From Requirements to Code with the
PASSI Methodology

Massimo Cossentino
ICAR-CNR (Istituto di Calcolo e Reti ad Alte Prestazioni-Consiglio Nazie delle
Ricerche)
Viale delle Scienze, ed. 11, 90128 Palermo, Italy
Tel. +39.091.238261, Fax +39.091.6529124
cossentino@pa.icar.cnr.it

From Requirements to Code with the
PASSI Methodology

Abstract. PASSI (a Process for Agent Societies Specification anpdeimentation) is a step-by-step
requirement-to-code methodology for designing and developing muti-aggeieties integrating

design models and concepts from both OO software engineeringtidicthbintelligence approaches
using the UML notation. The models and phases of PASSI encompassergption of system
requirements, social viewpoint, solution architecture, code produatidnreuse, and deployment
configuration supporting mobility of agents. The methodology is ilitestl by the well-known

bookstore case study.

INTRODUCTION

At present, several methods and representations for agendt$atems have been proposed (Aridor,
1998, Bernon, 2004, Bresciani, 2004, DelLoach, 2001a,b, Jennings, 2000, Kendall,at888n&lli
2001 and 2003). In order to explore them, we shall consider a relepact as modelling software,
that is fidelity. Robbins et al. (1998) have defined fidelitytlees distance between a model and its
implementation. This means that low fidelity models are prokéented, whilst high fidelity
models are more solution-oriented.

Since agents are still a forefront issue, some researdimrs proposed methods involving
abstractions of social phenomena and knowledge (Bernon, 2004, Bresc@hi,J2@nings, 2000,
Zambonelli, 2001 and 2003) (low fidelity models); others have pempospresentations involving
implementation matters (Aridor, 1998, DeLoach, 2001a, Kendall, 1998) (highetyfiselilels).

There exists one response to these proposals, which isttagerd-based systems the same as non-
agent based ones. However, we reject this idea becausénlé th more natural to describe agents
using a psychological and social language. Therefore we bedhatehere is a need for specific
methods or representations tailored for agent-based softwarebdligt originates from the related
literature. To give an example, Yu and Liu (2000) say: “an aigeah actor with concrete, physical
manifestations, such as a human individual. An agent has dependbatiagply regardless of what
role he/shelit happens to be playing”. On the other hand, Jenning®) @fihes an agent as “an
encapsulated computer system that is situated in some enviroane: that is capable of flexible,
autonomous action in that environment in order to meet its designieégiciAlso, Wooldridge and
Ciancarini (2001) see the agent as a system that enjoys autonomy, segetivéctiveness and social
ability.

Therefore, multi-agent systems (MAS) differ from non-agenetames because agents are meant to
be autonomous elements of intelligent functionality. Consequently,rehisires that agent-based
software engineering methods need to encompass standard desigiesaetnd representations as
well as models of the agent society.

Two more responses exist. They both argue that agents diffeotran software but disagree about
the differences. The first, proposed by supporters of low-fidedipyesentations, is that agents are
distinguished by their social and epistemological properties; thielye need different abstractions.
The second, proposed by supporters of high-fidelity representatiotngt ithe difference is in the

deployment and interaction mechanisms. About the agent notion, DelLddxla)2argues that “an

agent class is a template for a type of agent in the systers andlogous to an object class in object-
orientation. An agent is an actual instance of an agent ckasd”,... agent classes are defined in

terms of the roles they will play and the conversations in whighrtiuest participate”. This definition
in some way conjugates the social (conversational) and deptby(maplementation) oriented
theories and positions DelLoach in the middle.

We also reject these two views in their extreme formslesigner may want to work at different
levels of detail when modeling a system. This requires appteprépresentations at all levels of
detail or fidelity and, crucially, systematic mappings between thepaude such issues are at present
not addressed by any of the existing MAS analysis and design methedphg have decided to
create a brand new one.

The methodology we are going to illustrate is named PASSIPf{tess for Agent Societies
Specification and Implementation” or “steps” in the Italiamglaage). It is our attempt at solving the
scientific problem arising from the above considerations. Ity fats a step-by-step requirement-to-
code methodology for designing and developing multi-agent societeggdting design models and
concepts from both object-oriented software engineering and MAS tisendJnified Modeling
Language (UML) notation. It is closer to the argument made afoovdgh-fidelity representations,
but addresses the systematic mapping between levels of detaifielitgl. fThe target environment we
have chosen is the standard widely implemented FIPA (Foundatidntélligent Physical Agents)
architecture (O'Brien, 1998, Poslad, 2000). PASSI is the resaltlafig period of theoretical studies
and experiments in the development of embedded robotics applicatibaka(@000, Cossentino,
2003Db).

The remainder of this article is structured as follows. fiéne section gives a quick presentation of
the methodology’s models and provides a justification for PASSI. tiiné section presents the
application of PASSI to the “Juul Mgller Bokhandel A/S” casedy (Andersen, 1997) giving a
detailed description of the steps and the use of UML nostidthin each of them. A comparison of
PASSI with the Gaia (Zambonelli, 2003) and MaSE (DelLoach, 2001#)ers given and some
conclusions are presented in the final section.

Initial
Requirements Next Iteration
System Requirements Model Agent Implementation Code Model
Model

Code

Domain Req.
Description
Production

Agent
Identification
Ag. Behavior
Bole . TQSk . Description * .
Identification Specification Agent Test Society
gent Tes Test
| 1 f
Ontology Role Protocol Deployment
Description Description Description Configuration

Agent Society Model Deployment Model
Figure 1. The models and phases of the PASSI matwmpd

Ag. Structure
Definition v

A QUICK OVERVIEW OF THE PASSI METHODOL OGY

In conceiving this design methodology, we followed one specific goilethe use of standards
whenever possible. This justifies the use of UML as modelingukgey the use of the FIPA
architecture for the implementation of our agents and the u3&va in order to represent the
knowledge exchanged by the agents in their messages.

PASSI (Process for Agent Societies Specification and Impitatien) is a step-by-step requirement-
to-code methodology for developing multi-agent software that inegyraesign models and
philosophies from both object-oriented software engineering and Ms$i8g (more properly

extending) the UML notation (OMG, 2003). Because of the speci@dsef agent design, the UML
semantics and notation will be used as a reference poititdyutvill be extended and UML diagrams
will be often used to represent concepts that are not corsiorekdML and/or the notation will be
modified to better represent what should be modeled in the spedifict. The PASSI process is
composed of five process components (System Requirements, Ageny Shgent Implementation,
Code and Deployment) and several distinct work definitions withich of them (Figure 1). Code
production is strongly supported by the automatic generation ofj@ énount of code thanks to the
PASSI ToolKit (PTK) used to design the system and a liboingusable patterns of code and pieces
of design managed by the AgentFactory application.

In what follows, the (five) process components will be retetoceas models and the work definitions
as phases; in order to clarify the meaning of these termgliygrovide a parallelism with the SPEM
(Software Process Engineering Metamodel) concepts (SPEM, 2002). Refei®SR&M we could say
that a process is composed of process components; each process conmoddrd made by phases
(a kind of work definition) that are in turn decomposable intivities and steps (both activities and
steps are again work definitions). In the PASSI process, #meak that corresponds to the SPEM
process component is called model and it is composed of phasessténrce in Figure 1 we can see
that the System Requirements model is composed of the Domain €&Xeguis Description, Agents
Identification, ... phases). The “models” and “phases” of PASSI are:

1. System Requirements Model. A model of the system requirements in terms of agency and
purpose. It is composed of four phases: (a) Domain RequirementspbesqiD.R.D.): A functional
description of the system using conventional use case diagfi@nsgent Identification (A.ld.): the
phase of attribution of responsibilities to agents, represestetiereotyped UML packages. (¢) Role
Identification (R.ld.): a series of sequence diagrams explotiegrésponsibilities of each agent
through role-specific scenarios. (d) Task Specification (T.Sp.): spificof the capabilities of each
agent with activity diagrams.

2. Agent Society Modd. A model of the social interactions and dependencies among the agents
involved in the solution. Developing this model involves three step©ntology Description (O.D.):
use of class diagrams and OCL constraints to describe thdddgmvascribed to individual agents
and their communications. (b) Role Description (R.D.): claagrdms are used to show the roles
played by agents, the tasks involved, communication capabilitiésnéer-agent dependencies. (c)
Protocol Description (P.D.): use of sequence diagrams to gpbeifgrammar of each pragmatic
communication protocol in terms of speech-act performatives.

3. Agent Implementation Model. A classical model of the solution architecture in terms of
classes and methods; the most important difference withothenon object-oriented approach is that
we have two different levels of abstraction, the sograllti-agent) level and the single-agent level.
This model is composed of the following steps: (a) Agent Strei@efinition (A.S.D.): Conventional
class diagrams describe the structure of solution agent €la@yeAgent Behavior Description
(A.B.D.): Activity diagrams or state-charts describe the behavimrddfidual agents.

4, Code Model. A model of the solution at the code level requiring the fdalgwsteps to
produce it: (a) generation of code from the model using one of the functionaflittes PASSI add-in.

It is possible to generate not only the skeletons but algeljareusable parts of the method'’s
implementation based on a library of reused patterns and asslod&sign descriptions; (b) manual
completion of the source code.

5. Deployment Model. A model of the distribution of the parts of the system sctwrdware
processing units and their migration between processing uhitisvdlves one step: Deployment
Configuration (D.C.): deployment diagrams describe the allmtatf agents to the available
processing units and any constraints on migration and mobility.

Testing: the testing activity has been divided into two differeaps: the single-agent test is devoted
to verifying the behavior of each agent regarding the origa@lirements for the system solved by
the specific agent (Caire, 2004). During the Society Teségiation verification is carried out
together with the validation of the overall results of thesation. The Agent Test is performed on the
single agent before the deployment phase while the society test is carried ompiete system after
its deployment.

In the following, each of the above cited models will be discussed in detailspecific subsection.

The agent in PASSI
The concept of agent will be central in our discussion and therafdefinition of what we mean by
an agent will be helpful before proceedings.

In PASSI, we consider two different aspects of the agent: dthimgnitial steps of the design, it is
seen as an autonomous entity capable of pursuing an objective thit®wghonomous decisions,
actions and social relationships. This helps in preparing a soliht# is later implemented referring
to the agent as a significant software unit. An agent may undestaleral functional roles during
interactions with other agents to achieve its goals. A rok gsllection of tasks performed by the
agent in pursuing a sub-goal or offering some service tottiee members of the society. A task, in
turn, is defined as a purposeful unit of individual or interactdehavior. Each agent has a
representation of the world in terms of an ontology that is afsored to in all the messages that the
agents exchange.

Iterations
PASSI is iterative, as are most widely accepted olgeetited methods. There occur two types of
iterations in it. The first one is led by new requirements and involi/gsaPASSI models.

The second iteration occurs, involving only modifications to tgerA Implementation Model. It is
characterized by a double level of iteration (see Figure 2).néé&x to look at this model as
characterized by two views: the multi-agent and single-agemisy The outer level of iteration
(dashed arrows) concerns the dependencies between multi-agesingle-agent views. The first
(multi-agent) view relates to the agents’ structuretéims of cooperation and tasks involved) and
behaviors (flows of events depicting cooperation). The second deadn®lates to the single-agent
structure (attributes, methods, inner classes) and behavémified in an appropriate way). The inner
level of iteration (Agent Structure Definition — Agent BelmavDescription) takes place in both the
multi-agent and single-agent views and concerns the dependeettieeb structural and behavioral
matters.

As a consequence of this double level of iteration, the Ageplementation Model is composed of
two steps (A.S.D. and A.B.D.) but yields four kinds of diagrams taking into actt@intulti- and the
single-agent views.

Agent Implementation Model

Multi-Agent Single-Agent

Agent Structure ’ Agent Structure
Definition Definition

<------1 1

A 4 A 4

Agent Behavior Agent Behavior
Description Description

Figure 2. The agents’ implementation iterations

A MORE DETAILED DESCRIPTION OF PASS
Throughout the following subsections we refer to the “Juul Mdlekhandel A/S” case study
(Andersen, 1997) that describes the problems of a small booksipieg with rapidly expanding
Internet-based book retailers. The bookstore has a strong busileissiskip with the Norwegian
school of Management. Nevertheless, there are communication lyEipseen them. As a
conseqguence, the bookseller is in trouble, for example, when ptléndooks (due to a lack of
information about the number of attendees of some courses) orthd&chool changes the required
literature. Besides, there are also problems with the distibwthain. This requires a strong
knowledge of distributors’ and publishers’ processes and practices.

Domain Requirements Description phase

Although many authors make use of goals in requirements enginéénitdm, 1998, Potts, 1999), we
prefer the approach coming from Jacobsebal. (1992) and we describe requirements in terms of use
case diagrams. The Domain Requirements Description phaseesasgtais a functional description of
the system composed of a hierarchical series of use casamdgagicenarios of the detailed use case
diagrams are then explained using sequence diagrams. Figure 3 glaowvof the Domain
Requirements Description diagram depicting our analysis fobdloé&store case study. Stereotypes
used here come from the UML standard.

Throughout this paper, we will only examine one scenario. Thaeisre that takes place every time
that the bookstore needs to purchase some bdtvksife Booksuse case in Figure 3). This may
happen, for example, before the beginning of every semestas &b provision the store with the
requested books and therefore anticipate the students’ needs; or wiecfasalty has been known to
change the required literature, or switch a book from “recomnagrid® “required”. The scenario
begins with the prediction of the students needs in order éblistt whether there is a sufficient
number of items of that book in the store, or not. If not, and the isas&eded, a new purchase is to

be made; this in turn includes (see Figure 3):

» Definition of the wished quotatiogfine Purchase-Monayse case) by the use of an expert
system which holds the history of previous purchases, especially in evitaros courses,
teachers, number of attendees, books purchased and books sold, suppliers, timéoelapsed
negotiation and delivery, and so forth.

* Negotiation of the priceNegotiate Purchase-Monesse case).

» Execution of the ordeCQarry Out Orde}.

» Updating of the purchase history archildp(late Purchase Histoyyn order to increase the
knowledge of the purchase expert system.

» Receiving delivery information about the purchaRedgive Delivenyin order to close the case
related to it.

: : <<communicate>> %
Keep NSM Needs Updated NSM Courses Q&O
< / N

Web Senver
ycaﬂy Out Order Carry Out Order By Phone
Clerk

<<extend>>

<<include>> <<include>>

Predict Students Needs Provide Books Negotiate Purchase-Mongy Negotiate Purchase-Money

By Telephone

<<include>> \
<<include>>

Define Purchase-Money
Supplier

Update Purchase History

/ﬁ«mclude» % %
© Receive Delivery Storekeeper

Record Sale

Figure 3. A portion of Domain Requirements Des@ipdiagram

Agent Identification phase
If we look at a MAS as a heterogeneous society of intended xastegrég agents that in Jackson's
terminology can be “bidden” or influenced but not deterministicatigtrolled (Jackson, 2001), it is
more reasonable to locate required behaviors into units of responsibifityte start. That is why we
have put this phase in the System Requirements Model.

Agents’ identification starts from the use case diagramshefprevious step. According to our
definition of agent, it is possible to see it as a use oasepackage of use cases in the functional
decomposition of the previous phase. Starting from a sufficientbileldtdiagram of the system
functionalities (Figure 3), we group one or more use casesteteotyped packages so as to form a
new diagram (Figure 4). In so doing, each package defines the functionaldéispexfific agent.

Relationships between use cases of the same agent fhbowgtial UML syntax and stereotypes (see
the “include” relationships in the Purchase Monitor and PuecAalvisor agents in Figure 4), whilst
relationships between use cases of different agents are gheickals “communicate”.

<<Agent>>
PurchaseMonitor NSM Courses —

Web Server <<Agent>> <<Agent>>
Purchaser Clerku!
Keep NSM Needs Updated Pur::;:gs:nr\‘a);nager i IE—
<<commun
Tarry Out Order lcarry Out Order By Teleph@;%
<<inglude>> . t.»%o <<communidate>> e
communicate: e
L —C -
1 Provide Books ‘ate Purch jate Purchase-Money By
o Y
Predict Students Needs } \

— <communicate>>
<<Agent>>
PurchaseA; isor
Supplier
Define Purchase-Mong;
<Agent>>
Update Purchase Histofy &\toreul
<include>> (>< l%
Receive Delivery Storekeeper
Record Sale

Figure 4. The Agents Identification diagram obtairieom the requirements described in the previcussp

The convention adopted for this diagram is to direct communicagiationships between agents
from the initiator towards the participant.

Note, for example, how the “include” relationship between the asesProvide Booksaind Receive
Delivery (Figure 3) turned from “include” into “communication”, and fwtmore it also changed the
navigability direction. This reflects the fact that in amto@omous organization of agents in a
distributed system, we can organize things in a departmental maonas to have StoreKeeper
actor that records any stock’s delivery that occurs. SteeeUl agent may then notify that to the
Purchase Manageagent. In so doing, theurchase Managedoes not need to keep bothering about
the delivery of a stock, but rather it continues to work while anathent is taking care of this task.

The selection of the use cases that will be part of each algeuld be done pursuing the criteria of
functionality coherence and cohesion. These are important attribiutee design and, if the adopted
agent identification does not produce a satisfactory resutt this point of view, a change in it is
strongly advised. In a limited number of cases (for instavtoen relevant limits in communication
bandwidth are predictable as occurs for agents deployed Ihamamobile devices), agents should
be composed also considering how big are the information banks theangecalthough this cannot
be evaluated at this stage. The iterative and incremeatate of PASSI provides great help in
solving this problem; an initial hypothesis for agent identificais done and, if problems occur, it
can be changed in successive iterations.

Roles I dentification phase
This phase occurs early in the requirements analysis sincaowedeal more with an agent's
externally visible behavior rather than its structure — only appragiatehis step.

Roles identification is based on exploring all the possible pattiseofgents Identification diagram

involving inter-agent communication. A path describes a scenatiotaricting agents working to

achieve a required behavior of the system. It is composed efatfesommunication paths. A

communication path is simply a “communicate” relationship betwtwo agents in the above
diagram. Each of them may belong to several scenarios, whecdrawn by means of sequence
diagrams in which objects are used to symbolize roles.

Informer
PurchaseMonitor

BooksProvider
PurchaseManager

Consultant Negot ator /% O derPlacer Delivery Notifier \ Recorder
PurchaseAdv isor haser | * SUPPNEr | purchaser Storeul ; PurchaseAdvisor

Storekeeper

ProvideTheseBooks
TOVITE THeserRee.

Try TheseConditions ‘

tn)nszlhThlsSupleJr

NegotiateTheseCond|

up|
SuggestPurchaseCorjditions T

NewDelivery ‘

GotTheBooks

Figure 5. The Roles Identification diagram for geenario in which the Purchase Monitor agent anroasnthe
need for a books purchase

Figure 5 shows the already presented scenario, arising when@urehvase is required from the role
Informer of the PurchaseMonitoragent to the rol@ooksProviderf the Purchase Manageagent.
Although the diagram resembles an UML sequence diagram, trexsgra bit different. Each object
in the diagram represents an agent’s role and we name it with theifglsyntax:

<role_name : <agent_name
An agent may participate in different scenarios playingrdistioles in each. It may also play distinct
roles in the same scenario (as happens t@tnehaserand thePurchase Advisoagents in Figure 5).
Usually, UML sequence diagrams begins because of some aatbios, in PASSI, being agents
autonomous and active, they can trigger a new scenario and @arofsr not) appear later. For this
reason thd”urchaseMonitoragent (while playing iténformer role) can be the first element of this
diagram and can fire it.

The messages in the sequence diagram may either sigréfytsegenerated by the external
environment or communication between the roles of one or more agemssgage specifies what
the role is to do and possibly the data to be provided or received.

We can describe the scenario as follows:

» Thelnformer informs theBooksProviderthat the bookstore needs to purchase a specified stock of
books.

» Given a list of suppliers for the needed books BbeksProviderequests th€onsultanto
suggest purchase conditions (number of stocks, purchase-money, etc) on thegdaassibusiness.

» Whether theConsultanthas returned any advice or not, BeoksProvidegives theNegotiatorthe
data about the supplier to negotiate with and the conditions to be nega@tidteisame time, it
requests the negotiation to be started. BbeksProvideis then ready to take care of other
requests that may come from the cooperating agents’ roles.

» TheNegotiatornegotiates via fax or e-mail (this is the case of the presentrEgearad gets the
best offer. It then returns it to tB®oksProvider

» TheBooksProvideestablishes whether the offer is good enough or not, according to its budget and
considerations such as the pricing of the book and the number of students thahewbightit. In

this scenario we assume that the offer is good enough and BoakeProvideproposes the
OrderPlacerto buy the books. Therefore tBeoksProvideis then ready to take care of other
requests.

» When the books are delivered a notification is then forwarded froDelineryNotifierto the
BooksProvider

The rest of the scenario is straightforward. Data containgtid messages of the above sequence
diagram are specified more in details later in the Ontology Deiscriphase.

Task Specification phase
At this step, for each agent we focus on its behavior in aodemnceive of a plan that could fulfil the
agent’s requirements by delegating its functionalities teteobtasks. Tasks generally encapsulate
some functionality that forms a logical unit of work. For evagent in the model, we draw an
activity diagram that is made up of two swimlanes. The oom fthe right-hand side contains a
collection of activities symbolizing the agent’s tasks, whetha one from the left-hand side contains
some activities representing the other interacting agents.

A Task Specification diagram (see Figure 6) summarize$ thhaagent is capable of doing, ignoring
information about roles that an agent plays when carrying atitydar tasks. Relationships between
activities signify either messages between tasks and aiteracting agents or communication
between tasks of the same agent. The latter are not spetsctbat rather signals addressing the
necessity of beginning an elaboration, i.e. triggering a teskution or delegating another task to do
something. In order to yield an agent's T.Sp. diagram we need toatoak of the agent’s R.ld.
diagrams (i.e. all of the scenarios it participates in). M&n explore all of the interactions and
internal actions that the agent performs to accomplish arsgenaurpose. From each R.ld. diagram
we obtain a collection of related tasks. Grouping them all togeghyeropriately then results in the
T.Sp. diagram.

Other agents Purchase Manager agent

ReceiveDelivery

<PurchaseM0nitorA RequestBooks

Notification

StoreUl.Notify Delivery RecevePurchase
Request

PurchaseAdvisor. Listener
AskForAdvice) { StartPurchase >

AskNegotiation
Purchaser.Listener

AskOrdering

UpdatePurchase
History
NotifyEndOfPurchase)

Figure 6. The tasks of the Purchase Manager agent

Because drawing a Task Specification diagram for each agmntl iequire too much space in this
chapter, we proceed from now on by focusing on a single agent: tbleaBe Manager. In Figure 6
we can see its T.Sp. diagram. In this example, we suppose ltisémertask is needed in order to
forward incoming communication to the proper task; this is commanany MAS platforms (for
example in FIPA-OS, Poslad, 2000) while this is not necessagnie others. We decided to present
this situation because all the others can be reduced torthig-urther tasks are needed to handle all

the incoming messages of the R.Id. scenario (sBeceivePurchaseRequestnd
ReceiveDeliveryNatificatiotasks in Figure 6 that correspond to the R.Id. messages camingHe
Purchase Monitorand StoreUl agents respectively in Figure 5). Likewise, a task isdhtced for
each outgoing message (or series of messages that couldfied imione communication) of the
R.Id. scenario (seeAskForAdvice AskNegotiation AskOrdering UpdatePurchaseHistory
NotifyfEndOfPurchasn Figure 6). In this way we dedicate one task to deal with eachoaination
and if necessary with minor other duties (for example simple b of received data). If a
relevant activity follows/prepares the incoming/outgoing comnaiitin, extra tasks may be
introduced to face with a better decomposition of the agenStasurchaseask in Figure 6).

Ontology Description phase
In the PASSI methodology the design of ontology is performed in thealDo@ntology Description
(D.O.D.) phase and a class diagram is used. Several workedaund in the literature about the use
of UML for modeling ontology (Bergenti, 2000, Cranefield, 1999)uFég7 reports an example of a
PASSI D.O.D. diagram; it describes the ontology in terms of gaggategories, entities of the
domain), predicates (assertions on properties of concepts), actiomsretin the domain) and their
relationships. This diagram represents an XML schema thiakfsil to obtain a Resource Description
Framework (RDF) encoding of the ontological structure. We (mapted RDF to represent our
ontologies, since it is part of both the W3C (1999) and FIPAARBPF Content Language) (2001)
specifications.

Elements of the ontology are related using three UML standarbnelaips:

» Generalizationthat permits the ‘generalize’ relation between two entities, whiohe of the
essential operators for constructing an ontology;

» Associatiorthat models the existence of some kind of logical relationship betweesntities and
allows the specification of the role of the involved entities in omletarify the structure;

» Aggregationthat can be used to construct sets where value restrictions can biglyspkcified,;
this originates from the W3C RDF specification where three typesntdiner objects are
enumerated, namely theag (an unordered list of resources), fegjuencé€an ordered list of
resources) and thaternative(a list of alternative values of a property), and is therefore not-UML
compliant.

The example in Figure 7 shows that eBeiichaseis related to &SuccessfulNegotiatiom predicate
that reports if an order has been issued (attribiderissueds true in this case) as a consequence of a
negotiation. It includes a request from the librayyrRequestfor a specificStockand an offer from
the supplier theirBestOffey for that Stock Delivery is an example of action: it describes the activity
done by theSupplierof delivering to theéStorekeepesome books listed in an ordered stock.

The Communication Ontology Description (C.0.D.) diagram (Figurés & representation of the
agents’ (social) interactions; this is a class diagthat shows all agents and all their interactions
(lines connecting agents). In designing this diagram we start the results of the A.ld. (Agent
Identification) phase. A class is introduced for each identifigdnt, and an association is then
introduced for each communication between two agents (ignoring forahmm distinctions about
agents’ roles). Clearly, it is also important to introduce piheper data structure (selected from
elements of the Domain Ontology Description) in each agent in order to stescti@ged data. The
association line that represents each communication is dramrtlie initiator of the conversation to
the other agent (participant) as can be deduced from the diescaptheir interaction performed in
the Role Identification (R.ld.) phase. According to FIPA standa@®munications consist of speech
acts (Searle, 1969) and are grouped by FIPA in several interaqtitocols that define the sequence
of expected messages. As a conseguence, each communicatioragtectzad by three attributes,
which we group into an association class. This is the chamatieri of the communication itself (a
communication with different ontology, language or protocol itagdy different from this one) and
its knowledge is used to uniquely refer this communication (whah have, obviously, several

instances at runtime since it may arise more than oncegs Rtdyed by agents in the interaction (as
derived from the R.Id. diagrams) are reported at the beginning and the bade$bciation line.

<<concept>>
GoingOnPurchases

+AnOpenPurchas§L 0..*

<<concept>> <<concept>>
Purchase | +Purchaselnfo OpenPurchase
+Courselnfo | date : Date remainingStocks ToNegotiate : Stocks
<<concept>> 1
Course
courseTitle : String 1% +ANegotiation +StocksTpNegotiate
teacherName : String = -
numberOfAttendees : Integer <<predicate>> <<concept>>
SuccessfulNegotiation Stocks
orderlssued : Boolean

+textBook |, 1

<<concept>>
Book
alluth.ors | String <<concept>>
gg:iér? Frgging SuppliersArchive
publisher : String 1
. +ourRequest)
+theirBestOffer +ASupplier
+textBook /| 1..* +AStock pp 1.%
- <<concept>> <<concept>>
«Daeclit\lgr;;) Stock +Stock Supplier
Actor = Supplier 1 |numberOfitems : Integer Supplier [name : String
Receiver = StoreKeeper +OrderedStock unitPrice : Integer 1 eme.ul : $tr|ng
purchaseTime : Date fax : String
<<act>> delivery() deliveryTime : Date phone : String
ﬁ\SupplyingStock

<<predicate>>
IsStockSufficient

ACourse : Course

Figure 7. The Domain Ontology Diagram

In Figure 8, thdPurchaseManageagent starts a conversation (§ageryForAdviceassociation class)
with the PurchaseAdvisoagent. The Conversation contains @murseontology, theQueryprotocol
and the RDF language. This means thaftiiehaseManagewants to perform a speech act based on
the FIPA's query protocol in order to ask tRarchaseAdvisoadvice on how to purchase (supplier,
number of stocks, number of items per each, purchase-money) provided the Cotmrsatim io

PurchaseAdvisor PurchaseDetails

CourseData QueryForAduse _past_purchases : History Ontology : Purchase

Ontology : Course <}—1Protacol : Query Language : RDF
Language : RDF +Recorder Protocol : Propose

+Congultant
BagksProvider

+BooksProvider DeliveryNotification

Ontology : Delivery
= Language : RDF

_open_purchases : GoingOnPurchases Protocol : Propose
_suppliers_list : Suppliers

PurchaseMonitor +Book}P€ue.

- +BooksProvider . i i
_course_info : Course| +Informer . +BOoksProvider +DeliveryNotifier
+Books Pfovider StoreUl
_delivery_details : Delivery
—_~%Negotiat jPrderRlacer

OurRequest Purchaser

Protocol : Query _our_request : Stock StockToPurchase
_their_best_offer : Stock Protocol : Propose

StockInfo
Ontology : Stock

Language : RDF

PurchaseAnnouncement
Protocol : Request PurchaseManager

Figure 8. The Communication Ontology diagram

Roles Description phase
This phase models the lifecycle of an agent taking into acdtsurtles, the collaborations it needs
and the conversations in which it is involved. In this phase,ameatso introduce the social rules of
the society of agents (organizational rules, Zambonelli, 2001jrentdehavioral laws as considered
by Newell (1982) in his “social level”. These laws may kpressed in OCL or other formal or semi-
formal manner depending on our needs.

The R.D. (Roles Description) phase yields a class diagravhich classes are used to represent roles
(the UML syntax and notation is here a little modified inewrth represent agents’ related concepts).
Each agent is symbolized by a package containing its rolesses (see Figure 9). Each role is
obtained by composing several tasks in a resulting behavior. In twdgtow which tasks are
necessary to compose the desired behavior, in this diagram, weéagkst in the operation
compartment of the related role’'s class. Each task isecekat an action or a set of actions and
therefore the list of tasks describes what a role is &bldo and it can also be helpful in the
identification of reusable patterns. A R.D. diagram can also slummections between roles of the
same agent, representing changes of role (dashed line withathe ROLE CHANGHE. This
connection is depicted as a dependency relationship because we signify the dependency of the
second role on the first. Sometimes the trigger conditiorisexplicitly generated by the first role
but its precedent appearance in the scenario justifies thelematgn that it is necessary to prepare
the situation that allows the second role to start. Convensabetween roles are indicated by solid
lines as we did in the Communication Ontology Diagram, usiagtly the same relationships names;
this consistency, like other quality aspects of design, is ensured by the use (#A3® ToolKit, an
open source add-in for Rational RBSethat automatically builds portions of several diagrans an
performs several checks on the inputs provided by the designer to verifyoineatisess with regards
to the other parts of the design.

We have also considered dependencies between agents (Yu, 2000). akgeaisonomous, so they
could refuse to provide a service or a resource. For thienmedse design needs a schema that
expresses such matters so as to explore alternative ways to achieveshim goder to realize such a
schema, we have introduced in the Roles Description diagram gdidfiteorzal relationships that
express the following kinds of dependency:
» Service dependency. A role depends on another to bring about a goal (indicatédsined line
with theservicename).
* Resource dependency. A role depends on another for the availability oftarfieditated by a
dashed line with theesourcename).

<<Agent>>
Purchase Monitor

—‘ Informer : PurchaseMonitor
<<Agent>>
Purchase Advisor RequestBooks() <<Agent>>
LookForChanges() Purchaser
Consultant : PurchaseAdvisor
PurchaseAnnouncement - -
IdleTask() (sehice) OurRequest Negotiator : Purchaser
ReceiveAdviceRequest() X ‘
QueryOnHistory() <<Apent>> IdleTask()
x \ Purchase Manager ReceiveNegotiationRequest()
) Negotiate()
e
‘ \ Qu BooksProvider : PurchaseManager 71
(regource)
(résource)
[ROLE QHANGE] idieTaskp) [ROLE GHANGE]

ReceivePurchaseRequest()

StartPurchase()

AskForAdvise()

PurchaseDetgils | StartNegotiation() ﬂ);ToPurc 33 OrderPlacer : Purchaser
T S T StartOrdering() prvice)
ecorder : PurchaseAdvisor < ReceiveDeliveryNotification() dleTask()

Notify EndOfPurchase() ReceiveOrderingRequest()
ldleTask() UpdatePurchaseHistory() Order()
ReceiveRecordingRequest()

UpdateHistory()
DeliveryNotification
<<Agent>>
Store Ul

DeliveryNotifier : StoreUl

Notify Delivery()

Figure 9. The Roles Description diagram for ourrsaeo

Protocols Description phase

As we have seen in the Ontology Description phase and as spéwsifitbé FIPA architecture, an
Agent Interaction Protocol has been used for each communichtiaur example, all of them are
FIPA standard protocols (FIPA, 2000). Usually the related docatientis given in the form of
AUML sequence diagrams (Odell, 2001). Hence, the designer does dotongmecify protocols on
his own. In some cases, however, existing protocols are not adeapdtesubsequently, some
dedicated ones need to be properly designed; this can be done using the AUlsingliagr

Agents Structur e Definition phase
As argued in subsection “Iterations”, this phase influences aimfluenced by the Agent Behavior
Description phase as a double level of iteration occurs betlWween The Agent Structure Definition
phase produces several class diagrams logically subdividedwnotviews: the multi-agent and the
single-agent views. In the former, we call attention to thergéaechitecture of the system and so we
can find agents and their tasks. In the latter, we focus on eanhisamgternal structure, revealing all
the attributes and methods of the agent class togethertsvitiner tasks’ classes (the FIPA-platform
classes that will be coded).

<<Agent>>
% Chieful %%
NSM Courses Web Sernver <<Agent>> Chief <<Agent>>
PurchaseManager ClerkUl
? <<Agent>>
<<Agent>> IdleTask() Purchaser
PurchaseMonitor ReceivePurchaseRequest()
StartPurchase() IdleTask()
AskForAdvise() ReceiveNegotiationRequest()
ﬁ:gﬁsz:gs::;gso StartNegotiation() Negotiate()
StartOrdering() ReceiveOrderingRequest()
\L ReceiveDeliveryNotification() Order() Clerk
NotifyEndOfPurchase()
UpdatePurchaseHistory() \
<<Agent>> <<Agent>>
Archive f PurchaseAdvisor
\«Agem»
¢ ShopUl IdleTask())
ReceiveAdviceRequest() Supplier
<<Agent>> QueryOnHistory()
WebUI ReceiveRecordingRequest()
UpdateHistory()

<<Agent>>
StoreUl

X

Storekeeper

S

NSM Student Notify Delivery()

Book Store Employee

Figure 10. The Multi-Agent Structure Definition diam for the bookstore case study

Multi-Agent Structure Definition (MASD). At this stage, one diagram represents the MAS as a
whole (Figure 10). The diagram shows classes, each symbolizingf dine agents identified in the
A.ld. phase. Actors are reported in order to represent signifiagents’ interactions with the
environment (for instance through sensing devices or actyafdiisbutes compartments can be used
to represent the knowledge of the agent as already discusstid iCommunication Ontology
diagram, whereas operations compartments are used to signify the tagkst's

Single-Agent Structure Definition (SASD). Here one class diagram (Figure 11) is used for each
agent to illustrate the agent’s internal structure throulgbfadhe classes making up the agent, which
are the agent’s main class together with the inner cladsetfying its tasks. At this point, we set up
attributes and methods of both the agent class (e.g. the coms@uad the shutdown method when
required by the implementation platform) and the tasks’ classes.

The result of this stage is to obtain a detailed structurthefsoftware, ready to be implemented
almost automatically.

— AskForAdvice
Receiv ePurchaseRequest

- - _course_info : Course
EUL{E el ot - -course_info : Course StartPurchase - received_advice : Stocks StartNegotiation

- purchaselnformation
- time + ReceivePurchaseRequest()
- negotiatingConditions + startTask()

- negotiatedConditions + doneAskForPurchaseAdv ()
- delivery Data

+ AGENT_TYPE : String = "Purchase Manager"

- _our_request : Stock

+ StartPurchase() + AskForAdvice() - _their_best_offer : Stock
+ startTask() + startTask() —
+ AskForPu

+ PurchasesManager()

+ StartNegotiation()
+ handleAdvice()
+ registrationFailed()
+ registrationRef used() IdleTask

+ startTask()
+ doneAskNegotiation() + handleTheirBestOf fer()
StartOrdering
+ registrationSucceded() Task - _stock_to_purchase : Stock

+ shutdown() + IdleTask() = <l

+ startTask() — + StartOrdering()
+ handleRequest() / \ + startTask()

UpdatePurchaseHistory Receiv eDeliv ery Notif ication
Notify EndOf Purchase - _delivery _details : Delivery

FIPA_Agent
—

- _purchase_to_record : Purchase

+ UpdatePuchaseHistory () + Notify EndOf Purchase() + Receiv eDelivery Notification()
+ startTask() + startTask() + startTask()

Figure 11. The Single-Agent Structure Definitioagtam for the PurchaseManager agent

Agents Behavior Description phase
As was seen in the previous phase, this phase influences aliésnced by the Agent Structure
Definition phase in a double level of iterations. The Agentha®@r Description phase produces
several diagrams that are subdivided into the multi-agentrendingle-agent views. In the former,
we draw the flow of events (internal to agents) and commuai{among agents) by representing
method invocations and the message exchanges. In the latter, we detail theethods.

Multi-Agent Behaviour Description (MABD). At this stage, one or more activity diagrams are
drawn to show the flow of events between and within both the @mgént classes and their inner
classes (representing their tasks). We depict one swimtaneath agent and for each task. The
activities inside the swimlanes indicate the methods ofdlated class. Unlike DeLoach (2001a), we
need not introduce a specific diagram for concurrency and syrizéition since UML activity
diagrams’ syntax already supports it.

The usual transitions of the UML standard are depicted hemdga#dying either events (e.g. an
incoming message or a task conclusion) or invocation of methodsndition is drawn for each
message recognized in the preceding phases (e.g. from the Rgichnalj. In this kind of transition,
we indicate the message’s performative as it is spddifithe Communication Ontology Description
diagram and the message’s content as described in the Domaindgyrbascription diagram. This
results in having a comprehensive description of the communicatahimding the exact methods
involved.

Figure 12 shows an example of a multi-agent behavior descriptionSten#urchaseask of the
PurchaseManagengent instantiates tHetartNegotiationtask by invoking thenewTasksuper-class

method. This has to be done in order to ask the Purchaser agenfotonpemegotiation with a
supplier. The invocation of th8tartNegotiationtask implies itsstartTaskmethod to be invoked
(according to the FIPA-OS implementation platform we have)us@hat thestartTaskmethod does

is just to send a message to Bhechaseragent. This contains tlRequesperformative (as required

by the FIPA Request protocol) and the conteatRequesfcoming from the D.O.D. diagram, Figure

7). ThehandleRequeshethod of thdPurchaser’s IdleTaskask receives the incoming communication
and sends it to theeceiveNegotiationRequeatk after this one has been instantiated as above. When
a task completes its job tdenemethod is invoked.

This kind of diagram often becomes very huge and difficultréavitead. In order to deal with this
problem an extended version of it has been presented in Caike(2004) where the revised syntax
supports different levels of detalil.

PurchaseManager.StartPurchase PurchaseManager.StartNegotiation Purchaser IdleTask Purchaser

StartPurchase.

StartPurchase newTask(Negotiate)
StartNegotiation.
StartNegotiation

StartNegotiation. message(OurRequest; query-if)
startTask IdleTask.
handleRequest

nlewTask(ReceiveNegotiationRequest)

> ReceiveNegotiationRequest.
ReceiveNegotiationRequest

ReceiveNegotiationRequest.
startTask newThsk(Negotiate)

Negotiate.

Negotiate

Negotiate.

messagg(OurRequestiinform) ____———————\ stanTask
—

StartNegotiation
.handlelnform done()
StartPurchase.done X done(ReceiveNegotiationRequest.
AskNegotiation doneNegotiate

Figure 12. An example of Multi-Agent Behaviour Dggon diagram

Single-Agent Behaviour Description (SABD). This phase is quite a common one as it involves
implementation of methods, exactly the ones introduced in the SA&jPadis. Designers are free to
describe them in the most appropriate way (for example, dlsingcharts, state diagrams or semi-
formal text descriptions).

Code Reuse phase
In this phase we try to reuse predefined patterns of agahtaisks. With the term pattern, we do not
only mean code but also design diagrams. As a matter ofHaateuse process typically takes place
in some CASE tool environment, where the designer looks moreagrtadis detailing a pattern’s
libraries rather than rough code. So we prefer to look at pattey pieces of design and code to be
reused in the process of implementing new systems.
We have extended the Rational Rose UML CASE tool by developingddAmsupporting PASSI
(PTK) and a specific pattern reuse application (AgentFactdPTK and AgentFactory are
complementary and responsible for two different stages ofdéségn-implementation activities:
initially, PTK helps in compiling the PASSI diagrams, then Afeantory is used to generate the
agents’ code when patterns have been used in the design. PTKréhitisses were able to generate
agents’ code but this duty has been, more recently, assignesd AgentFactory application. It works
in this way: the PTK (PASSI ToolKit) add-in can export the rmufent system model to
AgentFactory or generate the code for just the skeletotieeadesigned agents, behaviors and other
classes included in the project. AgentFactory code generatiobilt#s (Cossentino, 2003a) are
much more advanced than similar functions of PTK; AgentRactan, very quickly, create complex
multi-agent systems by using patterns from a large reppsitod can also provide the design
documentation of the composed agents. The tool can work online askmsexbapplication, but can
also be used as a stand-alone application. This approach has privedlexjble (Cossentino, 2003b)
in reusing patterns, thanks to its binding of design elements to code.

Due to the most common FIPA-compliant implementation platformsdilagate a specific task for
each specific communication, it has turned out that in our afiphisa which are mainly JADE or

FIPA-OS based, some of the most useful patterns are the ahestid be categorized as interaction
patterns.

Our patterns (whose discussion is out of the scope of this chapterfmasuthe composition of three

different aspects of a multi-agent system:

1. the static structure of one or more agent(s) or parts of them (i.e.idrshav

2. the description of the dynamic behavior expressed by the previously citeshéte

3. the program code that realizes both the static structure t@h&leand the dynamic behavior
(inner parts of methods) in a specific agent platform context (fangea ADE).

In reusing patterns from our repository, the designer can sbégtneric_agenpattern (that has the
capability of registering itself to the basic platfoservices) and he/she can introduce it in the actual
project. In this way, with a few mouse clicks he/she createtally new agent, the design diagram
has been updated (although with some limitations due to tlhwaldewel of integration between
Rational Rose and AgentFactory) and the agent’s code is properlyhaicti

The repository also includes a list of behaviors that can Hedpp existing agents. For example we
have behaviors dedicated to deal with the initiator/participatés in the most common
communications. When a pattern is introduced in the design, not only diagiams (like the
structural and behavioral one of the implementation level)updated but the resulting code also
contains large portions of inner parts of methods; the resudt IBghly affordable and quick
development production process.

Code Completion phase
This phase is the classical work of the programmer, whonjestls to complete the body of the
methods yielded to this point, by taking into account the design diagrams.

Deployment Configuration phase
The Deployment Configuration (D.C.) phase has been thought to complytheitrequirements of
detailing the agents’ positions in distributed systems or more ggnieratiobile-agents’ contexts.

The Deployment Configuration diagram is a UML deployment diagradhillustrates the location of
the agents (the implementation platforms and processing unite Wiey live), their movements and
their communication support. The standard UML notation is usefukfoesenting processing units
(by boxes), agents (by components) and the like. What is not suppyrtéML is the representation
of the agent’'s mobility, which we have done by means of a syntersah consisting of a dashed
line with amove_tostereotype connecting an agent reported in both its initial and finalopasiti

DISCUSSION

Methodologies differ in commitments about the target ageitacture. PASSI is a requirement-to-
code analysis and design methodology characterized by an itestapibdy-step refinement of the
system, producing at its final stage a concrete design ancknmaptation based on the FIPA
architecture. Gaia, by contrast, regards the output of the @nalyd design process as an abstract
specification that necessitates being further developed bylewtea-level design methodologies. So
does MaSE but, on the other hand, it goes further in the design pifocesspared with Gaia. Now,
one might think that a general approach such as Gaia is rduemtageous, given the present
proliferation of agent technologies. However, PASSI does not leaa marrow scope concrete
technology but instead it actually yields executable code foorerete and increasingly utilized
standard architecture such as FIPA.

A key issue in modeling multi-agent system is the conversameong agents. In order to obtain a
proper model of conversation, it would be desirable to have an ontdésgyiption of the system.
Excluding PASSI, none of the other methodologies compared throughout this alddogsses
specifically such a matter (to be more precise, Dileo €2@02) have recently proposed a method to
introduce ontology in MaSE). The PASSI Ontology Description phaseriles the society of agents

taking into account its ontological point of view. As counterpart MaSE there is a detailed

description of conversations by means of complementary statmata (couples of Communication
Class Diagram) representing agents’ state involved in conationm. Together, the complementary
sides of conversation make up a protocol definition. As foa,Gadefinition of protocols is provided

in the Interaction Model.

CONCLUSIONSAND FURTHER WORK

The methodology proposed here has proved successful with muitiaag distributed systems both
in robotics and information systems. It has been used in $egsearch projects and in the Software
Engineering course at the University of Palermo for finalgassents. Students and researchers
appreciated the step-by-step guidance provided by the methodology andurayét rather easy to
learn and to use. Among the most appreciated features westa() Ithe ease of transition for
designers coming from the object-oriented world since thialiiarts of PASSI adopt concepts of
requirements analysis that are very common in that contexf€iinultiple views that permit an easy
analysis of complex systems from many different aspecisti@ support of a specific design tool
(PTK, an add-in for Rational Rose) and (iv) the patterns réhateatlows a rapid development of
MASSs. The implementation environments that we have used weed basthe FIPA architecture in
accordance with the aim of adopting standards whenever posdéfeleare now working on the
enhancement of the CASE tool supporting PASSI and on the enlargeitieatpattern repository in
order to further increase the productivity of the PASSI developer.

REFERENCES
Andersen, E. (1997). Juul Mgller Bokhandel A®rwegian School of Managemehttp://www.espen.com/papers/jme.pdf.

Anton, A.l., & Potts, C. (1998). The Use of Goas3urface Requirements for Evolving SysteRmc. of International
Conference on Software Engineering (ICSE.'a8)/-166

Aridor, Y., & Lange, D. B. (1998). Agent Design Rahs: Elements of Agent Application Desigiroc. of the Second
International Conference on Autonomous Ageti8—115.

Bergenti, F., & Poggi A. (2000). Exploiting UML the design of multi —agent systerRsoc. of First International
Workshop Engineering Societies in the Agents World

Bernon, C., & Camps, V., & Gleizes, M-P., & Pica@l, (2004). Tools for Self-Organizing ApplicatioBagineeringFirst
International Workshop on Engineering Self-OrgamisApplications (ESOABpringer Verlag.

Caire, G., & Cossentino, M., & Negri, A., & Poggi,, & Turci, P. (2004). Multi-Agent Systems Implentation and
Testing. Proceedings of the Agent Technology toradeplementation Symposium (AT2AI-04).

Bresciani, P., & Giorgini, P., & Giunchiglia, F.,Wbpoulos, J. & Perini, A. (2004). TROPOS: An Agéntiented Software
Development Methodologyournal of Autonomous Agents and Multi-Agent Syst&iower Academic Publishers. 8(3),
203-236.

Caire, G., & Cossentino, M., & Negri, A., & Pogéi,, Turci, P. (2004). Multi-agent systems implenainn and testing.
Proc. of From Agent Theory to Agent Implementatiourth International Symposium (AT2AI-4)

Chella, A., & Cossentino, M., & Lo Faso, U. (200Dgsigning agent-based systems with UNRkoc. of International
Symposium on Robotics and Automation ISRA'2000.

Cossentino, M., & Sabatucci, L., & Sorace, S., &llh A. (2003a). Patterns reuse in the PASSI nusttogy. Fourth
International Workshop Engineering Societies in Atgents World

Cossentino, M., & Sabatucci, L., & Chella, A. (2003A possible approach to the development of ricbtiltiagent
systemsProc. of IEEE/WIC IAT'03 Conference

Cranefield, S., & Purvis, M. (1999). UML as an doggy modelling languagéroc. of the Workshop on Intelligent
Information Integratiorat 16th International Joint Conference on Atrtificlatelligence (IJCAI-99)

DelLoach, S.A., & Wood, M.F., & Sparkman, C.H. (28DIMultiagent Systems Engineeridgternational Journal on
Software Engineering and Knowledge Engineeririg3), 231-258.

DelLoach, S. A., & Wood, M. (2001b). Developing Madfent Systems with agentTodbitelligent Agents VII - Proceedings
of the 7th International Workshop on Agent Thegreshitectures, and Languages (ATAL'2Q08)ringer Lecture Notes in
Al, Springer Verlag.

DiLeo, J., & Jacobs, T. & DelLoach, S. (2002). Imé&ting Ontologies into Multiagent Systems EnginagrProc. of the
Fourth International Conference on Agent-Orientatbfmation Systems (AIOS-2002).

FIPA. (2000). Communicative Act Library Specificati FIPA Document #FIPA00037
http://www.fipa.org/specs/fipa00037/.

FIPA. (2001). FIPA RDF Content Language SpecifmatFIPA Document FIPA XC00011Bttp://www.fipa.org/specs/
fipa00011/XC00011B.html

Jackson, M. (2001Problem Frames: Analyzing and structuring softwdeselopment problemaddison Wesley.

Jacobson, |., & Christerson, M., & Jonsson, P.,\&@aard. G. (1992Dbject-Oriented Software Engineering: A Use Case
Driven ApproachAddison-Wesley.

Jennings, N.R. (2000). On agent-based softwareneagng.Artificial Intelligence 117, 277-296.

Kendall, E. A., & Krishna, P. V. M., & Pathak C. ¥.Suresh C. B. (1998). Patterns of intelligent amabile agentsProc.
Of the Second International Conference on Autonaigents92—99.

Newell, A. (1982). The knowledge levélrtificial Intelligence 18, 87-127.
O'Brien, P., & Nicol, R. (1998). FIPA - Towards #8dard for Software AgentBT Technology Journal.6(3),51-59.

Odell, J., & Van Dyke Parunak, H., & Bauer, B. (2D0Representing Agent Interaction Protocols in UMbent-Oriented
Software Engineerind3erlin: Springer-Verlag. 121-140.

OMG. (2003). Software Process Engineering Metam8gekification. Version 1.0.
OMG. (2003). Unified Modeling Language Specificati&version 1.5.

Poslad S., & Buckle, P., & Hadingham, R. (2000)e FiPA-OS Agent Platform: Open Source for Open &ats Proc. of
the 5th International Conference and Exhibitiontba Practical Application of Intelligent Agents aktililti-Agents.355-
368.

Potts, C. (1999). ScenlC: A Strategy for InquiryM@n Requirements DeterminatidProc. of IEEE Fourth International
Symposium on Requirements Engineering (RESBH5.

Robbins, J., & Medvidovic, N., & Redmiles, D., & Benblum, D. (1998). Integrating Architecture Dgsiion Languages
with a Standard Design Methdaroceedings of the Twentieth International Confesean Software Engineering (ICSE
'98). 209-218.

Searle, J.R. (1969%peech ActCambridge University Press.

W3C. (1999). Resource Description Framework. (RMBYel and Syntax Specificatiod/3C Recommendation 22-02-
1999 http://lwww.w3.0rg/TR/1999/REC-rdf-syntax-19990222

Wooldridge, M., & Ciancarini, P. (2001). Agent-Qrted Software Engineering: The State of the Agent-Oriented
Software Engineerind3erlin: Springer-Verlag. 1-28.

Yu, E., & Liu, L. (2000). Modelling Trust in the Strategic Actors FrameworRroc. of the 3rd Workshop on Deception,
Fraud and Trust in Agent Societies at Agents 2000.

Zambonelli, F., & Jennings, N., & Wooldridge, MO@1). Organizational Rules as an Abstraction ferAhalysis and
Design of Multi-agent Systemdournal of Knowledge and Software Engineeribiy(3), 303-328.

Zambonelli, F., & Jennings, N., & Wooldridge, MO@3). Developing Multiagent Systems: the Gaia Mdttogy, ACM
Transactions on Software Engineering and Methodpl@g(3), 417-470.

