solutions for the implementation of this
database in order to obtain a representation of the fragments
that could be easily supported in a CASE/CAME (Computer
Aided Software Engineering/ComputerAided Method Engi-
neering) tool. The last crucial phase of the work will be the
study of the method fragments composition strategies. Each
method fragment produces an artifact that contributes to the
construction of the complete MAS design model. Compos-
ing fragments coming from different methodologies implies
considering that they may refer to different models of the
system. For example they could address the concept of role
in a slightly different way and as a consequence, reusing
roles defined with one methodology in another context could
bring to inconsistent or incomplete models. Anyway, this ar-
tifact structure is only one of the aspects of the problem we
are dealing with. There is also a procedural point of view. In
taking two method fragments from a repository and reusing
them, we could find that they do not exactly match. It could
be necessary to integrate them with some more activities that
should complete the process.

In our approach we will face both the problems giving the
right importance to the MAS meta-model and using it as a
beacon for orienting the choices. Obviously we will refer to
the currently under development FIPA modeling language as
the modeling language used to represent all the artifacts pro-
duced by our method fragments and this will facilitate their
integration and minimize the effort needed to comprehend
and evaluate a larger number of possible solution strategies.

When our work will be completed we think that in a real
design process (Figure 1), the designer (or better the method
engineer), before building his/hers own methodology, has
to select the elements that compose the meta-model of the
MAS he/she will build. In so doing he/she uses a CAME
tool (Computer Aided Method Engineering tool) that of-
fers a specific support for the composition of a methodology
from existing fragments or with new ones. The availability
of the MAS meta-model will help him/her both at a logical
and practical level. First this will be useful in the method
fragment selection phase (avoiding the selection of methods

referring different elements) and secondly, the same fact of
clearly declaring the structure of the system will allow the
CASE tools to check for model coherence and to find not
completely defined parts. Once composed the methodology
the designer will perform the established process obtaining
a model of the system that solves his/hers problem. Finally
he/she could deploy the agents on the required platforms.

An example of MAS Meta-model

In this subsection we will show an example of MAS
meta-model extracted from the PASSI (Process for Agent
Societies Specification and Implementation) methodology
(Cossentino & Potts 2002) that has been specifically con-
ceived to be supported by a CASE tool that automati-
cally compiles some models that are part of the process,
using the inputs provided by the designer. PASSI is a
step-by-step requirement-to-code methodology for develop-
ing multi-agent software that integrates design models and
philosophies from both object-oriented software engineer-
ing and MAS using UML notation. We widely applied it
in the design of robotics applications (Chellaet al. 2002)
but it also proved successful in designing information sys-
tems (Burrafato & Cossentino 2002). In PASSI (Fig. 2), the
reuse of existing patterns has a great importance but unlike
other authors (Kendall (Kendallet al. 1998)), we chose to
introduce a pattern definition that is based on a specific ar-
chitecture (the FIPA one); this simplified the introductionof
patterns in the early design phase and their final code im-
plementation with the use of specific design tools (Agent
Factory (Chella, Cossentino, & Sabatucci 2003)). During a
PASSI design process, designers will use a Rational Rose
add-in that we have specifically produced. In this proce-
dure they move gradually from the problem domain (de-
scribed in the System Requirements Model and Agent Soci-
ety Model) toward the solution domain (mainly represented
by the Agent Implementation Model) and, passing through
the coding phase, to the dissemination of the agents in their
world. It is in this progress of activities that they can iden-



-Name : String
-Knowledge : Ontology

Agent

-Name : String

Role

-Name : String

Task

Ontology

Concept

-Act

Action Predicate

-Name
-Exchanged Knowledge : Ontology
-Content Language

Communication

-Name : String

AIP

-Comm_act : Performative

Message

Performative

-Initiator/ Participant1

*

FIPA-Platform Task

1

1

FIPA-Platform Agent

1

1

1

1..*

Requirement

1..*

1

1..*1

Scenario

0..*

1..*

-Name : String

Resource

0..*

1..*

-Name : String

Service

0..*

1..*

0..*

1..*

Non Funct. Req.

0..*

1..*

1 *

Figure 3: The PASSI MAS Meta-model

tify some problems that could be profitably solved reusing
the patterns of our repository. The choice of the implemen-
tation platform is postponed to the final steps of the design
and in order to support the localization of our patterns in
both the most diffused FIPA (O’Brien & Nicol 1998) plat-
forms (FIPA-OS (Poslad, Buckle, & Hadingham 2000) and
JADE (Bellifemine, Poggi, & Rimassa 2001)) we represent
the models and the code of each pattern using XML from
which we obtain the final Java code using some XSL trans-
formations.

In Figure 3 we can see the MAS meta-model related to the
PASSI methodology. It describes the user’s problem in terms
of scenarios, requirements, ontology and resources; scenar-
ios depict a sequence of interactions among actors and the
system. These scenarios are initially expressed using a tex-
tual description and later designed using conventional UML
sequence diagrams. Requirements initially are reported in
a textual document and they are later represented with con-
ventional use case diagrams. There is a strong point behind
these choices: a lot of highly skilled designers are already
present in different companies and can be more easily con-
verted to the use of an agent-oriented approach if they are
already confident with some of the key concepts used within
it. Analysis related issues (like requirements and scenarios)
being situated in the highest abstraction phase are strategic
in enabling this skill reuse and allow a smooth entering in
the agent solution part of the meta-model. Ontological de-
scription of the domain is composed of concepts (entities
and categories of the domain), actions (performed in the do-
main and effecting the status of concepts) and predicates (as-
serting something about a portion of the domain elements).
This represents the domain in a way that is substantially
richer than the classic structural representations produced in
the OO analysis phase. As an instance we can consider on-
tologies devoted to reasoning strategies or problem solving
methods whose essence is very difficultly captured in OO

structures. Resources can be accessed/shared/manipulated
by agents. A resource could be a repository of data (like
a relational database), an image/video or also a good to be
sold/bought. We prefer to expressly model them since goals
of most systems are related to using and capitalizing avail-
able resources.

The central part of the model specifically deals with the
agent solution that is to be built but yet at an abstract level. It
contains the elements of the agent-based solution but none of
these elements is directly implemented; they are converted
to the correspondent object-oriented entity that constitutes
the real code-level implementation. The real center of this
part of the model is the concept of agent. Each agent in
PASSI is responsible for realizing some functionalities de-
scending from one or more requirements. The direct link
between a requirement and the responsible agent, is one of
the strategic decisions taken when conceiving PASSI. Some-
times an agent has also access to available resources. This
could happen because it accesses the corresponding infor-
mation (for example stored in a DB) or it can perceive it us-
ing its sensors (like in the case of em-bodied robotic agents
sensing the environment). Each agent during its life plays
some roles. In PASSI, a role is considered as a portion of the
social behaviour of an agent characterized by some speci-
ficity such as a goal, or a set of attributes (like responsibil-
ities, permissions, activities, and protocols) or providing a
functionality/service.

From this definition easily descends that roles could use
communications in order to realize their relationships or por-
tions of behaviour (called tasks) to actuate the role procliv-
ity. In PASSI, the term task is used with the significance of
atomic part of the overall agent behaviour and, therefore, it
describes some agent capabilities; from a different point of
view, we can say that the agent can accomplishing its du-
ties differently composing the set of its own tasks. Tasks
cannot be shared among agents, but their possibilities could



be offered by the agent to the society as services (often a
service is obtained composing more than one task). Obvi-
ously according to agent autonomy, each single agent has
the possibility of accepting or refusing to provide a service
if this does not match its personal attitudes and will. This
is totally different from an object-oriented service where
an object/component could not refuse a service that is re-
quired via the strong relationship of a method invocation in-
stead of the weak connection established by agents’ asyn-
chronous communications. A communication (also called
conversation in FIPA specifications) is composed of one or
more messages expressed in an encoding language (like the
FIPA ACL) that is totally transparent to agents. The mes-
sage content could be expressed in several different content
languages (SL, CCL, KIF, RDF); we chose to adopt RDF
(Resource Description Framework, a specification by W3C)
and the PASSI supporting tool (PTK) offers a concrete aid
in generating the RDF code from the design models of on-
tology. Each communication explicitly refers to a piece of
ontology (in the sense that information exchanged are con-
cepts, predicates or actions defined in the ontology) and its
flow of messages is ruled by an interaction protocol (AIP).
Interaction rules of agent conversations plays an important
role in the FIPA Abstract Architecture; these have been for-
malized primarily through two concepts: the communicative
act and the AIP (Agent Interaction Protocol). Each conver-
sation has to respect a protocol and has to be made up of
communicative acts. A communicative act is a way to asso-
ciate a predefined semantic to the content of a message so
that it can be univocally understood by agents. Some ex-
amples of communicative acts are: request, refuse, agree,
inform, and failure. An interaction protocol defines which
communicative acts may be used in a conversation and in
what order the related messages have to be sent to give the
proper meaning to the communication. Therefore, a proto-
col compels the use of determined messages with a specific
semantic according to a specific sequence. When an agent
starts a conversation with another agent it has to specify a
protocol; a conversation without a protocol is not possible
in FIPA-based systems. If a message does not respect the
rules of the protocol or violates the prescribed order, then
the conversation fails.

The implementation part of the meta-model describes the
structure of the code solution in the chosen FIPA-compliant
implementation platforms (like FIPA-OS or JADE) and it is
essentially composed of three elements: the FIPA-Platform
Agent that represents the implementation class for the agent
entity represented in the Agency domain; the FIPA-Platform
Task that is the implementation structure available for the
agent’s Task and, finally, the Service element that describes
a set of functionalities offered by the agent under a specific
name that is registered in the platform service directory and
therefore can be required by other agents to reach their goals.
This description is also useful to ensure the system openness
and the reusability of its components.

Experimental Setup
Robotics is the primary application field for the systems we
develop with our methodologies. In order to focus our atten-

Figure 4: The B21 robot, during a surveillance mission, is
calculating its position using the a-priori known positionof
the marker that it found on its left.

tion on a specific problem we are now looking at a scenario
involving a robotic system devoted to surveillance tasks.
More in detail the implemented functionalities comprehend
the reconnaissance of the building, the automatic detection
of an intruder, the pursuit (and encirclement if more robots
are available) of the intruder.

From the hardware point of view, the system is composed
of one (but more is possible) B21 mobile robot with a com-
puter and a stereo camera aboard; some fixed cameras are
positioned in the environment (a floor of our department)
in order to detect the intruder and four fixed workstations
are used for agents deployment. The software aspects are
characterized by a multi-agent system implemented with a
FIPA-compliant platform (JADE). The system is composed
of 16 different agents (six of them devoted to implement the
robot behavior, the others related to vision tasks). Several of
these agents are instantiated more than once at runtime.

A particular effort has been dedicated to the vision sub-
system that introduces a multi-level architecture allowing
the dynamical introduction of new hardware (fixed cameras
that are distributed in the environment in order to detect in-
truders) (Infantino, Cossentino, & Chella 2002) and services
(agents performing different kinds of filtering and images
manipulations). One instance of a grabber agent is bound
to each camera to capture the images. Several instances
of these agents are used and therefore anHardwareMan-
ageragent is necessary to allow other agents to interact with
the best positioned (or more useful) camera for each spe-
cific purpose. The captured images are then manipulated
by other agents that can perform tracking, motion detection,
camera calibration and other operations. ASelfLocalizator
agent localizes the robot in the environment using two im-
ages captured by its stereo camera while looking at a land-
mark whose position is known a priori (see Figure 4). This
information is also used to correct the odometry error. Other



Requirements
Model

Code
Model

Agent Society
Model

Planning

Sub Domain
Requirements

Description

Domain
Ontology

Description

Agent
Identification

Pattern
Reuse

Test
Test
Plan

Code

Coding

Agent
Implementation

Figure 5: The agile process composed reusing fragments coming from the PASSI methodology

sensors (infra-red, laser range finder and compass) are man-
aged by an unique agent, theSensorReader. The dimensions
of this project are quite interesting. The total amount of code
is about 10.6 thousands of lines, the time spent in develop-
ing the MAS and ontology (design, coding and testing) with
the conventional PASSI methodology and the use of patterns
was about 7 man/months.

Our actual aim (whose related activities are ongoing) con-
sists in rebuilding this whole application with a new method-
ology that is specifically conceived to move the attention on
code and algorithms specification rather than on other as-
pects (that are instead typical of a conventional methodol-
ogy) and that could divert the researcher’s attention from
his main focus that is related to implementing some kind
of new robotics solution using agents as the most suitable
paradigm to achieve a fast and reliable system. The method-
ology we are working on (see Figure 5), is an agile process
(Agi ),(Becket al. 2001) and follows some of the rules pre-
scribed in the XP (Extreme Programming) approach (Wells
2003). According to the previously presented approach the
new methodology construction process is based on the reuse
of existing method fragments (coming from PASSI) and is
supported by a specific design tool. The methodology is
composed by three main models: the Requirements Model
where the iteration is planned (in terms of identification of
a portion of the system to deal with), and requirements are
captured; the Agent Society model where agents are identi-
fied and domain ontology designed; the Code model where
test is planned and reusing pattern the code is produced. The
coding phase is supported by a tool that from previous spec-
ifications builds some diagrams (agent implementation dia-
grams inherited from PASSI) and helps the designer in com-
piling several aspects of the design (for example setting up
communication parameters). In case of changes made to the
code, design artifacts are updated on the fly thanks to a re-
verse engineering process. Future experiments will consists

in rebuilding the discussed robotic surveillance application
with this new process and compare the results with the ones
obtained by adopting the PASSI methodology.

Conclusions
Our work is, by now, mainly centered on the study
of several MAS meta-models and the description of the
PASSI methodology in SPEM (Software Process Engineer-
ing Metamodel) in order to extract the method fragments
from it. Since other research groups are preparing methodg
fragments in a similar way we are confident to be able to
reuse the results of their work too at the same time we will
contribute with our ones to their effort. This fragment iden-
tification activity is complemented by an ongoing study of
the technological solutions that could be used to realized the
method fragments repository. Another crucial point will be
the study of possible guidelines for the methodology cre-
ation via the fragments assembling. Several approaches ex-
ist in literature about OO systems but in our specific context
others could be explored like some ontology related ones.

The discussed approach is undoubtedly long and complex
but we think it can be considered very promising also be-
cause it is near to the one adopted by the FIPA community
and in this context it will find the stage for its application and
probably several people operating in that context will have
the opportunity to concretely apply it.

As an intermediate goal we are now composing an agile
process whose application field is the development of agent-
based robotic systems.

References
Agile alliance. http://www.agilealliance.org.

Beck, K.; Beedle, M.; van Bennekum, A.; Cockburn, A.;
Cunningham, W.; Fowler, M.; Grenning, J.; Highsmith, J.;



Hunt, A.; Jeffries, R.; Kern, J.; B.Marick; Martin, R.; Mel-
lor, S.; Schwaber, K.; J.Sutherland; and Thomas, D. 2001.
Agile manifesto. http://www.agilemanifesto.org.

Bellifemine, F.; Poggi, A.; and Rimassa, G. 2001. Jade
- a fipa2000 compliant agent development environment.
In Agents Fifth International Conference on Autonomous
Agents (Agents 2001).

Brinkkemper, S. 1995. Method engineering: engineering
the information systems development methods and tools.
Information and Software Technology37(11).

Burrafato, P., and Cossentino, M. 2002. Designing a multi-
agent solution for a bookstore with the passi methodology.
In Fourth International Bi-Conference Workshop on Agent-
Oriented Information Systems (AOIS-2002).

Chella, A.; Cossentino, M.; Pirrone, R.; and Ruisi, A.
2002. Modeling ontologies for robotic environments. In
The Fourteenth International Conference on Software En-
gineering and Knowledge Engineering.

Chella, A.; Cossentino, M.; and Sabatucci, L. 2003. De-
signing jade systems with the support of case tools and pat-
terns.Exp Journal3(3):86–95.

Cossentino, M., and Potts, C. 2002. A case tool supported
methodology for the design of multi-agent systems. Las
Vegas (NV), USA: The 2002 International Conference on
Software Engineering Research and Practice.

Cossentino, M.; Sabatucci, L.; and Seidita., V. 2003a.
Method fragments from the passi process.Rapporto tec-
nico ICAR-CNR(21-03).

Cossentino, M.; Sabatucci, L.; and Seidita., V. 2003b.
Spem description of the passi process.Rapporto tecnico
ICAR-CNR(20-03).

FIPA. 2003. Method fragment definition. FIPA Document,
http://www.fipa.org/activities/methodology.html.

Fuggetta, A. 2000.Software Process: A Roadmap. ACM
Press. chapter The Future of Software Engineering.

Infantino, I.; Cossentino, M.; and Chella, A. 2002. An
agent based multilevel architecture for robotics vision sys-
tems. InThe 2002 International Conference on Artificial
Intelligence. Las Vegas (NV), USA: ICAI’02.

Kendall, E. A.; Krishna, P. V. M.; Pathak, C. V.; and
Suresh, C. B. 1998. Patterns of intelligent and mo-
bile agents. In Sycara, K. P., and Wooldridge, M., eds.,
Proceedings of the 2nd International Conference on Au-
tonomous Agents (Agents’98), 92–99. New York: ACM
Press.

Kumar, K., and Welke, R. 1992. Methodology engineering:
a proposal for situation-specific methodology construction.
Challenges and Strategies for Research in Systems Devel-
opment257–269.

Luck, M.; McBurney, P.; and Preist, C. 2003.
Agent Technology: Enabling Next Generation Com-
puting. A Roadmap for Agent Based Computing.
http://www.agentlink.org/roadmap.

O’Brien, P., and Nicol, R. 1998. Fipa - towards a standard
for software agents.BT Technology Journal16(3):51–59.

OMG. 2002. Software process engineering
metamodel - version 1.0. OMG Document.
http://www.omg.org/technology/documents/formal/spem.htm.
Poslad, S.; Buckle, P.; and Hadingham, R. 2000. The fipa-
os agent platform: Open source for open standards. In5th
International Conference and Exhibition on the Practical
Application of Intelligent Agents and Multi-Agents.
Saeki, M. 1994. Software specification & design methods
and method engineering.International Journal of Software
Engineering and Knowledge Engineering.
Tolvanen, J.-P. 1998. Incremental method engineering with
modeling tools: Theoretical principles and empirical evi-
dence (ph.d. thesis).Jyvskyl Studies in Computer Science
301.
Wells, D. 2003. Extreme programming. a gentle introduc-
tion. http://www.extremeprogramming.org.
Zambonelli, F., and Parunak, H. V. D. 2002. Sign of a
revolution in computer science and software engineering.
In 3rd International Workshop on Engineering Societies in
the Agents’ World. LNAI.


