
Conquering Fine-Grained Blends of
Design Patterns

L. Sabatucci1, A.Garcia2, N. Cacho2, M. Cossentino3, and S. Gaglio1

1 Dip. Ingegneria Informatica, University of Palermo, Italy
sabatucci@csai.unipa.it, gaglio@unipa.it

2 Computing Departement, Lancaster University, United Kingdom
a.garcia@lancaster.ac.uk, n.cacho@lancaster.ac.uk

3 ICAR-CNR, Consiglio Nazionale delle Ricerche, Palermo, Italy
cossentino@pa.icar.cnr.it

Abstract. The reuse of design patterns in realistic software systems
is often a result of blending multiple pattern elements together rather
than instantiating them in an isolated manner. Pattern blends can man-
ifest in heterogeneous ways, typically including overlaps and interlaces
of inner class members taking part in the patterns implementation. The
explicit description of pattern compositions is the key for (i) document-
ing the structure and the behavior of blended patterns and, (ii) more
importantly, supporting the reuse of composite patterns across different
software projects. In this context, this paper proposes a fine-grained com-
position language for describing varying blends of design patterns based
on their structural and behavioural semantics. Pattern compositions are
specified using an expressive, albeit simple, set of operators that allow
for unifying, conjoining, concealing and externalizing pattern elements.
The reusability and expressiveness of the proposed language are assessed
through its application to 32 compositions of GoF patterns recurrently
appearing in three different case studies: the OpenOrb middleware, and
the JHotDraw and JUnit frameworks.

1 Introduction

Even though design patterns have been widely accepted by industrial and aca-
demic organizations, their definition and reuse still impose deep concerns on
contemporary software engineers. The pivotal difficulty stems from the fact that
pattern solutions are largely sensitive to different contexts where they are reused,
especially on how they are combined with each other [1, 5]. Patterns often need
to be documented as pair-wise blends of patterns’ responsibilities rather than as
individual and intact entities. This phenomenon has been recurrently identified
in the design of product lines [8], middleware systems [6], and domain-specific
frameworks [7]. Not surprisingly there is an increasing empirical evidence that a
considerable proportion of code clones in real-world software projects are related
to variants of pattern blends [2, 14].

Effective reuse of composite patterns is far from being trivial for several rea-
sons. The symbiotic application of design patterns results in the intricate twine

of pattern participants and the target application [12]. It involves multiple forms
of pattern blends, ranging from conservative combinations of pattern elements
to different overlaps of fine-grained pattern responsibilities materialized, for in-
stance, by particular actions, attributes or events [7]. Pattern composites usually
entail significant morphs of the original pattern solutions through the conjunc-
tion or merge of structural and behavioral elements. They should be systemat-
ically documented so that they can be unambiguously instantiated, traced and
reused within and across software projects. The lack of explicit documentation
for recurring compound patterns leads to design rationale being irrecoverable [3].
In fact, pattern composition support has been recognized to be a key element
for the usability of pattern languages and underlying development tools [4, 9].

However, after twelve years the Gang-of-Four (GoF) pattern catalogue [10]
has been published, effective support for documenting recurring composite pat-
terns is still lacking. One of the main gaps is that pattern composition has been
restricted to coarse-grained documentation approaches [18,21] which do not ad-
dress structural and behavioural blends of inner participant members [12]. Even
though contemporary programming techniques, such as aspect-oriented pro-
gramming [15] and subject-oriented programming [17], have brought advanced
mechanisms for enabling improved pattern composability [13], empirical evidence
shows that they do not scale much for coping with modular treatment of pattern
composites [7, 11]. Also, emerging model weaving techniques are not tailored to
composing different forms of pattern overlaps and interlaces.

In this context, the contribution of this paper is threefold. First, it presents
a classification of pattern blends (Section 2) using a real middleware system to
their illustration. Second, a design approach is proposed for addressing those
varying forms of pattern blends (Section 3). We define a design language for
describing fine-grained pattern compositions based on their structural and be-
havioral semantics. An expressive and simple set of operators is used for unifying,
conjoining, concealing and externalizing pattern elements (Section 4). Third, the
proposed approach is assessed through its application to different open source ap-
plications, the OpenOrb middleware, and the JHotDraw and JUnit frameworks
(Section 5). Our analysis is based on the reuse and expressiveness evaluation of
32 GoF pattern compositions. We also discuss the novel features of our technique
on the light of a comparison with existing work (Section 6). Some concluding
remarks are reported in Section 7.

2 Heterogeneous Pattern Blends

This Section presents an analysis of heterogeneous forms of pattern blending,
which are commonly found in real multi-pattern software systems (Section 2.1).
This analysis allows us to provide a classification of the different forms in which
design patterns are blended (Section 2.2).

Proxy (5)Proxy (4)

State (3)

Strategy (2)

Mediator (1)

+ server()

<<interface>>

Capsule

- bind : BindMediator

Port

+makeRequest()

<<interface>>

BindMediator

Interface

+ server()

- singletonCapsule

CapsuleImpl

+ server()

CapsuleStub

+ makeRequest()

+ getTargetMethod()

+ bind()

+ rebind()

- dbstate : BindState

- nextHandler: Port

ConcreteBind

+rebind()

+ breakBind()

<<interface>>

BindState
+rebind()

+ breakBind()

BindRunning

+rebind()

+ breakBind()

BindConnected

+invokeRemote()

<<interface>>

RemoteReceptacle
+invokeRemote()

RemoteTarget

+getTargetMetod()

ConcreteBindLocal

+getTargetMetod()

ConcreteBindRemote

**

+invokeRemote()

ProxyReceptacle

(3)

(1,4)

(1,3,4)

(2)

(3)

(3)

Fig. 1. Design slice of the OpenOrb middleware

2.1 Case Study: A Reflective Middleware

Figure 1 shows a design slice of an OpenOrb-compliant reflective middleware
system [7] in which 21 classical design patterns [10] are used and combined to
achieve the middleware requirements of customizability and adaptability [6]. A
number of methods and attributes were omitted for simplification reasons. In
Figure 1, each number represents a specific pattern, and these numbers are as-
sociated with methods and attributes in the ContreteBind class. The goal is to
illustrate how various pattern realizations affect internal members of a single
class. The attachment of a number implies that the respective method or at-
tribute is part of the implementation of the corresponding pattern.

For instance, the implementation of the Mediator pattern (represented by
number 1) includes: (i) all methods defined in the Port, BindMediator, Interface

classes and (ii) the attribute nextHandler and the method makeRequest in the class
ContreteBind. As a result, a single pattern is blended with other four patterns
(Figure 1): State, Strategy, and two instances of Proxy. Figure 1 is a mere
representative example of the difficulty in understanding and reusing pattern
compositions in realistic scenarios. Table 1 lists the total number of per-pattern
compositions for the three case studies used in our empirical evaluation (Section
5).

Table 1. Overview of pattern blends in Open-Orb design

Pattern Over. Cons. Pattern Over. Cons. Pattern Over. Cons.
Adapter 2 1 Facade 0 2 Prototype 6 1
Bridge 7 2 Factory Method 8 4 Proxy 6 2
Builder 1 1 Flyweight 4 2 Singleton 2 2
CoR 5 1 Iterator 0 2 State 4 0
Command 3 1 Mediator 7 3 Strategy 7 0
Composite 6 2 Memento 2 1 Template Method 6 0
Decorator 6 1 Observer 11 2 Visitor 3 1

2.2 Blending Categories

According to recent observations in the literature [12, 21], there are different
forms for combining design patterns. Alternatively, pattern blends can be clas-
sified in two top-level categories: conservative blends and overlapping blends. A
conservative combination maintains separate the structure of the involved pat-
terns, so that original elements are always identifiable in the model, thereby
creating loose relationships among the elements of the involved patterns. For
instance, Figure 1 shows that the combination of Proxy(5) and Mediator(1) pre-
serves an intact core structure of both the patterns. They are combined, in a
behavioral fashion, through simple method calls from Mediator to Proxy ele-
ments.

Pattern overlapping occurs when pattern elements are merged in order to ob-
tain a unified structure and behavior. However, it is not easy to separate the con-
tributions of each pattern in overlapping blends. The reason is that the pattern-
blending process involves the partial or full juxtaposition of two or more pattern
elements. For instance, Figure 1 depicts three instances of pattern overlaps, listed
in the three last rows of Table 2. Overlaps of patterns usually encompass compo-
sitions of fine-grained pattern elements, such as methods and attributes. These
cases necessarily involve a tight coupling between patterns participating in the
composition. For instance, the combination Mediator(1) and Proxy(4) requires
the sharing of the makeRequest method to realize participants defined in both
patterns (Figure 1) .

Table 2. Hybrid pattern blends in the reflective middleware system

!
"#$%&'!()!*!+',#$-!,.#/'!01!23'!45'-4&6!7#++.'89&'!:;'1<)!

!

=)>)!?922'&-!4@'&.95,!9-+!A-2'&.9/',!!
!

"#$%&'()! *+! ,-*! *%! .*%$! (',,$%/)! 0)0'&&1! $/2*.('))!

2*.(*)3,3*/)!*+! +3/$45%'3/$6! (',,$%/! $&$.$/,)7!)028! ')!

.$,8*6)!'/6!',,%390,$):!;8$)$!2')$)!/$2$))'%3&1!3/#*&#$!

'!,358,!2*0(&3/5!9$,-$$/!,8$!(',,$%/)!('%,323(',3/5!3/!,8$!

2*.(*)3,3*/:! <*%! 3/),'/2$7! ,8$! 2*.93/',3*/! =$63',*%!

'/6! >%*?1@AB! 3/! ,8$! .366&$-'%$!)1),$.! @<350%$! CB!

%$D03%$)! ,8$!)8'%3/5! *+! ,8$! !"#$%$&'$()! .$,8*6! ,*!

%$'&3E$! %*&$)! 6$+3/$6! 3/! 9*,8! (',,$%/):! >%$#3*0)! -*%F!

GH'28*! $,! '&I! 8')!)0963#36$6!)028! +3/$45%'3/$6! (',,$%/!

#$%&'()! 3/! ,-! ,1($)J! +0&&! *#$%&'()! '/6! 3/,$%&'2$)! @*%!

('%,3'&! *#$%&'()B:! K/,$%&'2$)! 2'/! 9$7! 3/! ,0%/7! 6$+3/$6! 3/!

,$%.)!*+!2&'))4&$#$&!'/6!.$,8*64&$#$&!3/,$%&'2$):!!

!

*+"((, -.)$/+"0$(! *220%! -8$/! ,8$! 3.(&$.$/,',3*/)! *+!

(',,$%/)! >C! '/6! >L! 8'#$! */$! *%! .*%$! 2&'))$)! 3/!

2*..*/:! ;8$! ('%,323('/,)! *+! >C! '/6! >L! '%$!

3.(&$.$/,$6!91!63++$%$/,!)$,)!*+!.$,8*6)!'/6!',,%390,$)!

3/! ,8$)$!)8'%$6! 2&'))$):! ! <*%! 3/),'/2$7! ,8$! 2*.(*)3,3*/!

3.(&$.$/,',3*/! *+! =$63',*%! '/6! M,%',$51! 6*$)! /*,!

3.(&1! .$,8*6)! 3/! 2*..*/:! "/! ,8$! *,8$%! 8'/67! ,8$!

2*.93/',3*/! 9$,-$$/! =$63',*%! '/6! M,',$! %$D03%$)! ,8$!

)8'%3/5! *+! ,8$!!"#$%$&'$()! .$,8*6:! ;8$! (%$)$/2$! *+!

/$!%!.*%$!.$,8*6)! 3/! 2*..*/!28'%'2,$%3E$)!(',,$%/!

.$,8*64&$#$&! 3/,$%&'2$):! ! <0&&! *#$%&'()! *220%! -8$/!

3.(&$.$/,',3*/)! *+! (',,$%/)! >C! '/6! >L!)8'%$! */$! *%!

.*%$!),',$.$/,)7! ',,%390,$)! '/6! .$,8*6):! ;83)!

2*.93/',3*/!),1&$! 3)! 63++$%$/,! +%*.! .$,8*6! 3/,$%&'2$)!

9$2'0)$! 8$%$! ,8$!)8'%$6! $&$.$/,)! '%$! $/,3%$&1! ('%,! *+!

9*,8!(',,$%/):!K/!,8$!(%$#3*0)!2')$7!63++$%$/,!('%,)!*+!,8$!

2*..*/!.$,8*6!'%$!63)N*3/,! 3/!,8$!)$/)$!$'28!*+!,8$.!

3.(&$.$/,!63),3/2,!(',,$%/!%*&$):!

!

! ! !

!

!

!

=)B)!CD6&#+!?922'&-!E0750,#2#0-,!
!

>',,$%/!

O'.$!

H*.93/$6!

-3,8!
H',$5*%1!

>%*?1@PB! =$63',*%! H*/)$%#',3#$!

>%*?1@AB! =$63',*%! "#$%&'(!!@.$,8*6!*#$%&'(B!

>%*?1@AB! "9)$%#$%! "#$%&'(!@.$,8*6!3/,$%&'2$B!

>%*?1@AB! M3/5&$,*/! "#$%&'(!@2&'))!3/,$%&'2$!B!

!

F96.'!()!F3'!@9`#.#2D!01!!"#$%!/0750,#2#0-,)!

!

Q! ('%,320&'%! (',,$%/! 2'/! '&)*! 9$! 2*.93/$6! 3/! .'/1!

63++$%$/,!8$,$%*5$/$*0)!2*'%)$45%'3/$6!'/6!+3/$45%'3/$6!

-'1)! 3/! ,8$!)'.$!)1),$.:! <*%! 3/),'/2$7! ;'9&$! C!

6$)2%39$)!)*.$! *+! ,8$!.0&,3(&$! 2*.(*)3,3*/)! *+! >%*?1!

-3,8! =$63',*%7! "9)$%#$%! '/6! M3/5&$,*/:! =$63',*%! 3)!

'&)*! 2*.(*)$6! -3,8! 63++$%$/,! 3/),'/2$)! *+! >%*?1!

,8%*058! ,-*! 819%36! +*%.)J! ,8$! +3%),! 3/! '! 2*/)$%#',3#$!

+')83*/7!'/6!,8$!)$2*/6!3/!'/!*#$%&'((3/5!.'//$%:!;83)!

,'9&$! 3)! */&1!*/$!).'&&! $?'.(&$!*+! 8*-! 3)! 2*.(&$?! ,*!

.'3/,'3/7! ,%'2$! '/6! %$0)$! ,8$! (',,$%/! 2*.(*)3,3*/)! 3/!

%$'&3),32!)2$/'%3*):! M*.$! 2*.(*)3,3*/)! '%$! '&)*! 819%36!

3/!,8$!)$/)$!,8$1!$#36$/2$!)3.0&,'/$*0)!*220%%$/2$)!*+!

3/,$%&'2$)!'/6!*#$%&'()!3/#*/5!63++$%$/,!(',,$%/!%*&$):!

Overlaps occur when realizations of patterns P1 and P2 share one or more
statements, attributes, methods or entire classes. Conservative blends are real-
ized with a loose coupling between some classes of the patterns P1 and P2 using
a temporal reference among them. For instance, in Figure 1), the overlap involv-
ing (Proxy(4) and Mediator(1) is used to implement the connection between the
proxy and the real subject participants of the Proxy pattern. This is useful when
many proxy and real subject objects exist, and the designer wants to implement
a flexible mechanism to define how these elements have to interact, thus avoiding
the direct invocation. The Mediator pattern fits this requirement by assigning
the responsibility of coordinating a set of colleagues to to the mediator. Therefore,
this blending requires the unification of some responsibilities of the two patterns:

the proxy and real subject participants must also be colleagues referring to the
same mediator.

Besides, the second instance (Proxy(5) and Mediator(1) in Figure 1) allows
providing a reference to an object located in a different machine. This composi-
tion uses a different approach between the same two patterns in order to realize
the coordination process encapsulated in the mediator participant. Here the me-
diator object (ConcreteBind) needs a RemoteTarget within its mediation process;
these two objects are separated by using a Proxy pattern. The mediator par-
ticipant only requires a reference to the proxy object thus the structure of the
resulting pattern maintains unchanged both the Mediator and the Proxy origi-
nal structures.

3 Defining Composable Patterns

The remaining sections describe a fine-grained design approach to support the
pattern solution definition, the composition process and the pattern instantiation
in the system. The pattern definition process is discussed in this Section, whereas
the composition technique is discussed in Section 4. The instantiation phase
is only briefly introduced due to space constraints. Our approach subsumes a
pattern description language and it is based on a set of constituents that can
be combined in order to define the structure and the behavior of the pattern
solution. The language makes it possible to refer to (i) elements used to define
the pattern and (ii) elements of the programming language for implementing
the solution. Table 3 introduces the definitions of the elements in the pattern
description language.

Table 3. Categories of elements used for describing a pattern

Terms Definition

Pattern
Description
Element
(PDE)

An atomic constituent of a pattern that describes the structure or
the behavior of the solution. They are: (i) participants, (ii)
composables, (iii) events and (iv) actions.

Language
Element
(LE)

Element of the target programming language used for
implementing the pattern. In this paper we have used Java for
implementing the case study, so the LEs are: classes, attributes,
methods, constructors, interfaces and the like.

Affected
System
Element
(ASE)

Element of the system that is influenced by the pattern
application. A typical example of ASE is a business class that is
assigned to a participant of the pattern. Its structure is modified
because it must be compliant with PDE constraints.

The definition of pattern elements encompasses alternant levels of stability:
some PDEs (Pattern Description Elements) are precisely described and do not

Listing 1. The definition of the Mediator pat-
tern

p a t t e r n M e d i a t o r {
p a r t i c i p a n t m e d i a t o r i s C l a s s [1] ;
p a r t i c i p a n t c o l l e a g u e i s C l a s s [1 . . ∗] ;
p a r t i c i p a n t m e d i a t i o n i s O p e r a t i o n [1] ;

event r e q u e s t m e d i a t i o n from c o l l e a g u e ;
a c t i o n o p e r a t e m e d i a t i o n ;
on r e q u e s t m e d i a t i o n do o p e r a t e m e d i a t i o n ;

composable m e d i a t o r i n t e r f i s C l a s s ;
composable c o l l e a g u e i n t e r f i s C l a s s ;
composable m e d i a t o r i n t e r f . m e d i a t i o n o p

i s m e d i a t i o n ;
<media to r >. e x t e n d s = m e d i a t o r i n t e r f ;
composable <me dia to r >. m e d i a t i o n o p

i s m e d i a t i o n ;
<c o l l e a g u e >. e x t e n d s = c o l l e a g u e i n t e r f ;
composable <c o l l e a g u e >. m e d i a t o r r e f

i s A t t r i b u t e ;
<c o l l e a g u e >. m e d i a t o r r e f . t y p e

= m e d i a t o r i n t e r f ;
}

of programming-level abstractions or using representations
that lack rigorous definitions of temporal behavior [15].
We want give the possibility to formalize a pattern, mixing
in the solution elements that are precisely described, with
other elements that are deliberately abstract since the na-
ture of the problem may strongly influence them. We delay
the concrete definition of those elements to the instantiation
phase, where the system to develop is concrete, and the na-
ture of the problem is well known.

As an example we can consider the Mediator pattern
given in [9]. This pattern can be informally described as
a way for de-coupling a set of classes (the colleagues), cen-
tralizing the control logic in just one element (the media-
tor); the colleagues can communicates with each only by
exchanging messages with the mediator that is responsible
to correctly dispatch them. The pattern describes the struc-
ture of this subsystem, specifying that a colleague has got a
reference of the mediator, but no information is given about
the conditions to verify for sending messages or the con-
tent of these; of course these information depend by the
specific problem, and cannot be generalized enough to be
included in the specification: the mediation process could
be described in a general way, without give an explicit flow
of control.

In order to choose the level of granularity of our ap-
proach, we looked at the documentation reported for many
patterns [8], that describes i) the intent, ii) one or more mo-
tivations, iii) the structure, iv) the participant, v) the col-
laboration, vi) the possible consequences, and vii) it fi-
nally reports an implementing example. The key element
for reading this documentation is the list of participants,

that describes the elements that has a role in the pattern
and their responsibilities. The structure and the collabo-
ration sections analyze how to organize the participants and
how to create collaborations among them in order to solve
a specific problem. Many works introduce the concept of
role [18] [12] for the pattern formalization. They conceive
a pattern as a container of responsibilities and the role as an
instrument for aggregating and separating these responsibil-
ities among the parts. Other works [11] [6] have discussed
the need to distinguish two kind of elements in a pattern for-
malization: the defining role, that describes completely an
element of the pattern structure, and the superimposed role,
that is a placeholder to assign responsibilities to elements of
the system.

We follow this explicit distinction, using the following
terms: the participant is placeholder for expressing func-
tionalities that need to be assigned to elements of the sys-
tem, whereas the internal elements are totally defined inside
the pattern, and it have not any functionalities outside from
it. The solution is described using facts and rules that de-
scribe the internal structure and behavior of a pattern; the
description is done in terms of four kind of constituents: i)
the participants, ii) the internal elements, iii) the events
and iv) the actions. Participants and internal elements are
used to express the static structure of the pattern, whereas
events and actions are used to define its dynamic behaviour.

In the rest of this section we will illustrate the language
used to express the rules concerning the static structure and
the dynamic behavior. The Mediator pattern will be uses
for the examples. Its representation is reported in figure
2; it is the classic structure from [9], where we have intro-
duced the part UML stereotype to specify that an element
is a participant; otherwise, when not specified the element
is a composable element. For capturing the description of a
pattern we need consider the great difference among a par-
ticipant and an internal element (although they seems to be
similar). When describing the structure of an internal ele-
ment, we refine that element, assigning all the features and
responsibilities; this is not very different, for example, from
designing a class. On the other side, a participant is only
a placeholder, so describing its structure means to define
some postconditions that must be applied to the concrete el-
ements that will be assigned to. For instance, in figure 2 the
colleague participant extends a colleague interf class; this
means that all the classes assigned to be colleague will be
superimposed to extends the colleague interf class.

The syntax to express a participant of a pattern is:
p a r t i c i p a n t <p a r t−name>

i s <core−r e f> <c o n s t r a i n t−l i s t > ;

In this expression all the elements in the right-part of
the expression are pre-conditions: the core-ref value indi-
cates the type of elements of the system that are allowed
to be assigned to the participant; other conditions that may

contextInterface()

colleague_interf

mediationStrategy()

mediator_interf

mediationStrategy()

mediator
colleague

colleague_interf

<<part>> mediation()

mediator_interf

<<part>> mediation()

<<part>>
mediator

<<part>>
colleague

contextInterface()

<<part>>
context

<<part>> algorithm()

strategy_interf

<<part>> algorithm()

<<part>>
strategy

c)

a)

Listing 1: The definition of the Mediator pattern
1 pattern Mediator {
2 participant mediator i s Class [1] ;
3 participant c o l l e a gu e i s Class [1 . . ∗] ;
4 participant mediat ion i s Operation [1] ;
5

6 event r eque s t med ia t i on from c o l l e a gu e ;
7 action operate med ia t ion ;
8 on r eque s t med ia t i on do operate med ia t ion ;
9

10 composable med i a t o r i n t e r f i s Class ;
11 composable c o l l e a g u e i n t e r f i s Class ;
12 composable med i a t o r i n t e r f . mediat ion op i s mediat ion ;
13 <mediator >. extends = med i a t o r i n t e r f ;
14 composable <mediator >.mediat ion op i s mediat ion ;
15 <co l l e ague >. extends = c o l l e a g u e i n t e r f ;
16 composable <co l l e ague >. med i a t o r r e f i s Attr ibute ;
17 <co l l e ague >. med i a t o r r e f . type = med i a t o r i n t e r f ;
18 }

Listing 2: An instance of the Mediator pattern
1 apply Mediator (BindMediator) {
2 assign ConcreteBind to mediator ;
3 assign I n t e r f a c e to c o l l e a gu e ;
4 assign ” void makeRequest () ” to mediat ion ;
5

6 define r eques t med ia t i on for I n t e r f a c e
7 as (ex e cu t i ono f (s e r v e r ()) ;
8 define operate med ia t ion as {
9 /∗ t h i s i s java code ∗/

10 . . .
11 bdstate = running . c l one () ;
12 . . .
13 Method methodexe = getTargetMethod (. . .) ;
14 . . .
15 bdstate = connected . c l one () ;
16 } ;
17 }

1

(a)

Mediator

Mediator

Inteface

Colleague1

Colleague

Inteface

Colleague2

(b)

mediator colleague

mediation

mediator

interf

colleague

interf

mediator

ref

extends

contains
has type

extends

contains

contains

composable participant

(c)

Fig. 2. Formalization of the Mediator pattern. (a) The classical structure from [10]. (b)
A slice of code used to describe the solution. (c) pattern semantic description diagram.

require further details through the pattern instantiation, whereas some others
are sketched and their concrete definition is delayed to the pattern instantiation
phase. The latter means that the structure and behaviour of those pattern ele-
ments are volatile and their final definition depends on the application context
and the other patterns to which they are going to be composed. This kind of PDE
supports the generalization and reuse of patterns in very distinct contexts where
the nature of the problem may be different. Along this section the Mediator
pattern [10] (Fig 2.a) is used to illustrate the pattern description language.

Table 4. Summary of the main properties of the Pattern Description Elements

PDE Category Description

Participant static

Participants are abstract elements to which it is possible to assign
responsibilities. In the instantiation phase LEs must be assigned to
each participant. Assigning a feature to a participant means to define a
constraint for those entities.

Composable static

Composables are concrete internal elements of the pattern structure to
which it is possible to assign responsibilities. They provide means for
introducing a constant element in the structure. A composable does not
require a further customization in the instantiation phase.

Event dynamic

An event encapsulates an abstract circumstance that can be used as
trigger for generating a specific behavior involving one or more static
elements. The definition of the context that generates an event must
be completed in the instantiation phase.

Action dynamic
An action is an atomic piece of behavior that expresses a specific
collaboration involving static elements. Actions are abstract elements
that must be refined in the instantiation phase.

3.1 Static Pattern Description

The description of the pattern structure comprises participants and composables
(see Table 4). Both of them can be used to assign pattern responsibilities. The
main difference is that a composable is a concrete element that will be added
to the system, whereas a participant is only a placeholder for an ASE (Affected
System Element). Both a participant and a composable own a type, which refers
to a LE (Language Element).

The Mediator pattern description (Fig 2.b, lines 2-4) includes the colleague,
the mediator classes and the mediation method as participants. Therefore, not
only classes can be defined as participants: here a participant method is defined.
The type of a participant indicates what kind of ASE can be assigned to the
participant. For instance the Interface class can be a colleague, the ConcreteBind

class can be the mediator and the makeRequest method can realize the mediation.
Participants are also marked with multiplicities (at the end of each expression)
that are constraints for the number of ASEs allowed. In the example only one
mediator and a mediation are allowed, whereas many colleagues may exist.

Composables are concrete elements that introduce a standard structure in
the system in which the pattern is going to be instantiated. Several composables
are part of the Mediator pattern (Fig 2.b, lines 10-12, 14 and 16). For example,
the colleague interf and the mediator interf are two classes of the mediator structure
that do not depend on the specific application context. During the pattern in-
stantiation phase all the composable elements become elements of the system.
A relationship between a composable and a participant represents a constraint.
The Mediator pattern description (Fig 2.b) encompass the identification of some
relationships. For instance, at line 13, a colleague interf is defined as a superclass
for all colleague classes. Since the colleague is a participant, all its ASEs will be
imposed to inherit from the colleague interf.

Fig 2.c provides a pattern semantic description diagram for the Mediator
pattern. This kind of diagram is conceived to show the structure of a pattern so-
lution as a typed graph. It is an UML class diagram where a graphical stereotype
notation is used in order to obtain a concise diagram. Participants are shown by
using ovals, whereas composables are shown by using boxes. Relationships are
used to link these elements, thereby creating a graph. The diagram focuses on
the relationships among participants and composables underlining the semantics
that is behind the pattern. This representation is a good instrument to discuss
the composition operators (Section 4).

3.2 Dynamic Pattern Description

The description of the behavior of a pattern comprises two PDEs: events and
actions. Their use allows for the behavioral description of the pattern semantics.
An event encapsulates an abstract circumstance that is the cause of triggering

pattern MediatorProxy composes Mediator , Proxy

mediator

colleague

mediation

mediator
interf

colleague
interf

mediator
ref

extends

contains

has type

extends

contains

contains

real
subject

proxyrequest

subject

subject
ref

contains

has typeextends

contains

contains extends

contains

(a)

(b)

(c)

composable participant

Listing 1: An instance of the Mediator pattern
1 pattern MediatedProxy composes Mediator , Proxy {
2 participant r e a l c o l l e a g u e unif ies r e a l s u b j e c t with c o l l e a gu e ;
3 participant proxy unif ies proxy with c o l l e a gu e ;
4 composable sub j e c t unif ies c o l l e a g u e i n t e r f with sub j e c t ;
5 event r eque s t unif ies proxy reques t with r eques t med ia t i on ;
6 participant med i a t o r i n t e r f a c e externalizes med i a t o r i n t e r f ;
7 }

Listing 2: An instance of the Mediator pattern
1 pattern ProxyMediat ionPol icy composes Mediator , Proxy {
2 composable proxy mediat ion conjoins mediator with proxy ;
3 event r eque s t conjoins r eques t med ia t i on with proxy reques t ;
4 composable d e f a u l t r e qu e s t conceals r eque s t ;
5 }

1

Listing 1: An instance of the Mediator pattern
1 pattern MediatedProxy composes Mediator , Proxy {
2 participant r e a l c o l l e a g u e unif ies r e a l s u b j e c t with c o l l e a gu e ;
3 participant proxy unif ies proxy with c o l l e a gu e ;
4 composable sub j e c t unif ies c o l l e a g u e i n t e r f with sub j e c t ;
5 event r eque s t unif ies proxy reques t with r eques t med ia t i on ;
6 participant med i a t o r i n t e r f a c e externalizes med i a t o r i n t e r f ;
7 }

Listing 2: An instance of the Mediator pattern
1 pattern ProxyMediat ionPol icy composes Mediator , Proxy {
2 composable proxy mediat ion conjoins mediator with proxy ;
3 event r eque s t conjoins r eques t med ia t i on with proxy reques t ;
4 composable d e f a u l t r e qu e s t conceals r eque s t ;
5 }

1

Fig. 3. Example of two different styles of compositions between Mediator and Proxy
patterns. (a) Slice of code for an overlapping composition (MediatedProxy). (b) Slice
of code for a conservative composition (ProxyMediationPolicy). (c) Pattern semantic
description diagram showing a generic composition of Mediator with Proxy, before
applying any operators.

a specific behavior, involving one or more static elements. The Mediator pat-
tern description (Fig 2, line 6) includes an example of event definition. The
request mediation is an event that can be originated by a colleague. This event
expresses the need of a colleague to communicate with another colleague. The
specifications of the conditions that generate an event largely depends on the
specific problem. For example the exact moment in which a colleague needs to
communicate can not be predicted because it tends to be an application specific
decision. Thus conditions are defined in the pattern instantiation phase.

Together with events, actions have a fundamental role in the definition of the
behavior. An action encapsulates what happens when an event occurs. Actions
are related to events by using cause-effect relationships. The Mediator pattern
(Fig 2.b) the operate mediation action is defined at line 7 and it is connected to the
request mediation event at line 8. Actions, as well as events, are abstract elements
that require to be detailed in the pattern instantiation phase.

4 Operators for Pattern Composition

This section presents the operators for pattern composition based on the fine-
grained pattern elements (Section 3). Along all this section we use two examples
of composition between the Mediator and the Proxy patterns (Section 2.2).

The MediatedProxy (Fig 3.a) is an overlapping composition, whereas the Prox-
yMediationPolicy (Fig 3.b) is a conservative composition. In general terms, the
composition process between a couple of patterns P1 and P2 creates a new pat-
tern P3 that contains all the PDEs of P1 and P2. Fig 3.c shows the result of
the composition, before the use of any operators.

4.1 Static Pattern Blending

The static operators can be used in order to modify the structure of the pattern
solution, represented by a graph in the pattern semantic description diagram.
Table 5 presents a summary of all the static composition operators.

Table 5. Summary of the static operators and their effects

Operator Rationale

Unification

The unification is used to express overlapping compositions. The rationale behind this operator is to operate fusions

of couples of static elements with a consequent merging of responsibilities. The result is to overlap the structure of

two patterns using the two elements as pivot for the operation. This produces strong changes in the resulting pattern

structure.

Conjunction

The conjunction operates a conservative pattern blending. The rationale behind this operator is to create a synergy

among the responsibilities of two patterns, by maintaining them separated. The two elements are linked by a new

element, introduced in the structure.

Only marginal changes are visible in the resulting structure of the involved patterns, promoting the traceability of

the involved elements.

Concealing

This unary operator has been conceived to modify the nature of a participant into a composable. The responsibili-

ties assigned to a participant are imposed to the elements of the system that participate to the pattern. Concealing a

participant means that all its responsibilities are delegated to a composable. They are no more visible outside the

pattern.

The visible effects of this operation are i) to allow mixed composition (unification and conjunction) among partici-

pants and composables ii) to internally set some responsibilities in order to assign a standard behavior and iii) to

narrow the complexity of the pattern.

Promotion

This unary operator has been conceived to modify the nature of a composable into a participant. The rational be-

hind this operator is to delay the assignment of these responsibilities till the instantiation phase, exactly like for

participants.

The visible effects of this operation are i) to allow mixed composition (unification and conjunction) among partici-

pants and composables and ii) to change the standard behavior of a pattern, by delegating some aspects of its struc-

ture to elements of the system.

Static Unification. The unification operator is used to express overlapping
compositions producing strong changes in the resulting pattern: the elements
that are unified represent the pivot points for the overlap. The unification can
be applied to two operands that must refer to the same PLE and the same LE.
The new element will receive all the features of its originators, and these will no
more be present in the structure.

Figure 4.a/b show two unifications of participants. The effect is the creation
of two new participants, RealColleague and Proxy that get all the relationships

proxy unifies colleague with proxy

realcolleague unifies colleague with realsubject

real
subject

requestsubject

extends contains

colleague

colleague
interf

extends

real
colleague

requestsubject

extends contains

colleague
interf

extends

realcolleague unifies colleague with realsubject

Unification

real
colleague

subject

extends

colleague
interf

extends

Unification

mediator
ref

contains

proxy

extends

real
colleague

subject

extends

mediator
ref

contains

proxy

extends

colleague

colleague
interf

extends

proxy

request

subject

subject
refcontains

contains

extends contains

Unification

colleague
interf

extends

proxy

request
subject

subject
refcontains

contains

extends contains

composable participant

(a)

(b)

(c)

MediatedProxy

mediator

mediation

mediator
interf

mediator
ref contains

has type

extends

contains contains

proxy

request

subject
ref

contains
has type

extends

contains

contains

extends

contains

(d)

real
colleague

subject

extends

Fig. 4. Effects of the static unification in the MediatedProxy pattern. (a-b) Unification
of participants. (c) Unification of composables. (d) Final structure for the Mediated-
Proxy after the use of the operators.

that their originators prescribed in the original pattern description. The aim of
these two unifications is to create a pattern with the characteristics of a Proxy,
where both the proxy and realsubject participants are also colleagues of a Mediator
structure, so they can communicate by using a mediator.

When the unification is applied to two participants, the new participant has
a multiplicity that is the intersection of the two original’s ones. For instance the
unification of a participant with multiplicity [0,2] with a participant [1,*] gener-
ates a participant [1,2]. Operations in Figure 4.a/b generate a composition prob-
lem when the pattern implementation target is an object-oriented programming
language (even though it is easily realisable with aspect-oriented languages). Af-
ter the unification, both the RealColleague and the Proxy are involved in a multiple
inheritance. Therefore, the unification of the colleague interf composable with the
subject composable solves this problem. The effect of this operation is shown in
Figure 4.c and the final structure is shown in Figure 4.d.

proxy_ref conjoins mediator with proxy

composable participant

mediator

mediation

mediator
interf

extends

contains

contains proxy

subject

extends

Conjunction

mediator

mediation

mediator
interf

extends

contains
contains

proxy

subject

extends

proxy
ref

contains

has type

ProxyMediationPolicy

mediator

colleague

mediation

mediator
interf

colleague
interf

mediator
ref

extends

contains

has type

extends

contains

contains

real
subject

proxy

request

subject

subject
ref

contains

has typeextends

contains

contains

extends
contains

(b)

proxy
ref has typecontains

(a)

Fig. 5. Effects of the static conjunction in the ProxyMediationPolicy pattern. (a) con-
junction of participants. (b) Final structure for the pattern after the use of the operator.

Static Conjunction. The conjunction supports a conservative pattern blend-
ing. Only marginal changes are visible to the structure of the involved patterns,
promoting the traceability of the involved elements. The operands continue to
exist after the operation. The visible effect is the creation of a new element that
is responsible for connecting the two ones in order to realize their collaboration.
The language does not put any constraints on the nature of the two operands
that is possible to conjoin (as for the unification). They can be indifferently
participant and composable elements but syntactic rules of the programming
language must be kept.

Figure 5 illustrates the conservative composition ProxyMediationPolicy. The
rationale is to create a synergy between the two patterns, without modifying
their standard behavior. This is obtained by conjoining the mediator with the
proxy participants. The operator introduces a proxy ref attribute in the mediator

class, that refers to a proxy object. The new pattern has all the characteristics of
a Mediator, which uses the Proxy inside the mediation process.

Externalization and Concealing. These two unary operators are conceived
in order to modify the nature of composables and participants. The external-
ization is applicable only to a composable, changing it to a participant of the
pattern. After this operation, ASEs can be assigned to the new participant. The
twofold goal of externalization is to (i) allow for the unification of a composable
with a participant, and (ii) delegate some responsibilities (originally delineated
inside the pattern) to ASEs. An example of externalization is shown in Figure
6.a, where the operator is applied to the mediator interf composable. The result
is the creation of a new participant, named mediator interface replacing the com-

default_request conceals request

proxy

request subject
contains

extendscontains

(b)

proxy
ref has type

externalization

proxy

default
request

subject
contains

extends
contains

proxy
ref has type

composable participant

mediator_interface externalize mediator_interf

mediator

mediation

mediator
interf

mediator
ref

type

extends

contains contains

(a)

promotion
mediator

mediation

mediator
interface

mediator
ref

type

extends

contains contains

Fig. 6. (a) Effect of the externalization of a participant in the MediatedProxy. (b)
Effect of the concealing of a composable in the ProxyMediationPolicy.

posable.

The concealing operator modifies the nature of a participant delegating its
responsibilities to an composable of the structure. It becomes a fixed element
of the structure and it does not requires further detailing, in the instantiation
phase. The aims of concealing are to: (i) allow unification between a participant
with a composable, and (ii) specialize the pattern, setting some responsibilities.
An example of concealing is shown in Figure 6.b, where the operator is applied to
the request participant with the introduction of a default request composable. The
latter is a standard method for executing the proxy request by the mediator.

4.2 Dynamic Pattern Blending

Dynamic composition operators complete the language for pattern blends. Only
two operators are contained in this category, the unification and the conjunction.
Both of them work on pattern events, and as consequence, on their associated
actions.

Event Unification. As already illustrated in Section 3, pattern description
defines events and actions as expressions of the pattern behavior. The effect of
unifying two events is the creation of a new event in the pattern, whereas the
two original ones do not exist anymore. The new event is responsible to trigger
all the events of its originators. This operation, therefore, produces a blend of
the flows of actions related to the two involved patterns. After this blending,
new actions can be added to the flow of events, and the order of execution of
the existing ones can be rearranged according to new needs.

Figure 7.a shows an unification of events related to the MediatedProxy pat-
tern: the request mediation is unified with the proxy request. The new pattern uses

Table 6. Summary of the dynamic operators and their effectsDYNAMIC

Operator Rationale

Unification

This operator produces a new event that is responsible to trigger all the actions of the original two

events.

The visible effect is a correspondent blending of their flow of actions. All the actions of the two

events are triggered by the new event with a possible rearrangement of the original order or an

overlapping effect.

Conjunction

The concatenation is used to create a sequence of the two flows of events. One event disappears

since all its actions are triggered by the end of the execution of the actions of the first event.

The visible effect is to link the execution of a flow of actions to the execution of another flow of

actions. These two flows are executed sequentially, when the new event is triggered.

C B A X C Z
C B A X Z

e3 unifies e1 with e2

e1
e2

e3

C B A X B Z
C B A X Z

e3 joins e1 with e2

e1
e2

e3
colleague

request unifies proxy_request with request_mediation

request

mediation

mediator proxy

proxy

request

realsubject proxy

request

mediator realsubject

operate

mediation

delegate

operate

mediation

delegate

mediator

colleague

request concatenates request_mediation with proxy_request

request

mediation

mediator proxy

proxy

request

realsubject proxy

request

mediator realsubject

operate

mediation

delegate operate

mediation delegate

(b)

(a)

Fig. 7. (a) Effect of the event unification in the MediatedProxy pattern. (b) Effect of
the event conjunction in the ProxyMediationPolicy pattern

the Mediator logic to allow the communication between the proxy and the real-

subject of the Proxy pattern. Therefore the delegate action is executed by using
the operate mediation. After the unification a new event request is the trigger for
these actions.

Event Conjunction. As for the unification, the effect of the conjunction of two
events is the creation of a new event in the pattern, whereas the two original ones
do not exist anymore. The difference is that this operation maintains unchanged
the flows of actions considering them as atomic blocks of behavior. The new
event is responsible to trigger the first flow of actions. The execution of the
second flow of actions is triggered after the end of execution of the first one.

In Fig 7.b a conjunction of events (for the the ProxyMediationPolicy pat-
tern) is shown: the request mediation is concatenated to the proxy request since
the mediation algorithm of the Mediator uses a remote invocation encapsulated
in the Proxy. Therefore the delegate action is executed as a consequence of the
execution of the operate mediation.

5 Evaluation and Lessons Learned

This section discusses some results obtained by the application of our pattern
composition language to the three different case studies: OpenOrb, JHotDraw
and JUnit. We have chosen these applications because they are from heteroge-
neous application domains and, as a result, the feasibility of our language con-
structs and composition operators can be assessed in different contexts. OpenOrb
is a pattern-based middleware application that was already introduced and dis-
cussed in Section 2: we have considered for our studies the core part of the
system consisting of 133 classes. JHotDraw is an open-source software conceived
for drawing 2D graphics. It was built with a massive use of design patterns as
exercise for demonstrating the reuse of design patterns. JUnit is an open source
testing software written in Java. It encompasses a pattern-oriented framework
design with variabilities for the organization of software tests and testing graph-
ical interfaces.

5.1 Empirical Procedures

The activities executed for the assessment of the proposed language are the fol-
lowing: (i) analysis of the patterns and their blends that have been previously
applied to the three target systems; (ii) once we identified a couple of interacting
patterns we have analyzed the motivations of their collaboration, by identifying
the blend intent and, finally, (iii) we have analyzed how to aggregate the respon-
sibilities of these patterns by using our language. We have been able to represent
20 patterns from the GoF’s catalogue and to combine them by using 30 pair-wise
compositions, and 2 compositions involving more than two patterns. Finally we
have instantiated 62 patterns (some of them more than once) in the OpenOrb
case study.

Table 7 presents the results of these activities and consists of blocks of
columns. The first block reports the name of the patterns involved in each com-
position. This is the name we use for referring to the composition itself. The
second block reports the reuse of the pattern composition for each of the three
case studies (OpenOrb, JHotDraw and JUnit): the check in a cell means that
this pattern composition has been reused in the case study.

The third block, named type, represents a classification for each of the in-
volved patterns. The categories we considered derive from the GoF’s work: B
indicates Behavioural patterns, S indicates Structural patterns and C stands for
Creational patterns. Behavioral patterns are oriented to problems focused on al-
gorithms, distribution of responsibilities and communication between the classes
and the objects of the solution. Structural patterns are dedicated to problems
where the structure and the organization of the involved elements are funda-
mental. Creational patterns describe solutions for promoting the independence
of the system from the object creation process. We have encountered 5 categories
of compositions: B-B, B-S, B-C, C-S and S-S.

Table 7. Results obtained by the pattern composition language applications






































































































           

           

        

         

         



         

        

        

        

        

          

          

        

        

        

         

         

        

        

         

        

         




        

        

          

         

       

        

         

      

        

        

       
















 EF

EE

FG

EF H

I EF

The following three column blocks of Table 7 report the employment of oper-
ators which have been used for realizing the compositions. These sections show
how many times each operator has been used. The most frequently used opera-
tor is the unification, used in 84 different static compositions. The block named
elements reports some information about the static structure of the patterns.
The column before contains the number of classes constituting the solution of
the patterns involved in the compositions. The column after indicates the num-
ber of classes of the new pattern, obtained by the composition. As we discussed
before, our design language allows for specification of hybrid compositions that
are neither full overlap nor full conservative. This value gives useful indication
for classifying a composition in these two classical categories: when the value in
the column after is nearer to the sum of the two values contained in the column

before then the composition might be considered conservative. The reason be-
ing that every class of the original pattern structures is maintained in the new
composed one. Otherwise the composition might be considered as overlapping.
This categorization is reported in the last block, named Composition Category.
The following subsections discuss the results reported in Table 7 in terms of our
language expressiveness and reusability.

5.2 Expressiveness of Heterogeneous Pattern Blends

We have observed that the expressiveness of our pattern blending language is
widely related to the fine-grained nature of the composition operators (Section
4). In fact, the operators covered all the pattern compositions emerging in our
three case studies, with some exceptional cases being discussed later. The static
unification was employed 86 times, while dynamic unification was applied 15
times. The conjunction was used 19 times for static elements and 16 times for
dynamic ones. We have also employed the concealing operator 17 times, against
the low usage of the externalization (used just in only 2 compositions). These
results provided evidence that our innovation operators for pattern blending
were effective to support the reuse of the structure and the behavior of patterns
adapting them to new intents and contexts, in order to compose them with other
patterns.

In addition, the language has shown to be suitable for expressing both con-
servative and overlapping pattern blends. We have formalized 13 conservative
compositions and 19 overlapping compositions in the three case studies. Several
hybrid pattern compositions have been obtained with a conjunct use of different
type of operators. For instance, the Command+Builder conservative combina-
tion has been obtained with 1 unification and 1 conjunction (for the static part)
and 2 unifications for the dynamic part. The Factory Method+Proxy conserva-
tive composition involves the use of unification and conjunction for the dynamic
part, and 4 unifications for the static part. This outcome provided us with evi-
dence of the language scalability to deal with complex pattern blends.

On the other hand, we have also learned some possible further enhancements
to our pattern composition language. For instance, some difficulties we observed
in the description of the Chain of Responsibility and Facade. The problem in
representing the Chain of Responsibility is related to the implicit relationship
among the participants predecessors and successor. In instantiation phase, apart
to assign the classes to these participants, it is necessary to specify the order of
these classes in the chain. We are getting around this limitation by instantiating
the pattern more than once, every time with only one predecessor and one
successor. Therefore, we are also studying a way to delay the definition of some
elements of the pattern in order to better handle these intricate scenarios.

5.3 Reusability of Pattern Blends

This subsection illustrates the reusability of pattern compositions across single
and multiple software projects.

Table 8. Effects of the operators on the reusability

Operator
Effect on

Reuse
Rationale

participant

unification
negative

The unification of participants concentrates the responsibilities of PDEs

thus LEs must own more characteristics in order to be suitable for

participating to the pattern. Figure 4.a/b puts in evidence that after the

composition the new participants are more intricate than the originator!s

ones. For instance the real colleague participant requires LEs that must

be at the same time colleague (that need to communicate) and real
subject (for example remote objects of the system). This reduces the

class of problems for which the pattern is suitable. This may produces a

difficult in reusing the new pattern.

participant

conjunction

positive or

negative

The conjunction of participants increments the number of responsibilities

without concentrating them. LEs must own the same characteristics than

before the composition. However more participants are required in order

to instantiate the pattern. Figure 5.b shows that participants are exactly

the same than in the originator. The conjunction may have both positive

and negative effects on the reusability.

event

unification
positive

The unification produces a new event that encapsulates and reorganizes

the actions of the two originators. Figure 7.a shows a dynamic unification

used to create a proxy invocation by using a mediator. The identity of the

two flow of activities is lost but it is possible to express a more complicate

and specific behavior in according to new needs, with a positive impact on

the reusability.

event

conjunction
negative

Beside, the conjunction produces a collaboration where the two flows of

events maintain their identity. Figure 7.b shows a dynamic conjunction

with the aim to introduce a proxy invocation inside the mediation process.

The context where this kind of behavior is useful is reduced, so this

operator

may have negative effects on the pattern reusability.

concealing negative

The concealing operator increase the number of responsibilities that are

solved in a standard way, reducing the global complexity of the pattern.

The number of ASEs that participate to the pattern decreases, and the

pattern may become easier to reuse. For instance, the concealing

operated in Figure 6.b introduce a standard method for executing the

proxy request.

Anyway composables encompass a static structure, that could be specific

for a class of problems but unsuitable for another ones.

externali-

zation
positive

The externalization operator increases the number of total responsibilities

that must be assigned to ASEs, thus creating a more flexible structure.

For instance, Figure 6.a shows the externalization of the mediator_interf
class that, after the operation, can be assigned to an ASE and enriched

with other attributes and methods. This has the counter effect to (i)

increase the complexity of the pattern and, at the same time, (ii)

delegating some responsibilities to ASEs, to increase its reusability in

different contexts.

Reuse of Pattern Blends. We have also analyzed to what extent each pattern
composition has been reused across the three case studies. The evidence of com-
position reuse was especially high thanks to the fact the analyzed applications
are from very different domains. The result of this experiment is that 13 over
32 pattern compositions have been reused in more than one case study. Two of
these combinations, namely (Adapter+Command and Command+Composite),
have been reused in all the three case studies.

We noticed that: (i) surprisingly, overlapping compositions revealed easier to
reuse against conservative compositions; (ii) the reuse seems independent from
the column type: we have reused compositions containing Behavioral, Structural
and Creational patterns; and (iii) compositions from the Structural-Structural

category revealed easiest to reuse, while the Creational-Structural category re-
vealed hardest to reuse.

The justification for these outcomes can be based in two directions: the het-
erogeneity of the case studies and the nature of the involved patterns. A general
consideration may be that it is easier to reuse a pattern when it is more abstract
and adaptable to several circumstances. Therefore during the composition, some
patterns greatly reduce their generality, becoming more difficult to employ in
different contexts. For instance, one of the common patterns that typically is
used in many contexts is the Observer. Table 7 reveals that it was used in only
three compositions and only two of these were reused in more case studies. Since
the language expressiveness is perfectly suitable for describing this pattern, we
imagine that this peculiarity depends by some intrinsic unrevealed features of
the pattern itself.

Intuitively, the composition process often creates patterns to solve classes
of problems considerably different from the original ones. On the other hand,
the new class of problems is not totally independent from the original ones. For
instance, the Observer pattern has been defined to avoid tight coupled objects
involved in one-to-many dependencies. Also the dynamics of the Observer is well
defined: when the state of the subject changes, it notifies all its observers. The
Observer+Strategy composition has been defined to inform the observer class
when a subject class changes its strategy to operate. This composition adds
some constraints to the feasibility of the new pattern: the strategy is a dynamic
feature of a class, therefore the pattern becomes useful only when we want to
decouple dynamic relationships, whereas the Observer is suitable both for static
and dynamic relationships. Therefore this composition (Observer+Strategy) be-
comes specific for a class of problems that is a subset of the Observer’s class of
problems. The pattern reusability is naturally reduced.

On the Intricacies of Pattern Composition Reuse. The observation above
does not necessarily hold for every kind of composition. The rule to determine
how a pattern composition is reusable seems very difficult to pinpoint. In order
to discover what kind of dependency could exist between pattern composition
and reuse, Table 8 provides an overview of the effects of each operator on the
reusability.

These considerations can be useful in order to analyze why some categories
of pattern compositions are easier to reuse in comparison to other ones. For in-
stance, the Behavioral-Structural and Behavioral-Behavioral compositions seem
easier to reuse than Behavioral-Creational and Creational-Structural composi-
tions. In order to detect the causes of this difference, we have sorted the patterns
of Table 7 according to their categories and we have considered how many times
each operator has been used in each category. The result is interesting: the static
unification and the static conjunction have been used with the same frequency in
all the categories. The concrete difference is the use of the externalization oper-
ator, the event unification and event conjunction. Both B-S and B-B categories
indicate a greater use of event unification and externalization, which, according

to our considerations, have no negative impact on the reusability. Besides the
two categories B-C and C-S encompass a greater use of conjunction of events,
which may reduce reusability. In conclusion from our observation, the dynamic
part seems to have a greater influence on the reusability of pattern compositions
than the static elements.

6 Related Work

Different approaches have been proposed for documenting pattern blends: role
composition [12, 18], UML-based composition [21], temporal logic composition
[16] and aspect-oriented composition [6, 7, 13,19].

In [18] role diagrams are used for implementing and documenting object
collaboration patterns. These roles are different from our participants, since only
classes can play roles in these patterns, whereas every entity can be a participant
(including methods and attributes).

In [21] an UML approach for composing patterns is proposed. The main
limitations of this work compared to ours are: (i) this approach is suitable only
for OO languages, whereas our target programming language can be any, and
(ii) the UML approach is mainly focused on the static composition, whereas we
introduce operators for dynamic blends.

Mikkonen [16] proposes a formal approach for composing patterns, which
focuses on cooperation of behavioral layers. Their composition is based on one
operator only: the multiple inheritance. The limitation is twofold: the verbosity
and heavyweight precision it requires in defining and combining the pattern
elements. It is not clear how this techniques address hybrid pattern compositions
and, thereby hindering the effective feasibility and reusability of the compositions
in realistic contexts as investigated in our study.

In [20] a generic composition technique for merging dynamic structures is
proposed. This technique is based on state charts, but it can be extended to
other UML diagrams. The process considers the diagram meta-model in order
to build a graph, to which it is possible to apply several transformations. The
approach is similar to our pattern semantic description diagrams. The differences
are: (i) our operators generate transformations both for the structure and the
behavior of a pattern which is essential for pattern composition descriptions, and
(ii) the operators are high-level design instruments than can be easily managed
in the system development phase by designers.

7 Conclusion and Future Work

This paper presented an innovative composition technique for describing blends
of design patterns, based on their own static and dynamic semantics. The lan-
guage has been conceived for dealing with composition, presenting a set of opera-
tors to manage different pattern blending styles. The peculiarity of the approach
is the fine grained level chosen for fronting with the composition, which makes

it possible to combine overlapping and conservative combinations of pattern ele-
ments in the resulting composite pattern. We have applied our approach in three
real-life case studies, obtaining encouraging results in terms of reusability and
expressiveness. Future work includes the refinement of a visual notation for rep-
resenting the composition, and the concluding our ongoing tool implementation
for the pattern composition process.

References

1. C. Alexander, S. Ishikawa, and M. Silverstein. A Pattern Language, volume 2 of
Center for Environmental Structure Series. Oxford University Press, New York,
NY, 1977.

2. H. A. Basit and S. Jarzabek. Detecting higher-level similarity patterns in programs.
SIGSOFT Softw. Eng. Notes, 30(5):156–165, 2005.

3. J. Bosch. Specifying frameworks and design patterns as architectural fragments.
In Proceedings of TOOLS ’98, page 268, Washington, DC, USA, 1998. IEEE Com-
puter Society.

4. F. J. Budinsky, M. A. Finnie, J. M. Vlissides, and P. S. Yu. Automatic code
generation from design patterns. IBM Syst. J., 35(2):151–171, 1996.

5. F. Buschmann and R. Meunier. A System of Patterns. ACM Press Addison-Wesley
Publishing Co., New York, NY, USA, 1995.

6. N. Cacho, T. Batista, A. Garcia, C. Sant’Anna, and G. Blair. Improving modularity
of reflective middleware with aspect-oriented programming. In Proceedings of SEM
’06, pages 31–38, New York, NY, USA, 2006. ACM Press.

7. N. Cacho, C. Sant’Anna, E. Figueiredo, A. Garcia, T. Batista, and C. Lucena.
Composing design patterns: a scalability study of aspect-oriented programming.
In Proceedings of AOSD ’06, pages 109–121, New York, NY, USA, 2006. ACM
Press.

8. P. Clements and L. Northrop. Software Product Lines: Practices and Patterns.
Addison-Wesley, 2002.

9. A. H. Eden, A. Yehudai, and J. Gil. Precise specification and automatic application
of design patterns. In Proceedings of ASE ’97, page 143, Washington, DC, USA,
1997. IEEE Computer Society.

10. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
od Reusable Object-Oriented Software. Addison-Wesley Professional Computing
Series. Addison-Wesley Publishing Company, New York, NY, 1995.

11. A. Garcia, C. Sant’Anna, E. Figueiredo, U. Kulesza, C. Lucena, and A. von Staa.
Modularizing design patterns with aspects: a quantitative study. In Proceedings of
AOSD ’05, pages 3–14, New York, NY, USA, 2005. ACM Press.

12. I. Hammouda and K. Koskimies. An approach for structural pattern composition.
In Proceedings of SC 2007, Braga, Portugal, March 2007.

13. J. Hannemann and G. Kiczales. Design pattern implementation in java and aspectj.
In Proceedings of OOPSLA ’02, pages 161–173, New York, NY, USA, 2002. ACM
Press.

14. C. Izurieta and J. M. Bieman. How software designs decay: A pilot study of pattern
evolution. In First International Symposium on Empirical Software Engineering
and Measurement, 2007 (ESEM)., 0-21 Sept 2007.

15. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J. Loingtier, and
J. Irwin. Aspect-oriented programming. In Proceedings of ECOOP’97, volume
1241 of Lecture Notes in Computer Science, Jyvaskyla, Finland, June 9-13 1997.
Springer.

16. T. Mikkonen. Formalizing design patterns. In Proceedings of ICSE ’98, pages
115–124, Washington, DC, USA, 1998. IEEE Computer Society.

17. H. Ossher, M. Kaplan, W. Harrison, A. Katz, and V. Kruskal. Subject-oriented
composition rules. In Proceedings of OOPSLA ’95, pages 235–250, New York, NY,
USA, 1995. ACM Press.

18. D. Riehle. Describing and composing patterns using role diagrams. In K.-U. Mätzel
and H.-P. Frei, editors, 1996 Ubilab Conference, pages 137–152, Zürich, Germany,
June 1996.

19. A. L. Santos, A. Lopes, and K. Koskimies. Framework specialization aspects. In
Proceedings of AOSD ’07, pages 14–24, New York, NY, USA, 2007. ACM Press.

20. J. Whittle, A. Moreira, J. Araújo, P. Jayarama, A. Elkhodary, and R. Rabbi. An
expressive aspect composition language for uml state diagrams. In Model Driven
Engineering Languages and Systems, pages 514–528, 2007.

21. S. M. Yacoub and H. H. Ammar. Uml support for designing software systems as a
composition of design patterns. In Proceedings of UML’01, pages 149–165, London,
UK, 2001. Springer-Verlag.

