
A metrics suite for evaluating agent-oriented architectures

Iván García-Magariño
Dept. Software Engineering

and
Artificial Intelligence

Facultad de Informática,
Universidad Complutense

de Madrid, Spain
ivan_gmg@fdi.ucm.es

Massimo Cossentino
ICAR CNR,

Consiglio Nazionale
delle Ricerche
Palermo, Italy

cossentino@pa.icar.cnr.it

Valeria Seidita
Dip. Ingegneria Informatica,

Universitá degli
Studi di Palermo,

Palermo, Italy
seidita@dinfo.unipa.it

ABSTRACT
The Multi-agent Systems (MASs) paradigm continues to
consolidate itself as a new branch of software engineering.
Traditional software engineering strongly recommends to ap-
ply metrics in software developments. However, several re-
search groups of experts in agent-oriented software engineer-
ing agree that classical software metrics and object-oriented
metrics cannot directly measure the quality of MAS architec-
tures. For this reason, this work proposes a suite of metrics
to measure certain quality attributes of MAS architectures,
considering agents and their organization. Most of these
metrics are inspired by object-oriented metrics but they are
adapted to agent-oriented concepts. Proposed metrics are
validated by the application to four problem domains and
eight architectures.

Keywords
multi-agent systems, agent-oriented software engineering, ar-
chitectures, metrics

1. INTRODUCTION
Only a few specialists can determine the quality of Multi-
agent System (MAS) architectures. Hence, designing MASs
is a trial/error process, in which most designers barely know
the quality of a design until the system is running. In other
words, designing MASs lacks the appropriate mechanisms
to determine the quality in the initial stages of the devel-
opment process. From this point forward, agent-oriented
architectures refer to designs of MASs that, for instance, de-
scribe agents, their organization and their social interaction.

On the other hand, in other software engineering develop-
ment paradigms, such as the object-oriented one, designers
can rely on metrics, such as object-oriented metrics (e.g. [7]
surveys some of these metrics), to determine the architec-
tural quality in the early stages of development.

Software architecture designs [11] are incrementally improved
by means of an iterative process with the following steps:
collect stakeholders’ interests, analyze architecture accord-
ing to stakeholders’ goals, create other architectures, rank
the alternatives, and make decisions. Ranking alternatives
usually regards a trade-off between benefits and costs, and
a trade-off among different quality models. Although most
of these steps could be directly applied to Agent-oriented
Software Engineering (AOSE), ranking of alternatives still
remains as a challenge due to the lack of reliable metrics
for measuring agent-oriented architectures and the impos-
sibility of direct application of object metrics, as literature
[5] states. Hence, the absence of the appropriate metrics
for agent-oriented architectures is arguably the tiny barrier
that prevent engineers from applying mature processes ([12]
provides a survey of these processes) for improving agent-
oriented architectures.

In the literature, which is further described in Section 4,
there are some attempts to provide metrics of MASs for a
few quality attributes such as: scalability [16] that studies
the relationship between performance and size in terms of
number of agents, and performance [9] that is related with
metrics via communication activity. Nevertheless, the lit-
erature still lacks appropriate metrics for measuring certain
quality attributes of agent-oriented architectures, as before
reported. For this reason, the aim of this work is to provide
some quality models that allow engineers to quantitatively
assess several quality attributes that are not explored yet
in agent-oriented architectures. Although stakeholders can
demand countless quality attributes in MASs, this work fo-
cuses on a metrics suite for measuring extensibility, modu-
larity and complexity of agent-oriented architectures, as a
point of start.

The hypothesis of this work is that some of the presented
metrics are strongly related with the aforementioned quality
attributes, as Figure 1 indicates. This hypothesis founds on
the experience of two research groups in the AOSE field and
an experimental basis. The experimental setup selects four
problem domains (i.e. crisis-management, distribution of
cinema tickets, bikes production, and bookshops) and eight
different architectures.

The remainder of this paper is organized as follows: the next
section describes the suite of metrics for agent-oriented ar-



Figure 1: Measuring some quality attributes of
agent oriented architectures

chitectures; Section 3 presents the experimental basis justi-
fying the presented metrics and their relationships with cer-
tain quality attributes of agent-oriented architectures; then,
Section 4 compares the current work with other metrics ap-
plied in MASs, and Section 5 mentions the conclusions and
future lines of research.

2. METRICS SUITE FOR AGENT-ORIENTED
ARCHITECTURES

The following sub-sections present metrics for MAS architec-
tures according to the measured quality attributes: exten-
sibility, modularity and complexity. It is worth noting that
this work takes inspiration from the factors-criteria-metrics
approach proposed by McCall [14]. According to that (see
Figure 1), some metrics are proposed to assess some quality
attributes of the system. There is no unique relationship
among metrics and quality attributes and, moreover, we do
not claim that our suite is complete. Some aspects of the se-
lected quality attributes (extensibility, modularity, complex-
ity) are not covered by the presented metrics and moreover
the discussed quality attributes do not depict a complete
picture of the architectures of MASs. Nonetheless, this ap-
proach can provide useful hints in order to choose between
different design options and/or evaluate some architectural
aspects of the designed system before implementing it.

The presented metrics can only be applied to non-open MASs,
because the architectures of MASs are not determined be-
forehand in open systems. In particular, there are parame-
ters of the metrics that cannot be determined in open MASs
such as the number of types of agents and the dependencies
among them.

2.1 Metrics for extensibility
The extensibility metrics evaluates whether an agent-oriented
architecture is designed to include hooks and mechanisms for
expanding/enhancing the architecture with new capabilities
without having to make major changes to the infrastructure
of the architecture.

The metrics presented in this work for extensibility are in-
trinsically related to the concepts of modules and compo-
nents, which, however, are not traditionally applied in the
AOSE field. For the presented metrics, agents are the mod-

Object-oriented concepts Agent-oriented concepts
Name Description Name Description
Data
Type
cou-
pling

Two modules
use the same
data type

Ontology
Sharing

Two agents
share knowledge
for communicat-
ing

Necessary

Data
cou-
pling

Data from one
module is used
in another

Know-
ledge
cou-
pling

An agent uses
knowledge
(facts instanti-
ated from the
ontology) of
another agent

⇓

Control
cou-
pling

One module
may control ac-
tions of another

Behavioral
cou-
pling

An agent can
control the be-
havior of other ⇓

Content
cou-
pling

A module refers
to the internals
of another mod-
ule

Inner
Struc-
tural
Cou-
pling

An agent uses
internal el-
ements of
another agent

Against
MAS
princi-
ples

Table 1: Kinds of coupling in both object-oriented
and agent-oriented architectures

ules of the architecture; whereas, tasks are the components.
This means we address tasks (significative pieces of agents
behavior) as elementary and agents as aggregating them.
This cannot be the right perspective in some approaches.
For instance, in a role-oriented approach, the designer can
be more interested in evaluating the architecture by con-
sidering roles and tasks as modules and components. Fur-
thermore, in a pure Belief-Desire-Intention (BDI) approach,
goals can be considered the components because they may
preserve the autonomy property of agents. As it is common
in AOSE, no unique way exists that can fit all design ap-
proaches. We think our proposal of considering agents as
modules and tasks as components is reasonable and can be
adopted in many cases but anyway, the approach remains
perfectly general and designers can adapt the metrics to
their needs. For this reason, from this point forward we
will prefer using terms like module and component instead
of agent and tasks so that our metrics description remains
neutral to the specific implementation that some designer
may need to have. It is worth noting that this proposal dif-
fers from other works, such as [5], that directly apply object-
oriented metrics considering packages, classes or methods as
candidates for modules and components, in the software of
a MAS. Our proposal is to measure the agent-oriented ar-
chitecture, while these other works measure the architecture
of the software implementation of a MAS, which is usually
more related with the MAS platform than the agent-oriented
architecture itself.

The dependencies between components need to be detected
for applying the presented metrics. In object-oriented ar-
chitectures, dependencies can consider: data type coupling,
data coupling, control coupling and content coupling. Table
1 matches these dependencies with agent-oriented depen-
dencies, inspired by the following similarities. In object-
oriented architectures, some modules can share data types
(i.e. data type coupling); which is equivalent to several kinds
of agents that share some languages (i.e. types of data ex-
changed). These languages are usually expressed in terms
of ontologies to be shared (i.e. ontology sharing). Moreover,
some modules need to obtain data from other modules (i.e.
data coupling). In a similar manner, some agents may need



Name Definition
Chm Cohesion of

a Module
The number of internal depen-
dencies of a module divided by
the number of possible depen-
dencies in the module according
to the number of its components
(see Equation 1). This metric
can be applied to any kind of
internal dependencies similar to
the ones presented in Table 1.

Cha Cohesion of
an architec-
ture

The average of the cohesion of
each module of an agent-oriented
architecture.

Cp Coupling The number of external depen-
dencies divided by the number
of possible external dependencies
according to the number of mod-
ules (see Equation 2). A depen-
dency can be of any kind of de-
pendency presented in Table 1.
This metric can be applied to any
kind of dependencies presented
in Table 1.

Table 2: Metrics for Extensibility in agent-oriented
architectures

to request information from other agents (i.e. knowledge
coupling). The control coupling would be equivalent to an
agent that has control over the actions of other agents (i.e.
behavioral coupling), which is against of the principles of au-
tonomy in MASs [4]. The equivalent of content coupling in
agent-oriented architectures, which is the direct access of an
agent’s private information from another agent (i.e. inner
structural coupling), is also against the principles of MASs
[4].

As a remark, in the aforementioned kinds of coupling, in-
ternal dependencies and external dependencies respectively
denote dependencies between two components of the same
module and dependencies between two components of dif-
ferent modules. For instance, in the INGENIAS metamodel
[15], two components (i.e tasks) are bidirectionally depen-
dent as long as they share any of the following elements:
frame facts, internal/external application, resources. In the
PASSI metamodel [3], dependencies between modules (i.e.
agents) are: service dependencies, when an agent provides a
service to another agent, and resource dependencies, when
an agent consults the resource of another agent.

Metrics affecting the estimation of extensibility are presented
in Table 2. The Cohesion metric (Chm) measures the depen-
dence within a module, which is calculated with the Equa-
tion 1 as the number of internal dependencies divided by
the number of possible dependencies in the module. Mod-
ules with only one component are assigned the maximum
cohesion value, which is one; in addition, the suite provides
another Cohesion metric (Cha) for calculating the average
of the cohesion of each module of a given architecture. The
cohesion of each module usually implies that it provides a
coherent set of functionalities. For instance, let us suppose
the same agent is used for buying goods on the Internet for
his owner as well as for taking care of his agenda. Probably,
the agent will include several tasks that can roughly be di-
vided as belonging to the two main goals the agent pursues.
In several applications this can be a desired features but
the fact that each module is associated with one unique and
coherent set of functionalities makes the architecture more

understandable and, consequently, more extensible probably
in several scenarios. In other words, the agent reported in
the previous example would violate the balanced distribution
of responsibilities criterion G. Booch in [1] considers as one
of the three basic attributes of a good architecture. Argu-
ments could be raised against the fact these rules seamless
apply to the agent-oriented context as well, but we think a
distribution of responsibilities among the agents in the sys-
tem is anyway a good for MASs too.

The Coupling metric measures the dependence among mod-
ules of an architecture; it is obtained with Equation 2, as
the number of external dependencies among modules divided
by the number of maximum possible external dependencies.
If an architecture has only one module, then the coupling
metric obtains the maximum result, which is one. The low
coupling is directly related with the extensibility, because a
module can be added, removed or changed, according to new
requirements, almost without interfering with other mod-
ules. Thus, the effort for incorporating new requirements is
low when the coupling is low.

Chm(M) =

{ IntDep(M)
MaxDep(M)

if NC ≥ 2

1 if NC = 1
where:
- M is a module
- IntDep(M) is the number of internal dependencies
(of a given dependency kind simimilar to the ones
presented in Table 1)

- MaxDep(M) = NC∗(NC−1)
2

(maximum number
of possible internal dependencies)
- NC is the number of components of the module.

(1)

Cp(X) =

{ ExtDep(X)
MaxDep(X)

if N ≥ 2

1 if N = 1
where:
- X is an agent-oriented architecture
- ExtDep(X) is the number of external dependencies
(of a given dependency kind presented in Table 1)

- MaxDep(X) = N∗(N−1)
2

(maximum number
of possible external dependencies)
- N is the number of components of the
architecture.

(2)

It is worth remarking that these metrics can find a limit in
the existence of infinite dependencies like it could happen for
certain interaction protocols applied to open MASs. By now,
we leave this configuration out of the scope of our framework.

2.2 Metrics for modularity
Modularity is the degree to which a MAS component may be
separated and recombined. Modularity can depend on many
variables in agent-oriented architectures. Some of these vari-
ables are the Cohesion and Coupling metrics, which have
been already presented in the previous section, and the Fan-
in and Fan-out metrics, which are defined in Table 3 and
are inspired by [10]. However, more variables are planned
to be included. It is worth noting that, even if some metrics
are shared between modularity and extensibility (i.e. cou-
pling and cohesion), modularity and extensibility are differ-



Name Definition
Fi Fan-in The number of incoming communi-

cation dependencies of a module.
Fo Fan-out The number of outgoing communi-

cation dependencies of a module.

Table 3: Metrics for the Modularity in agent-
oriented architectures

Name Definition
ACmM Average of

Communi-
cations per
Module

The number of communication
protocols divided by the number
of modules.

ASM Average of
Services per
Module

The number of services divided
by the number of modules.

AKM Average of
Knowledge
per Module

The number of knowledge ele-
ments divided by the number of
modules.

ACM Average
of Compo-
nents per
Module

The number of components of
the system divided by the num-
ber of modules.

Sz Size Sum of the number of modeling
elements of each kind. If neces-
sary, the sum can be weighted by
their kinds.

AIM Average of
Instances
per Module

The average of instances of each
module in the deployment.

Table 4: Metrics for Complexity in agent-oriented
architectures

ent quality attributes, since extensibility regards adaptation
to new requirements with low costs in different scenarios
while modularity regards recombination of several architec-
tures.

In modular architectures, modules usually have a high co-
hesion and a low coupling. In this manner, modules can
be separated from each other and recombined without great
costs.

The Fan-in and Fan-out metrics respectively measure the
number of incoming and outgoing communication dependen-
cies, when the communication is either explicit or implicit.
These metrics can be indicators of which module of an archi-
tecture is responsible for a high coupling and, consequently,
the cause of the low modularity of the architecture. Re-
garding metamodels, communication dependencies can have
different names, such as Interaction Units in the INGENIAS
metamodel and both Service Dependency and Resource de-
pendency in the PASSI metamodel.

2.3 Metrics for complexity
Complexity characterizes a MAS with many parts in intri-
cate arrangement. Inspired by the complexity measure [13]
in traditional software engineering, this work presents sev-
eral metrics with regards to the relationships among agent-
oriented architectural elements, amounts of elements per
module (i.e. knowledge elements, components and instances)
and the global amount of elements (i.e. size). These metrics
are defined in Table 4.

The ACmM and ASM metrics measure the average of re-
lationships, respectively communications and services, for
each module. These metrics are inspired by [13], where com-

plexity of architectures is related to the ratio of edges per
nodes in their graph-like representation.

Moreover, the ACM, AKM and AIM metrics respectively
measure the average of the following elements per module:
components, knowledge elements, and running instances.
All of these metrics are intrinsically related with the amount
of parts of each module. Thus, these metrics measure the
complexity of the modules, which is related with the com-
plexity of agent-oriented architectures since they are made
of modules. It is worth noting that we are here not claiming
that complexity is equal to size of the system; this is too sim-
plistic and not true, but rather we argue that the presented
elements concur to estimate the complexity because of their
(possible) influence on that. As a remark, the AKM met-
ric considers the following elements: ontological elements,
frame facts, internal/external applications, and resources.

The Size metric measures the amount of elements in agent-
oriented architectures, by summing the number of modeling
elements of each kind. This sum can be weighted by the
kinds of the modeling elements regarding, for instance, the
difficulty of understanding them or their amount of infor-
mation. However, this work has not adopted any weight at
the present. It is worth mentioning that size and complex-
ity are different concepts, since complexity measures under-
standability. Nevertheless, this study advocates that the size
metric together with other metrics are strongly related with
understandability. The Size metric can count the following
concepts among others: components (i.e. tasks), modules
(i.e. roles), knowledge elements (i.e. frame facts, ontologi-
cal elements and so on), applications, communications (i.e.
interactions), messages, initial states, goals, deployments,
testing packages, internal relationships, external relation-
ships and services.

3. VALIDATION OF THE PROPOSED MET-
RICS SUITE

Pairs of architectures are measured in four problem-domains
for the validation of the presented metrics. These architec-
tures are briefly described in order to make the difference of
quality evident in each pair. In each pair, the possible situ-
ations can be: quality of one architecture is higher (denoted
with “+”) for a given criterion than the other (denoted as “-
”); or both architectures reach the same level (both denoted
with “=”) for a given criterion.

The first problem domain is the crisis-management [6] of a
city, in which a poisonous material is released. The central
medical services cannot heal all the poisoned people; thus,
the MAS coordinates the people on the ground so they can
help each other. For instance, the crisis-management prob-
lem domain can be addressed with two MAS architectures,
in both of which, Coordinator agents coordinate the peo-
ple on the ground, Network agents manage communications
among Coordinator agents to each other, reporting news to
the Information agent, which keeps an updated map of all
the poisoned locations. In the first proposed MAS architec-
ture (see Figure 2, with further description in [6]), which
is called Crisis-management, each Coordinator agent con-
tains the information about the user it interacts with, and
the Information agent only contains an updated map of the
affected positions. As one can observe in this architecture,



Figure 2: Architecture for crisis-management

Figure 3: Architecture for crisis-management that
includes the user state in the Information agent

the dependencies among tasks of different agents are few,
and they are necessary for the coordination among different
agents. On the contrary, in the second proposed architecture
(see Figure 3), which is called CrisisManagement-UserState,
both the map of the affected locations and the state of the
user reside in the Information agent. The number of interac-
tions is considerably higher in this architecture than in the
previous architecture, because the Coordinator agents need
to interact with the Information agent for both changing
and consulting the user state. As this architecture reflects
in Figure 3, the Information and Coordinator agents perform
many tasks that share knowledge. This architecture is less
extensible than the first one, in the scenario of adapting to
new kinds of crisis. In the second architecture, these kinds
of extensions would involve changes in both the Coordina-
tor and Information agents, and the interactions between
these two kinds of agents; while in the first architecture,
only changes in the Coordinator agents would be necessary.
Moreover, the modularity of the second architecture is de-
creased because both the Coordinator agent and Informa-
tion agent are too dependent on each other, and these two
modules are difficult to be separated and recombined with
others.

In the Cinema problem-domain, a MAS assists users in buy-
ing cinema tickets. Among other kinds of agents, a Buyer
agent searches for a given movie ticket, by interacting and
negotiating with Seller agents. In the first architecture,

Figure 4: Excerpt of the architecture of the book-
shop MAS

which is available from [8] and it is called Cinema, the Buyer
role contains a directory of all the available cinemas. How-
ever, in the second architecture, called Cinema-Directory,
the directory of all the cinemas is not within the Buyer role,
but in the Seller role. Therefore, the buyer has to interact
in the first place with the seller to know the list of existing
cinemas scheduling a given movie. Then, it has to interact
again with the seller that has the film chosen by the user.
The increment of communications in the second architecture
makes it difficult the separation of these two modules (i.e.
Buyer and Seller agents) and the recombination with other
modules.

In the PPSBikes domain, a MAS manages the production
and distribution of bicycles. It includes agents for the pro-
duction plant supply of new bicycle components and the
administrative part of the distribution process. The dif-
ferences between the first architecture, called PPSBikes and
described in [2], and the second architecture, called PPSBikes-
Incidences, are that the second architecture includes an agent,
called Incidences, that is exclusively responsible for manag-
ing the unresolved lots; while in the first architecture the
management of unresolved lots is joined with lots assignment
and plant management within the Administrator agent. Since
these three tasks are very related to each other, the same
agent should consider them together in order to obtain co-
herent modules and to facilitate the adaptation to future
changes related with lots; hence, the first architecture is
easier to be extended in scenarios related with management
of lots.

Finally, in the Bookshop problem domain, a MAS manages
the distribution of books from the suppliers to the shops
and on-line customers of a bookstore. An excerpt of the
first proposed architecture is shown in Figure 4 and is fur-
ther described in [2]. It includes, among the others, the
Manager agent, Shop agents, and Advisor agents. More-
over, the Bookshop-Broker architecture is a variation of the
first architecture, in which there is a Broker agent that tries
to take advantage of some of the other agents, by provid-
ing the same service than the others being an intermedia-
tor. As one can observe in its architecture in Figure 5, the
design quality decreases, because different agents duplicate
services, hindering the understanding of modules. The sec-
ond architecture makes the changes of services difficult since
these services are duplicated.



Figure 5: Excerpt of the architecture of the book-
shop MAS with a broker

Architecture Cha Cp Modularity Extensibility
Crisis-
management

0.83 2.00 + +

Crisis-
Management-
UserState

0.67 8.67 - -

Cinema 1.00 2.00 + +
Cinema-
Directory

0.78 2.67 - -

PPSBikes 0.27 0.10 + +
PPSBikes-
incidences

0.22 0.20 - -

Bookshop5 0.53 0.09 + +
Bookshop5-
Broker

0.48 0.20 - -

Table 5: Coupling and cohesion in MAS architec-
tures

3.1 Validation for extensibility
The validation uses the pairs of MAS architectures presented
at the beginning of this section. The architectures of each
pair are different, but both of them satisfy the same func-
tional requirements in the same problem domain. Table 5
compares the architectural quality for extensibility with the
measurement of cohesion and coupling metrics.

As one can observe in the two versions of the Crisis-management
problem-domain (see Table 5), when the extensibility is higher
(as justified for the Crisis-management architecture before
in this document), the cohesion is higher (0.83 > 0.67) and
coupling is lower (2.00 < 8.67). The same strong relation-
ship occurs for the two architectures of the Cinema prob-
lem domain: the architecture with a higher extensibility ob-
tains a higher cohesion (1.00 > 0.78) and a lower coupling
(2.00 < 2.76).

PPSBikes-incidences architecture is considered worse in ar-
chitectural extensibility than the PPSBikes for the reasons
mentioned before. In the PPSBikes-incidences architecture,
the cohesion has lower (0.22 < 0.27) and the coupling is
higher (0.20 > 0.10).

In addition, in the Bookshop problem domain, the archi-
tecture with the Broker agent has a lower extensibility ac-
cording the reasons mentioned before. The least extensible
design of this pair has a lower cohesion (0.48 < 0.53) and a
much higher coupling (0.20 > 0.09).

According to the results of this study in several problem do-

Coordinator Network Information
fan-in fan-

out
fan-
in

fan-
out

fan-
in

fan-
out

Crisis-
management

2 2 2 3 1 0

Crisis-
Management-
UserState

3 4 2 3 3 1

User Buyer Seller
fan-in fan-

out
fan-
in

fan-
out

fan-
in

fan-
out

Cinema 1 1 3 4 2 2
Cinema-
Directory

1 1 4 5 3 3

Monitor Advisor Manager
fan-in fan-

out
fan-
in

fan-
out

fan-
in

fan-
out

Bookshop 0 1 1 0 1 2
Bookshop-
Broker

0 2 1 1 1 3

Purchaser Store Broker
fan-in fan-

out
fan-
in

fan-
out

fan-
in

fan-
out

Bookshop 1 0 0 0
Bookshop-
Broker

1 1 0 1 5 0

Table 6: Fan-in and Fan-out in MAS architectures

mains, the architectural extensibility is directly related with
the proposed cohesion metric, and inversely related with the
proposed coupling metric.

3.2 Validation for modularity
The coupling and cohesion metrics are also compared with
modularity in Table 5. The same arguments proposed in
the previous section lead us to conclude that modularity is
also directly related with the cohesion metric and inversely
related with the coupling metric.

For detecting causes for low modularity, designers can by
now observe whether a value of fan-in and fan-out for a
given module is high in comparison to the values of other
modules of the architecture. However, we are planning to
provide a set of recommended values in the future.

As one can observe in Table 6, for the CrisisManagement-
UserState architecture, the fan-in and fan-out values of both
the Coordinator and Information modules (i.e roles) have in-
creased in relation with the values of the Crisis-management
architecture. In this case, the metrics detect a high fan-
out in Coordinator module in comparison to other mod-
ules, which is the result of a high number of communication
protocols originated by the attempt of coordinating people
without the necessary information. This partially proves the
usefulness of these metrics in detecting architectural prob-
lems.

Moreover, in the Cinema-Directory architecture (see Table
6), both the fan-in and fan-out of the Buyer module are
high in comparison to other values. Therefore, the metrics
detect the communications in the Buyer are high, and the
reason is the Buyer does not have any necessary information:
directory of cinemas, the prices, timetables and availability.
A designer would change the architecture for incorporating
more information in the Buyer for improving the modularity,
when knowing the results of these metrics.



Archi-
tecture

Size ACM AKM ACmM ASM AIM Comple-
xity

Cinema 58 3.00 4.67 1.33 1.00 2.33 -
Crisis-
Manage-
ment

101 5.00 6.67 2.00 1.00 7.00 +

PPS-
Bikes

89 2.60 9.20 1.00 0.20 1.00 =

Book-
shop

123 1.80 3.90 3.40 0.20 1.00 =

Table 7: Complexity in MAS architectures

As one can observe in Table 6, in the Bookshop-Broker ar-
chitecture, the Broker agent has a high value in the fan-in
metric in comparison to other values. In addition, this value
is much higher than the other fan-in and fan-out values of
other modules. According to this result, a designer should
think that there is a problem with this module and evaluate
whether a better architecture can be designed. For instance,
different kinds of Brokers can be defined for each buying re-
lationship, or this agent could even be removed. Both de-
cisions would improve the quality of the architecture, and
decrease this fan-in value.

In conclusion, according to this study, a high value of fan-in
or fan-out in a module in contrast to other values is usually
a sign of an architectural problem that hinders modularity.

3.3 Validation for complexity
The measurement of some of the presented metrics are com-
pared with complexity of architectures in Table 7. For the
complexity, practitioners need to observe the whole MAS ar-
chitectures, which are omitted in this paper for the sake of
brevity but are available from [6, 8, 2]. When comparing the
Cinema and Crisis-management architectures, the following
metrics are related with complexity: ACmM, ACM, AKM,
AIM and Size. However, ASM is not necessarily related with
the architectural complexity.

In the comparison between PPSBikes and Bookshop archi-
tectures (see Table 7), experts assess a similar complexity for
both architectures. Metrics provide several variables that
have effect on complexity. To begin with, the average of
services, and the average of instances are exactly the same.
The amount of elements (Size metric) is higher and commu-
nications (ACmM metric) are more complex in Bookshop
example; whereas the components (ACM metric) and the
knowledge (AKM metric) are more complex in the PPSBikes
architecture. Therefore, the human assessment of quality
and the metrics assessment matches, because both mecha-
nisms indicate that the PPSBikes and Bookshop examples
are approximately of the same complexity (with pros and
cons).

In conclusion, the ACmM, ACM, AKM, AIM and Size met-
rics are related with the complexity of agent-oriented archi-
tectures.

4. RELATED WORKS
Rana and Stout [16] propose some metrics for measuring
the scalability in MASs. This work focuses on predicting
the performance of MASs when there is a larger number of

agents instantiated in a MAS, thus they relate the number
of instances and performance.

Moreover, Helsinger et al. [9] propose several metrics to
measure the performance in MASs. These metrics are ap-
plied at run time, and they evaluate the number of different
kinds of messages that are used in a broadcast communica-
tion, denoted as blackboard communication. That work also
measures the size of exchanged messages.

Schroeder [18] defines some metrics to measure the distance
between agents. Between communicative agents, they count
the sharing interests. For mobile agents, that work considers
the physical distance. Although that work is specific for
the agent-oriented domain, its aim is not the quality of the
design but the visualization of MASs.

Nevertheless, our work measures some quality attributes
that are not explored by the aforementioned works, which
are extensibility, modularity and complexity of agent-oriented
architectures.

Garcia et al [5] applied object-oriented metrics for measuring
modularization in MASs, besides other software metrics such
as lines-of-codes. According to that study, coupling is one of
the indicators that have effect on MASs modularity. How-
ever, that work concluded that a low cohesion is obtained
in MASs for components. That study only refers to object-
oriented components, such as object-oriented classes. In ad-
dition, Garcia et al [5] indicated that the Object-oriented
pattern obtained worse results than agent-oriented patterns
for MASs from a modularization point of view. This work
indicates that the difficulty is to match object-oriented ele-
ments with agent-oriented abstractions. Furthermore, Sant
Anna et al [17] presented a complete set of modularity mea-
surement values, in order to compare aspect-oriented and
non aspect-oriented architectures in AOSE. However, in that
work, the metrics consider components in a pure object-
oriented view. Conversely, our work defines new metrics in
terms of agent-oriented concepts, obtaining results that are
more relevant to AOSE.

5. CONCLUSIONS AND FUTURE WORK
This work provides a metrics suite for measuring agent-
oriented architectures. A brief study, involving four problem
domains and eight MAS architectures, advocates that these
metrics are strongly related with the following quality at-
tributes: extensibility, modularity and complexity.

One of our short-term goals is to provide a reliable set of rec-
ommended values for the metrics, so designers can measure
their agent-oriented architectures and know whether their
designs are within a recommended range for each quality
attribute. Furthermore, the presented metrics can be tuned
by introducing some weights in the equations. In particu-
lar, this work plans to include weights in the ACmM metric
to consider that some kinds of communications make archi-
tectures more complex. For instance, a call-for-proposals
communication, in which an agent asks a group of agents
for several proposals, is more complex than an one-to-one-
inform communication, in which only a message is transmit-
ted between two agents.



Moreover, the empirical relationship between measurement
values and experts assessment can be confirmed with a wider
range of examples and a wider number of experts. These
metrics are also planned to be validated by means of other
metrics.

Finally, these metrics can be applied to study which AOSE
methodologies obtains architectures with certain quality at-
tributes, and more metrics can be added to the presented
suite in the future.

6. ACKNOWLEDGMENTS
This work is supported by the project “Agent-based MOdel-
ing and Simulation of Complex Social Systems (SiCoSSys)”,
funded by Spanish Council for Science and Innovation, with
grant TIN2008-06464-C03-01.

7. REFERENCES
[1] G. Booch. The defenestration of superfluous

architectural accoutrements. IEEE Software,
26(4):7–8, 2009.

[2] M. Cossentino. From Requirements to Code with
PASSI methodology. Agent-oriented Methodologies,
Chapter IV, B. Henderson-Sellers and P. Giorgini
(editors), pages 79–106, 2005.

[3] M. Cossentino, S. Gaglio, L. Sabatucci, and
V. Seidita. The PASSI and Agile PASSI MAS
Meta-models Compared with a Unifying Proposal.
Multi-agent Systems And Applications IV: 4th
International Central and Eastern European
Conference on Multi-Agent Systems, CEEMAS 2005,
Budapest, Hungary, September 15-17, 2005:
Proceedings, LNCS 3690:183, 2005.

[4] S. Franklin and A. Graesser. Is it an Agent, or just a
Program?: A Taxonomy for Autonomous Agents.
Lecture Notes in Computer Science, 1193:21–36, 1997.

[5] A. Garcia, C. Sant Anna, C. Chavez, V. da Silva,
C. de Lucena, and A. von Staa. Separation of concerns
in multi-agent systems: An empirical study. Lecture
notes in computer science, 2940/2004:343–344, 2004.

[6] I. Garćıa-Magariño, C. Gutierrez, and
R. Fuentes-Fernández. The INGENIAS Development
Kit: a practical application for crisis-management. In
The 10th International Work conference on Artificial
Neuronal Networks (IWANN2009), volume 5517 of
Lecture Notes in Computer Science, pages 537–544.
Springer, 2009.

[7] M. Genero, M. Piattini, and C. Calero. A survey of
metrics for uml class diagrams. Journal of Object
Technology, 4(9):59–92, 2005.

[8] Grasia web: http://grasia.fdi.ucm.es (in
“Software”→ “Additional Material for Papers” or
“Trainning”→ “Full Development Examples”).

[9] A. Helsinger, R. Lazarus, W. Wright, and J. Zinky.
Tools and techniques for performance measurement of
large distributed multiagent systems. In Proceedings of
the second international joint conference on
Autonomous agents and multiagent systems, pages
843–850. ACM New York, NY, USA, 2003.

[10] S. Henry, D. Kafura, and K. Harris. On the
relationships among three software metrics. ACM
SIGMETRICS Performance Evaluation Review,

10(1):81–88, 1981.

[11] R. Kazman, L. Bass, and M. Klein. The essential
components of software architecture design and
analysis. The Journal of Systems & Software,
79(8):1207–1216, 2006.

[12] R. Kazman, L. Bass, M. Klein, T. Lattanze, and
L. Northrop. A basis for analyzing software
architecture analysis methods. Software Quality
Journal, 13(4):329–355, 2005.

[13] T. McCabe. A complexity measure. IEEE
Transactions on Software Engineering, 2(4):308–320,
1976.

[14] J. McCall, P. Richards, and G. Walters. Factors in
Software Quality (Vol. 1,2 and 3). Technical report,
Nat’l Tech. Information Service, Springfield, Va. NTIS
AD-AO49-014, 015, 055, Nov. 1977.

[15] J. Pavón and J. Gómez-Sanz. Agent Oriented
Software Engineering with INGENIAS. Multi-Agent
Systems and Applications III, 2691:394–403, 2003.

[16] O. Rana and K. Stout. What is scalability in
multi-agent systems? In Proceedings of the fourth
international conference on Autonomous agents, pages
56–63. ACM New York, NY, USA, 2000.

[17] C. Sant Anna, C. Lobato, U. Kulesza, A. Garcia,
C. Chavez, and C. de Lucena. On the modularity
assessment of aspect-oriented multiagent architectures:
a quantitive study. Int. J. Agent-Oriented Software
Engineering, 2(1):34–61, 2008.

[18] M. Schroeder. Using singular value decomposition to
visualise relations within multi-agent systems. In
Proceedings of the third annual conference on
Autonomous Agents, pages 313–318. ACM New York,
NY, USA, 1999.


