
A glimpse of the ASPECS process documented
with the FIPA DPDF template

Massimo Cossentino1, Stéphane Galland2, Nicolas Gaud2, Vincent Hilaire2,
and Abderrafiaa Koukam2

1Istituto di Calcolo e Reti ad Alte Prestazioni
Consiglio Nazionale delle Ricerche

Palermo, Italy
cossentino@pa.icar.cnr.it

2Université de Technologie de Belfort Montbéliard.
90010 Belfort Cedex, France

vincent.hilaire@utbm.fr
(33) 384 583 009

Abstract. The FIPA DPDF working group aims to propose a definition
of method fragment to be used during a situational method engineering
process, the fundamental elements it is composed of and the metamodel
it is based on. Using the FIPA DPDF template, this paper presents
the fragments issued from the methodology aspecs. The process of this
methodology, the underlying metamodel and the workproducts related to
the first phase, dedicated to system requirements analysis, are presented.

1 Introduction

It is currently admitted in mainstream software engineering and agent oriented
software engineering that there is no one-size-fit-all methodology or process.
Indeed, as stated in [5] ”traditional rigid IS engineering methods are inadequate
to provide the necessary support in new IS developments. New methods, more
flexible and better adaptable to the situation of every IS development project,
must be constructed”.

One solution is proposed by the situational method engineering paradigm.
Situational method engineering paradigm provides means for constructing ad-
hoc software engineering processes following an approach based on the reuse of
portions of existing design processes, the so-called method fragments, stored in
a repository, called method base.

The Foundation for Intelligent Physical Agents (FIPA) is part of the IEEE
Computer Society and promotes agent-based technology and the interoperability
of its standards with other technology. Among the current existing FIPA sub-
groups the Design Process Documentation and Fragmentation working group
aims to propose a definition of method fragment to be used during a situational
method engineering process, the fundamental elements it is composed of and the
metamodel it is based on.



The result of the work of the working group members is the definition of a
template in order to document method fragments [?]. This paper illustrates the
use of this template for a specific methodology, namely aspecs [1].

The structure that follows respect the FIPA DPDF template. The section
2 introduces aspecs with it global process and the metamodel which defines
the underlying concepts of the methodology. After this initial section the FIPA
DPDF template contains a section per phase of the process. Due to the lack of
space only a part of the first phase of aspecs is described in section 3. Eventually
section 4 concludes.

2 Documented introduction to ASPECS

2.1 Global process overview

The aspecs life cycle consists of three phases that are explained below and illus-
trated by the figure 1. The System Requirements phase aims at identifying
a hierarchy of organisations, whose global behaviour may fulfil the system re-
quirements under the chosen perspective. It starts with a Domain Requirements
Description activity where requirements are identified by using classical tech-
niques such as use cases. Domain knowledge and vocabulary associated to the
problem domain are then collected and explicitly described in the Problem On-
tology Description activity. Then, requirements are associated to newly defined
organisations. Each organisation will therefore be responsible for exhibiting a
behaviour that fulfils the requirements it is responsible for. This activity is called
Organisation Identification and it produces an initial hierarchy of organisations
that will later be extended and updated, with further iterations, in order to
obtain the global organisation hierarchy representing the system structure and
behaviour. The behaviour of each organisation is realised by a set of interacting
roles whose goals consist in contributing to the fulfilment of (a part of) the re-
quirements of the organisation within which they are defined. In order to design
modular and reusable organisation models, roles are specified without making
any assumptions on the structure of the agent that may play them. To meet
this objective, the concept of capacity has been introduced. A capacity is an ab-
stract description of a know-how, i.e. a competence of a role. Each role requires
certain skills to define its behaviour and these skills are modelled by means of a
capacity. Besides, an entity that wants to play a role has to be able to provide
a concrete realisation for all the capacities required by the role. Finally, the last
step of the system requirements phase: the capacity identification activity, aims
at determining the capacities required by each role.

The second phase is the Agent Society Design phase that aims at de-
signing a society of agents whose global behaviour is able to provide an effective
solution to the problem described in the previous phase and to satisfy associated
requirements. The objective is to provide a model in terms of social interactions
and dependencies among entities (holons and agents). Previously identified el-
ements such as ontology, roles and interactions, are now refined from the social
point of view (interactions, dependencies, constraints, etc). At the end of this



design phase, the hierarchical organisation structure is mapped into a holarchy
(hierarchy of holons) in charge of realising the expected behaviours. Each of the
previously identified organisations is instantiated in form of groups. Correspond-
ing roles are then associated to holons or agents. This last activity also aims at
describing the various rules that govern the decision-making process performed
inside composed holons as well as the holons’ dynamics in the system (creation
of a new holon, recruitment of members, etc). All of these elements are finally
merged to obtain the complete set of holons involved in the solution.

The third and last phase (that may be decomposed in two phases), namely
Implementation and Deployment firstly aims at implementing the agent-
oriented solution designed in the previous phase by deploying it to the chosen
implementation platform, in our case, Janus [4]. Secondly, it aims at detail-
ing how to deploy the application over various computational nodes. Based on
Janus, the implementation phase details activities that allow the description of
the solution architecture and the production of associated source code and tests.
It also deals with the solution reusability by encouraging the adoption of pat-
terns. The code reuse activity aims at integrating the code of these patterns and
adapting the source code of previous applications inside the new one. It is worth
to note that system developed by using other platforms can be designed as well
with the described process. This phase ends with the description of the deploy-
ment configuration; it also details how the previously developed application will
be concretely deployed; this includes studying distribution aspects, holons phys-
ical location(s) and their relationships with external devices and resources. This
activity also describes how to perform the integration of parts of the application
that have been designed and developed by using other modelling approaches (i.e.
object-oriented ones) with parts designed with aspecs.

Fig. 1. aspecs phases

2.2 Metamodel

The Problem Domain metamodel (see Figure 2), describing the concepts of
the first phase, includes elements that are used to catch the problem require-
ments and perform their initial analysis: Requirements (both functional and
non-functional) are related to the organisation that fulfils them. An organisa-
tion is composed of Roles, which are interacting within scenarios while executing



their Role plans. An organisation has a context that is described in terms of
an ontology. Roles participate to the achievement of their organisation goals
by means of their Capacities. In this subsection we will discuss the three most
important elements of this domain: organisation, role, capacity. Definitions of
all aspecs metamodels can be found in [1] and on the aspecs website1.

An organisation is defined by a collection of roles that take part in systematic
institutionalised patterns of interactions with other roles in a common context.
This context consists in a shared knowledge, social rules/norms, social feelings,
and it is defined according to an ontology. The aim of an organisation is to
fulfil some requirements. An organisation can be seen as a tool to decompose a
system and it is structured as an aggregate of several disjoint partitions. Each
organisation aggregates several roles and it may itself be decomposed into sub-
organisations.

In our approach, a Role defines an expected behaviour as a set of role tasks
ordered by a plan, and a set of rights and obligations in the organisation con-
text. The goal of each Role is to contribute to the fulfilment of (a part of) the
requirements of the organisation within which it is defined.

In order to cope with the need of modelling system boundaries and system
interactions with the external environment, we introduced two different types
of roles: Common Role and Boundary Role. A Common Role is located inside
the designed system and interacts with either Common or Boundary Roles. A
Boundary Role is located at the boundary between the system and its environ-
ment and it is responsible for interactions happening at this border (i.e. GUI,
Database wrappers, etc).

Roles use their capacities for participating to organisational goals fulfilment;
a Capacity is a specification of a transformation of a part of the designed sys-
tem or its environment. This transformation guarantees resulting properties if
the system satisfies a set of constraints before the transformation. It may be
considered as a specification of the pre- and post-conditions of a goal achieve-
ment. This concept is a high level abstraction that proved to be very useful for
modelling a portion of the system capabilities without making any assumption
about their implementations as it should be at the initial analysis stage.

A Capacity describes what a behaviour is able to do or what a behaviour
may require to be defined. As a consequence, there are two main ways of using
this concept:

– it can specify the result of some role interactions, and consequently the
results that an organisation as a whole may achieve with its behaviour. In
this sense, it is possible to say that an organisation may exhibit a capacity.

– capacities may also be used to decompose complex role behaviours by ab-
stracting and externalising a part of their tasks into capacities (for instance
by delegating these tasks to other roles). In this case the capacity may be
considered as a behavioural building block that increases modularity and
reusability.

1 http://janus-project.org



In order to complete the description of the possibilities offered by the ap-
plication of our definitions of Organisation, Roles and Capacity, let us consider
the need of modelling a complex system behaviour. We assume it is possible to
decompose it from a functional point of view, and in this way we obtain a set
of more finer grained (less complex) behaviours. Depending on the considered
level of abstraction, an organisation can be seen either as a unitary behaviour
or as a set of interacting behaviours. The concept of organisation is inherently
a recursive one [2]. The same duality is also present in the concept of holon
as it will be shown later in this article. Both are often illustrated by the same
analogy: the composition of the human body. The human body, from a certain
point of view, can be seen as a single entity with an identity, its own behaviour
and personal emotions. Besides, it may also be regarded as a cluster/aggregate
of organs, which are themselves made up of cells, and so on. At each level of this
composition hierarchy, specific behaviours emerge. The body has an identity and
a behaviour that is unique for each individual. Each organ has a specific mission:
filtration for kidneys, extraction of oxygen for lungs or blood circulation for the
heart. An organisation is either an aggregation of interacting behaviours, and a
single behaviour composing an organisation at an upper level of abstraction; the
resulting whole constitutes a hierarchy of behaviours that has specific goals to
be met at each level. This recursive definition of organisation will form the basis
of the analysis activities performed within aspecs. In most systems, it is some-
what arbitrary as to where we leave off the partitioning and what subsystems
we take as elementary (cf. [6, chap. 8]). This remains a pure design choice.

Fig. 2. Metamodel of the aspecs problem domain



Fig. 3. System Requirements Phase: activities and workproducts



3 Phase: Domain

3.1 Process roles

Two roles are involved in the System Requirements discipline: the System ana-
lyst and the Domain expert. They are described in the following subsections.

System analyst S/he is responsible of:

1. Use cases identification during the Domain Requirements Description (DRD)
activity. Use cases are used to represent system requirements.

2. Use cases refinement during the DRD activity. Use cases are refined with
the help of a Domain Expert.

3. Definition of an ontology for the conceptualisation of the problem during the
Problem Ontology Description (POD) activity.

4. Use cases clustering during the Organisation Identification (OID) activity.
The System Analyst analyzes the use case diagrams resulting from the first
activity and the domain concepts resulting from the second activity and
attempts to assign use case to organisations in charge of their realisation.

5. Identification of interacting roles for the previously identified organisations
and use cases constitutes the Interaction and Role Identification (IRI) activ-
ity.

6. Refinement of the interactions between roles during the Scenario Description
(SD) activity by means of scenarios designed in form of sequence diagrams
thus depicting the details of role interaction.

7. Refinement of role behaviours during Role Plan (RP) activity by means of
state-transition diagrams specifying each role behaviour.

8. Identification of capacities that are required by roles or provided by the
organisations during the Capacity Identification (CI) activity. The capaci-
ties are added to the class diagram depicting the organisations composed of
interacting roles.

Domain expert The domain expert has knowledge about the domain of the
problem to be solved and is able to decide if the requirements are identified (end
of the Domain Requirements Phase).

3.2 Activity details

Domain Requirement Description (DRD) The global objective of the Do-
main Requirements Description (DRD) activity is gathering needs and expec-
tations of application stake-holders and providing a complete description of the
behaviour of the application to be developed. In the proposed approach, these
requirements should be described by using the specific language of the appli-
cation domain and a user perspective. This is usually done by adopting use
case diagrams for the description of functional requirements; besides, conven-
tional text annotations are applied to use cases documentation for describing



Fig. 4. Domain Requirement Description activity

non-functional requirements. In aspecs, we advocate the use of a combination
between use-case driven and goal-oriented requirements analysis where the de-
scription of functional requirements is completed by the one of associated goals
and goal failures

Table 1. aspecs Domain Requirement Description tasks

Activity Task Task description Roles involved

Domain Re-
quirements
Description

Identify Use
Cases

Use cases are used to represent sys-
tem requirements

System Analyst (per-
form)

Domain Re-
quirements
Description

Refine Use
Cases

Use cases are refined with the help
of a Domain Expert

System Analyst (per-
form) Domain Ex-
pert (assist)

Organisation Identification (OID) The goal of the Organisation Identifica-
tion activity is to bind each requirement to a global behaviour, embodied by an
organisation. Each requirement is then associated to a unique organisation in
charge of fulfilling it. As already said, an organisation is defined by a set of roles,
their interactions and a common context. The associated context is defined ac-
cording to a part of the Problem Ontology, described in the previous activity.
Starting from use cases defined in the DRD activity, different approaches could



Fig. 5. Organisation Identification activity

be used to cluster them and identify organisations. We advocate the use of
a combination between a structural (or ontological) approach mainly based on
the analysis of the problem structure described in the POD and a functional
approach based on requirement clustering.

Structural analysis focuses on the identification of the system structure. It
is mainly based on the association between use cases and related ontological
concept. In structural organisation identification, use cases that deal with the
same ontological concepts are often put together in the same organisation. This
approach assumes the same knowledge is probably shared or managed by the
different members of the organisation. The structure of the ontology itself can
often constitute a good guideline to identify organisations, their composition
relationships, and later their roles.

Behavioural analysis aims at identifying a global behaviour for the organisa-
tion intended to fulfil the requirements described in the corresponding use case
diagram. The set of organisation roles and their interactions have to generate
this higher-level behaviour. For this task, the use of Organisational Design Pat-
terns may be useful to the designer. In behavioural organisation identification,
use cases dealing with related pieces of the system behaviour are grouped (for
instance an use case and another related to it by an include relationship). This
means that members of the same organisation share similar goals.



Domain description

CRIO structures

System requirements
model

Requirement

Ontology

D

D

Q

Organisation

Role

Interaction

D

D

D

Capacity

Q

Q

Q

Fig. 6. aspecs System Requirements Workproducts

Table 2. aspecs Workproduct kinds

Name Description Workproduct kinds

DRD document A text document composed by the Do-
main Description diagram, a documenta-
tion of use cases reported in it and the non-
functional requirements of the system

Composite (Structured + Behavioural)

POD document An ontology in the form of a class diagram
stereotyped according to [3]

Structured

OID document A class diagram reporting use cases and
organisations as packages

Composite (Structured + Behavioural)

IRI document A stereotyped class diagram Structured

SD document A stereotyped sequence diagram Behavioural

RP document An activity diagram Behavioural

CI document A stereotyped class diagram Structured



3.3 Workproducts

The global objective of the Domain Requirements Description (DRD) activity
is gathering needs and expectations of application stake-holders and providing a
complete description of the behaviour of the application to be developed. In the
proposed approach, these requirements should be described by using the specific
language of the application domain and a user perspective. This is usually done
by adopting use case diagrams for the description of functional requirements;
besides, conventional text annotations are applied to use cases documentation
for describing non-functional requirements.

The global objective of the Problem Ontology Description is to provide an
overview of the problem domain. Problem ontology is modelled by using a
class diagram where concepts, predicates and actions are identified by specific
stereotypes.

The workproduct of the Organisation Identification activity (OID) refines
the use case diagram produced by the DRD activity and add organisations as
packages encapsulating the fulfilled use cases.

The result of the Interaction and Role Identification is a class diagram where
classes represent roles (stereotypes are used to differentiate common and bound-
ary roles), packages represent organisations and relationships describe interac-
tions among roles or contributions (to the achievement of a goal) from one or-
ganisation to another.

Scenarios of the Scenario Description (SD) activity are drawn in form of UML
sequence diagrams and participating roles are depicted as object-roles. The role
name is specified together with the organisation it belongs to.

The resulting work product of the Role Plan (RP) activity is an UML ac-
tivity diagram reporting one swimlane for each role. Activities of each role are
positioned in its swimlane and interactions with other roles are depicted in form
of signal events or object flows corresponding to exchanged messages.

The workproduct produced by the Capacity Identification is a refinement of
the IRI diagram by adding capacities (represented by classes) and relating them
to the roles that require them.

4 Conclusion

This paper has presented the use of the FIPA DPDF working group template
with a specific MAS methodology, namely aspecs [1]. Only the first of the
three phases composing aspecs is presented and in this phase two activities are
detailed. The aim were twofold, first to prove the usability of the FIPA DPDF
template and second to show a glimpse of the fragmentation of the aspecs
methodology. For more details about the methodology can consult either [1]or
the aspecs website2.

2 http://aspecs.org



References

1. Massimo Cossentino, Nicolas Gaud, Vincent Hilaire, Stéphane Galland, and Abder-
rafiaa Koukam. aspecs: an agent-oriented software process for engineering complex
systems. Autonomous Agents and Multi-Agent Systems, 20(2):260–304, march 2010.

2. Jacques Ferber. Multi-Agent Systems. An Introduction to Distributed Artificial In-
telligence. Addison Wesley, London, 1999.

3. FIPA. Fipa rdf content language specification. Technical Report XC00011B, 2001.
4. Nicolas Gaud, Stéphane Galland, Vincent Hilaire, and Abderrafiâa Koukam. An

Organisational Platform for Holonic and Multiagent Systems. In PROMAS-
6@AAMAS’08, Estoril, Portugal, May 12-16th 2008.

5. Jolita Ralyté and Colette Rolland. An approach for method reengineering. Lecture
Notes in Computer Science, 2224:471–??, 2001.

6. Herbert A. Simon. The Science of Artificial. MIT Press, Cambridge, Massachusetts,
3rd edition, 1996.


