

Consiglio Nazionale delle Ricerche

Istituto di Calcolo e Reti ad Alte Prestazioni

Method Fragments from

the PASSI process

rel. 0.1

Massimo Cossentino, Luca Sabatucci, Valeria
Seidita

RT-ICAR-21-03 December 2003

Consiglio Nazionale delle Ricerche, Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR)
– Sede di Cosenza, Via P. Bucci 41C, 87036 Rende, Italy, URL: www.icar.cnr.it
– Sezione di Napoli, Via P. Castellino 111, 80131 Napoli, URL: www.na.icar.cnr.it
– Sezione di Palermo, Viale delle Scienze, 90128 Palermo, URL: www.pa.icar.cnr.it

Consiglio Nazionale delle Ricerche

Istituto di Calcolo e Reti ad Alte Prestazioni

Method Fragments from

the PASSI process

rel. 0.1

Massimo Cossentino1, Luca Sabatucci1, Valeria

Seidita2

Rapporto Tecnico N.:
RT-ICAR-21-03

Data:
Dicembre 2003

1 Istituto di Calcolo e Reti ad Alte Prestazioni, ICAR-CNR, Sezione di Palermo, Viale delle Scienze
edificio 11, 90128 Palermo (Italy).
2 Università degli Studi di Palermo. Dipartimento di Ingegneria Informatica. Viale delle Scienze,
90128 Palermo (Italy).

I rapporti tecnici dell’ICAR-CNR sono pubblicati dall’Istituto di Calcolo e Reti ad Alte Prestazioni del
Consiglio Nazionale delle Ricerche. Tali rapporti, approntati sotto l’esclusiva responsabilità scientifica
degli autori, descrivono attività di ricerca del personale e dei collaboratori dell’ICAR, in alcuni casi in un
formato preliminare prima della pubblicazione definitiva in altra sede.

Index

1 Domain Description ..6
1.1 Introduction ...6
1.2 Fragment Description ...6

1.2.1 Portion of Process...7
1.3 Deliverables...9

1.3.1 Domain Description Diagram..9
1.3.2 System Requirements document..9
1.3.3 Glossary...9
1.3.4 Deliverables relationships with MAS model ..10

1.4 Preconditions and concepts to be defined ...10
1.5 Relationship with MAS meta-model ...11
1.6 Guideline ...11
1.7 Composition Guideline...11
1.8 Aspects of fragment..11
1.9 Dependency Relationships with other fragments..12
1.10 Glossary...12

2 Agents Identification...14
2.1 Introduction ...14
2.2 Fragment Description ...15

2.2.1 Portion of process ...15
2.3 Deliverables...16
2.4 Preconditions and concepts to be defined ...18
2.5 Relationship with MAS meta-model ...19
2.6 Guideline ...19
2.7 Composition Guideline...20
2.8 Aspects of Fragment...20
2.9 Dependency Relationships with other fragments..20
2.10 Glossary...20

3 Roles Identification ...21
3.1 Introduction ...21
3.2 Fragment Definition..22
3.3 Notation ...24

3.3.1 Domain Description Diagram..24
3.4 Relation with MAS meta-model ..25
3.5 Input/Output ..26
3.6 Glossary...26

4 Task Specification ...27
4.1 Introduction ...27
4.2 Fragment Definition..28
4.3 Notation ...29

4.3.1 Task Specification Diagram...29
4.4 Relation with MAS meta-model ..30
4.5 Input/Output ..31
4.6 Glossary...31

5 Domain Ontology Description ...32
5.1 Introduction ...32
5.2 Fragment Definition..33

5.3 Notation ...35
1.1. Domain Ontology Description Diagram ...35

5.4 Relation with MAS meta-model ..36
5.5 Input/Output ..36
5.6 Glossary...37

6 Communication Ontology Description ..38
6.1 Introduction ...38
6.2 Fragment Definition..39
6.3 Notation ...41

1.1. Communication Ontology Description..41
6.4 Relation with MAS meta-model ..42
6.5 Input/Output ..43
6.6 Glossary...43

7 Roles Description ..44
7.1 Introduction ...44
7.2 Fragment Definition..45
7.3 Notation ...46

1.1. Roles Description Diagram..46
7.4 Relation with MAS meta-model ..47
7.5 Input/Output ..48
7.6 Glossary...48

8 Protocol Description..49
8.1 Introduction ...49
8.2 Fragment Definition..50
8.3 Notation ...51

1.2. Protocol Description ...51
8.4 Relation with MAS meta-model ..52
8.5 Input/Output ..53
8.6 Glossary...53

9 Multi-Agent Structure Definition (MASD)...54
9.1 Introduction ...54
9.2 Fragment Definition..55
9.3 Notation ...57

1.3. Multi-Agent Structure Definition ..57
9.4 Relation with MAS meta-model ..58
9.5 Input/Output ..59
9.6 Glossary...59

10 Multi-Agent Behaviour Description (MABD)..60
10.1 Introduction ...60
10.2 Fragment Definition..61
10.3 Notation ...63

1.4. Multi-Agent Behaviour Description..63
10.4 Relation with MAS meta-model ..64
10.5 Input/Output ..65
10.6 Glossary...65

11 Single-Agent Structure Definition (SASD)...66
11.1 Introduction ...66
11.2 Fragment Definition..67
11.3 Notation ...68

1.5. Single-Agent Structure Definition...68
11.4 Relation with MAS meta-model ..69

11.5 Input/Output ..69
11.6 Glossary...70

12 Single-Agent Behaviour Description (MABD)...71
12.1 Introduction ...71
12.2 Fragment Definition..72
12.3 Glossary...74

13 Code Reuse Library ..75
13.1 Introduction ...75
13.2 Fragment Definition..76
13.3 Notation ...77
Code Reuse ..77

14 Code Completion Baseline ...79
14.1 Introduction ...79
14.2 Fragment Definition..80

15 Deployment Configuration...82
15.1 Introduction ...82
15.2 Fragment Definition..83
15.3 Notation ...84

Deployment Configuration ...84

1 Domain Description
Version: December 9, 2003

1.1 Introduction
The PASSI process is composed of five different phases: System Requirements, Agent Society,
Agent Implementation, Code and Deployment.
Each phase produces a document that is usually composed aggregating the UML models and work
products of the work definitions that are inside each phase .

We will define a method fragment Domain Description, extracted from PASSI System
Requirements phase. The PASSI process is represented in the following figure. The System
Requirements phase covers all the phases related to Req. Elicitation, analysis and agents/roles
identification.

Fig. 1. The complete PASSI process

1.2 Fragment Description
We describe requirements in terms of use case diagrams. The Domain Description fragment, as a
result, produces a functional description of the system composed of a hierarchical series of use case
diagrams.

Starting from the PASSI System Requirement phase activities reported in the following Figure 2, let
us consider the work definition “Domain Description” (the blue oval) whose aim is to identify the
system requirements through the UML Domain Description Diagram and the (textual)
Requirements document.

Fig.2. The System Requirements phase

1.2.1 Portion of Process

The process that is to be performed in order to obtain the result is represented in fig. 3 as a SPEM
diagram

Fig.3. Requirements description fragment-Procedural aspect

Activities description:

Activity Activity Description Roles involved
Identify Use Cases Use cases are used to

represent system
requirements

System Analyst
(perform)

Refine Use Cases Use cases are refined
with the help of a
Domain Expert

System Analyst
(perform)
Domain Expert (assist)

Two roles are involved in this fragment: the System analyst and the Domain Expert. They are
described in the following sub-sections:

1.2.1.1.1 System Analyst
He is responsible of:

1. Use cases identification during the DD sub-phase. Errore. Il collegamento non è valido..
2. Use cases refinement during the DD sub-phase. Use cases are refined with the help of a

Domain Expert.

1.2.1.1.2 Domain Expert
He supports the system analyst during the description of the domain requirements

1.3 Deliverables

1.3.1 Domain Description Diagram

Common UML use case diagram(s) are used to represent the system requirements.

Fig. 4. The Domain Description Diagram

1.3.2 System Requirements document
It is a textual document containing the complete documentation of the use cases in terms of: name,
participating actors, entry condition, flow of events, exit condition, exceptions and special
requirements.
It also reports the non functional requirements identified for the system.

1.3.3 Glossary
A glossary of terms coming from the system domain

sensorFusion

sonarReader

laserReader

<<include>>

<<include>>

pathPlanningTL

<<include>>

Environment

engControl

<<include>>

1.3.4 Deliverables relationships with MAS model

The following figure describes the structure of this fragment work products in relationship with the
MAS model elements:

Domain
Description

1 *

11

Glossary

Requirement

Non Functional
Requirement

1 *

Requirements

Document

Note that the symbol: represents an element of the MAS model.

In the Requirements document, use cases are documented in terms of: name, participating actors,
entry condition, flow of events, exit condition, exceptions and special requirements.

1.4 Preconditions and concepts to be defined
Input, output and element to be designed in the fragment are detailed in the following table:

Input To Be Designed Output

Problem Statement Requirements (both
functional and non
functional)

System Requirements
document

Scenarios Domain Description
diagram

 Glossary

1.5 Relationship with MAS meta-model

Fig.5. The MAS meta-model adopted in PASSI

This fragment refers to the MAS meta-model adopted in PASSI and contributes to define and
describe functional and non functional requirements.

1.6 Guideline
None specific of an agent oriented approach

1.7 Composition Guideline
None

1.8 Aspects of fragment
None

1.9 Dependency Relationships with other fragments
In most approaches, this fragment is intended to be the first of the design process but it can also be
preceded by a requirements elicitation fragment.

1.10 Glossary
This Fragment refers this terms:

Requirement - A requirement represents a feature that the system to be must exhibit, it can be a
functional requirement that describes the interactions between the system and its environment
independent of its implementation, or a non-functional requirement such as a constraint on the
system (or a specific part of it) performance.
Scenario – A scenario represents a concrete sequence of interaction between the system and the
actors.

2 Agents Identification

2.1 Introduction
The PASSI process is composed of five different phases: System Requirements, Agent Society,
Agent Implementation, Code and Deployment.
Each phase produces a document that is usually composed aggregating the UML models and work
products of the work definitions that are inside each phase .

We will define a method fragment we call “Agent Identification”, extracted from PASSI
methodology whose process is completely represented in the following figure

Fig. 1 The complete PASSI process

2.2 Fragment Description

The fragment here described is one of the peculiarities that distinguish the PASSI process from
other approaches. The designer skill in capturing system requirements has been capitalized in order
to produce an initial representation of the system functionalities (Domain Description Fragment)
and now this model is used to identify agents and designate their responsibilities in terms of
requirements to satisfy.

More in detail the System Requirements phase:

Fig.2 The System Requirements phase

Let us consider the “Agent Identification” sub-phase (the blue oval) .This fragment aims to identify
all the agents involved in the system to be developed.

2.2.1 Portion of process
The process that is to be performed in order to obtain the result is represented in fig. 3 as a SPEM
diagram

System Analyst

Ucs

clustering

Agents

Identification

Domain

Description

Agents

Naming

Fig 3 Agents Identification description fragment-Procedural aspect

Activities description:

Activity Name Description Roles involved
Use Cases Clustering The System Analyst analyzes the use

case diagrams resulting from the
previous phase and attempts their
clustering in a set of packages

System Analyst
(perform)

Agents Naming After grouping the use cases in a
convenient set of packages, the last
activity of this phase consists in
identifying these packages with the
names that will distinguish the
different agents throughout all the
project

System Analyst
(perform)

System Analyst Role
In this fragment, he is responsible of performing all of the above described activities

2.3 Deliverables
The resulting artifact of this phase is an use case diagram (Agent Identification diagram)
reporting the same use cases of the previous phase now clustered inside a set of packages, each
one representing one agent. As it is common, we represent external entities interacting with our
system (people, devices, conventional software systems) as actors.

Relationships between use cases of the same agent follow the usual UML syntax and
stereotypes, whereas relationships between use cases of different agents are stereotyped as
communication as described below.
Our assumptions about agent interaction and knowledge play an important role in the
understanding of this phase and they are as follows:

• An agent acts to achieve its objectives on the basis of its local knowledge and
capabilities;

• Each agent can request help from other agents that are collaborative if this is not in
contrast with their own objectives;

• Interactions between agents and external actors consist of communication acts; this
implies that if some kind of include/extend relationship exists between two use cases
belonging to different agents, this stereotype is to be changed to communication since a
conversation is the unique interaction way for agents. This is a necessary extension of
the UML specifications that allow communication relationships only among use case
and actors. The direction of the relationships goes from the initiator of the conversation
to the participant. This stereotype change is, however, not in contrast with the spirit of
the definition of the communication relationship since an agent is a proactive entity that
could initiate an interaction just like an actor. An exception exists to this change in the
relationship stereotype: it is possible that an agent in requiring some collaboration from
another will not use a communication but instead will instantiate the other one; in this
case, that is however not frequent, we use an instantiate stereotype to distinguish this
situation from the others.

• An agent’s knowledge can increase through communication with other agents or
exploration of the real world.

Starting from an use case diagram, packages are used to group functionalities that will be
assigned to an agent (whose name is the name of the package).

Fig. 4 The Agent Identification Diagram

The following figure describes the structure of the Agent Identification work product:

SensorReader
<<Agent>>

engControl ler
<<Agent>>

TLPl anner
<<Agent>>

pathPlanningTLengControl

<<communicate>>

sensorFusion

<<comm unicate>>

sonarReader

<<include>>

Environment
laserReader

<<i nclude>>

Note that the symbol: represents an element of the MAS model.

The agent element is defined only by specifying its name and relationships with existing
requirements.

2.4 Preconditions and concepts to be defined

Input, output and element to be designed in the fragment are detailed in the following table

Input To Be Designed Output
Use Case diagram from
the system requirements
elicitation (Domain
Description in PASSI)

Agent Agent Identification
(UML diagram)

2.5 Relationship with MAS meta-model

Fig5.. The MAS meta-model adopted in PASSI

This fragment refers to the MAS meta-model adopted in PASSI and contributes to define the agent
element of it.

2.6 Guideline
This phase is usually performed by a system analyst whose work is described in the SPEM activity
diagram reported in Figure 3; the first activity consists in analyzing the use case diagrams resulting
from the previous phase and attempt their clustering in a set of packages. Not precise rules exist to
guide this operation but some guidelines could be drawn:

• It is better to group use cases that have inner logical commonalities because probably this
will bring to implementations that have several common elements

• Data flow could represent an important problem for intrinsically distributed systems like
MASs and therefore it could be useful to group together use case that will probably
exchange a significant amount of data

• This activity produces a sort of architectural decomposition of the future system (at least at
the functionality level but being each agent a consistent element of the implementation this
partition also guides some kind of structural decomposition for the following solution). This
suggests the observance of some common sense rules for agents identification:

o When possible (and if evident at this stage), agents that could be deployed in special
devices (like PDA or cellular phones) should be fine grained in order to optimize
their performance.

o Human interaction functionalities could be assigned to specific agents in order to
prepare the option for a multi-device implementation (web-based, cell phone
interfaces, and so on) via different categories of agents implementing these
functionalities.

o In order to facilitate agents mobility, functionalities that strictly depend on hardware
devices or databases should that could not be accessed by everywhere should be
divided by the remaining part of the system eventually using a wrapping solution.

2.7 Composition Guideline
The fragment can be used after a functional-oriented requirements elicitation (performed with use
case diagrams) in order to identify a system decomposition into agents. It is not good for goal-
oriented approaches.

2.8 Aspects of Fragment
Behind this fragment there is only the basic assumption that the system is to be modelled in terms
of (functional) requirements.

2.9 Dependency Relationships with other fragments
None specific, obviously as already discussed in section 2.7 and 2.4, an use case diagram
representing the system requirements is necessary as an input.

2.10 Glossary
Agent Identification Fragment uses this list of model elements:

Agent – an autonomous entity that is composed by roles and has a knowledge. An agent can be
seen from different level of abstraction. In this fragment agents are a logical aggregation of
functionalities (Use Case diagrams).
In general in PASSI, an agent is a significant software unit at both the abstract and concrete levels
of design. According to this view, an agent is an instance of an agent class. So it is the software
implementation of an autonomous entity capable of going after an objective through its autonomous
decisions, actions and social relationships. An agent may undertake several functional roles during
interactions with other agents to achieve its goals. A role is a collection of tasks performed by the
agent in pursuing a sub-goal. A task, in turn, is defined as a purposeful unit of individual or
interactive behaviour.
Requirement - A requirement represents a feature that the system to be must exhibit, it can be a
functional requirement that describes the interactions between the system and its environment
independent of its implementation, or a non-functional requirement such as a constraint on the
system (or a specific part of it) performance.

3 Roles Identification

3.1 Introduction
The PASSI process is composed of five different phases: System Requirements, Agent Society,
Agent Implementation, Code and Deployment.
Each phase produces a document that is usually composed aggregating the UML models and work
products of the work definitions that are inside each phase .

We will define a method fragment Roles Identification, extracted from PASSI methodology whose
process is completely represented in the following figure

Fig. 1 The complete PASSI process

3.2 Fragment Definition

More in detail the System Requirements phase:

Fig.2 The System Requirements phase

Let us consider the work definition “Roles Identification” (the blue oval) whose aim is to describe
all possible scenario of interacting agents working to achieve a required behaviour of the system.
The UML Model of this portion of process, Roles Identification Diagram, is designed following a
standard UML notation.

The process that is to be performed in order to obtain the result is represented in fig. 3 as a SPEM
diagram

Fig.3 Roles Identification fragment-Procedural aspect

3.3 Notation

3.3.1 Domain Description Diagram

Sequence diagrams describe all the possible communication paths between agents. A path describes
a scenario of interacting agents working to achieve a required behaviour of the system. Each agent
may belong to several scenarios, which are drawn by means of sequence diagrams in which objects
are used to symbolize roles.
The name of each class is in the form: <role name>:<agent name>

Fig. 4 The Role Identification Diagram

3.4 Relation with MAS meta-model

-Name : String
-Owner : String
-Knowledge : Ontology

Agent
Role Task

Ontology

Concept

-Act

Action Predicate

-Name
-Exchanged Knowledge : Ontology
-Content Language

Communication

-Name : String

AIP

-Comm_act : Performative

Message

Performative

-Initiator/ Participant1

*

FIPA-Platform Task

1

1

FIPA-Platform Agent

1
1

1
1..*

Requirement

1..*

1

1..*1

Scenario

0..*

1..*

-Name : String

Resource

0..* 1..*

-Name : String

Service

0..*

1..*

Fig.5. The MAS meta-model adopted in PASSI

This fragment refers to the MAS meta-model adopted in PASSI and contributes to define and
describe the concepts of role in relation with it .
The following figure describes the structure of the different work products, in the fragment, and
their composition with respect to the MAS model.
Here the symbol:

represents an element of the MAS model .

3.5 Input/Output
Input, output and element to be designed in the fragment are detailed in the following table

Input To Be Designed Output
Scenario, Agent
Identification

Role Role Identification

3.6 Glossary
Roles Identification Fragment uses this list of model element:

Role – A role is a collection of tasks performed by agent in pursuing a sub-goal; an agent could
play one or more roles in the system. Each role describes an aspect of agent life cycle and it is often
related to a service offered by the agent to the society or to the achievement of one of its goals.

4 Task Specification

4.1 Introduction
The PASSI process is composed of five different phases: System Requirements, Agent Society,
Agent Implementation, Code and Deployment.
Each phase produces a document that is usually composed aggregating the UML models and work
products of the work definitions that are inside each phase .

We will define a method fragment Task Specification, extracted from PASSI methodology whose
process is completely represented in the following figure

Fig. 1 The complete PASSI process

4.2 Fragment Definition

Fig.2 The System Requirements phase

This fragment aims is to describe the behaviour of each agent . The UML Model of this portion of
process, Task Specification Diagram, is designed following a standard UML notation.

The process that is to be performed in order to obtain the result is represented in fig. 3 as a SPEM
diagram

Fig.3 Task Specification fragment-Procedural aspect

4.3 Notation

4.3.1 Task Specification Diagram

One different activity diagram is drawn for each agent. This diagram describes how the agent can
use its tasks to execute its plans.
Each diagram is composed of two swimlanes and contains activities that usually represent tasks of
the agent. The right swimlane contains tasks of the agent we are describing (Purchase Manager in
the figure above), in the left one we can find tasks of other agents that interact with this one.
Transitions in the same swimlane describe the flow of control from different tasks while transitions
from one swimlane to the other represent communications.

Fig. 4 The Task Specification Diagram

4.4 Relation with MAS meta-model

-Name : String
-Owner : String
-Knowledge : Ontology

Agent
Role Task

Ontology

Concept

-Act

Action Predicate

-Name
-Exchanged Knowledge : Ontology
-Content Language

Communication

-Name : String

AIP

-Comm_act : Performative

Message

Performative

-Initiator/ Participant1

*

FIPA-Platform Task

1

1

FIPA-Platform Agent

1
1

1
1..*

Requirement

1..*

1

1..*1

Scenario

0..*

1..*

-Name : String

Resource

0..* 1..*

-Name : String

Service

0..*

1..*

Fig.5. The MAS meta-model adopted in PASSI

This fragment refers to the MAS meta-model adopted in PASSI and contributes to define and
describe a set of concepts in relation with it : requirement, scenarios.
The following figure describes the structure of the different work products, in the fragment, and
their composition with respect to the MAS model.
Here the symbol:

represents an element of the MAS model .

Fig.6. MAS Metamodel concepts

4.5 Input/Output
Input, output and element to be designed in the fragment are detailed in the following table

Input To Be Designed Output
Roles Identification Task Task Specification

Scenario Requirement Requirement doc

4.6 Glossary
Requirement Fragment uses this list of model element:

Task – It is a logical unit of individual or interactive behaviour. An agent uses tasks to execute its
plan(s). Each task is an entity that aims to reach a sub-goal (for example dealing with a
communication or executing some transformations on a specific resource).

5 Domain Ontology Description

5.1 Introduction
The PASSI process is composed of five different phases: System Requirements, Agent Society,
Agent Implementation, Code and Deployment.
Each phase produces a document that is usually composed aggregating the UML models and work
products of the work definitions that are inside each phase .

We will define a method fragment Domain Ontology Description, extracted from PASSI
methodology whose process is completely represented in the following figure

Fig. 1 The complete PASSI process

5.2 Fragment Definition

Consider the PASSI process (Fig. 1) and the phase “Agent Society” with its outcome “Agent
Society Model”,

Fig.2 The Agent Society Phase

Let us consider the work definition “Domain Ontology Description” and the consequent outcome
(UML model “Domain Ontology Description”). This is a fragment whose aim is to design the
ontology of the system.

The process that is to be performed in order to obtain the result is represented in fig. 3 as a SPEM
diagram

Fig 3 Domain Ontology description fragment-Procedural aspect

5.3 Notation

5.3.1 Domain Ontology Description Diagram

ImData

data1D : byte[]
name : String
colors : int
x : int
y : int
dim : int
comment : String

<<concept>>

IsStImage

Value : Boolean

<<predicate>>

GiveStImage

<<Act>> Send(theImage : StereoImage)

<<action>>

IsImage

Value : Boolean

<<predicate>>

StereoImage
<<concept>>

1
+stereoImage

1

+theImage

GiveImage

Actor : String
ResultReceiver : String

<<Act>> Send(theImage : MonoImage)

<<action>>

MonoImage

time : long

<<concept>>

1

+monoImage

1

2+AnImage 2

{ordered}

1
+theImage

1

Fig. 4. The Domain Ontology Description diagram

The ontology is described (using a class diagram) in terms of concepts (fill colour : yellow),
predicates (fill colour: light blue) and actions (fill colour: white).
Elements of the ontology can be related using three UML standard relationships:

• Generalization: it permits the generalize/specialization relation between two entities that is
one of the fundamental operator for constructing an ontology.

• Association: it models the existence of some kind of logical relationship between two
entities. It is possible to specify the role of the involved entities in order to clarify the
structure.

• Aggregation: it can be used to construct sets where value restrictions can be explicitly
specified; in the W3C RDF standard three types of container objects are enumerated: the bag
(an unordered list of resources), the sequence (an ordered list of resources) and the
alternative (a list of alternative values of a property). We choose of considering a bag as an
aggregation without an explicit restriction, a sequence is qualified by the ordered attribute
while the alternative is identified with the only one attribute of the relationship.

In the previous figure we have a small portion of a robotic vision ontology. MonoImage is a
specialization of the ImData concept with a time stamp (grabbing time). The ordered aggregation of

two mono images gives the StereoImage. We define the GiveImage action in order to allow a robot
to ask for an image. The image should be provided by the Actor and sent to the ResultReceiver
(both agents). Predicates are also defined in relation to some existing concepts (IsImage,
IsStImage).

5.4 Relation with MAS meta-model

-Name : String
-Owner : String
-Knowledge : Ontology

Agent
Role Task

Ontology

Concept

-Act

Action Predicate

-Name
-Exchanged Knowledge : Ontology
-Content Language

Communication

-Name : String

AIP

-Comm_act : Performative

Message

Performative

-Initiator/ Participant1

*

FIPA-Platform Task

1

1

FIPA-Platform Agent

1
1

1
1..*

Requirement

1..*

1

1..*1

Scenario

0..*

1..*

-Name : String

Resource

0..* 1..*

-Name : String

Service

0..*

1..*

Fig.5. The MAS meta-model adopted in PASSI

This fragment refers to the MAS meta-model adopted in PASSI and contributes to define and
describe a set of concepts in relation with it : ontology (concept, action, predicate)

5.5 Input/Output
Input, output and element to be designed in the fragment are detailed in the following table

Input To Be Designed Output
System Requirements
document

Concepts Ontology (MAS meta-
model component)

Glossary Actions Ontology (MAS meta-
model component)

 Predicates Ontology (MAS meta-
model component)

 Ontology elements
Relationships

D.O.D. diagram

5.6 Glossary
Domain Ontology Description Fragment uses this list of model element:

Agent – an autonomous entity that is composed by roles and has a knowledge. An agent can be
seen from different level of abstraction. In this fragment agents are a logical aggregation of
functionalities (Use Case diagrams).
In general in PASSI, an agent is a significant software unit at both the abstract and concrete levels
of design. According to this view, an agent is an instance of an agent class. So it is the software
implementation of an autonomous entity capable of going after an objective through its autonomous
decisions, actions and social relationships. An agent may undertake several functional roles during
interactions with other agents to achieve its goals. A role is a collection of tasks performed by the
agent in pursuing a sub-goal. A task, in turn, is defined as a purposeful unit of individual or
interactive behaviour.
Ontology –An ontology is composed of concepts, actions and predicates.

6 Communication Ontology Description
Version: December 10, 2003

6.1 Introduction
The PASSI process is composed of five different phases: System Requirements, Agent Society,
Agent Implementation, Code and Deployment.
Each phase produces a document that is usually composed aggregating the UML models and work
products of the work definitions that are inside each phase .

We will define a method fragment Communication Ontology Description, extracted from PASSI
methodology whose process is completely represented in the following figure

Fig. 1. The complete PASSI process

6.2 Fragment Definition

Consider the PASSI process (Fig. 1) and the phases “Agent Society” with its outcome “Agent
Society Model”,

Fig. 2. The Agent Society phase

Let us consider the work definition “Communication Ontology Description” with their outcome
(UML model “Communication Ontology Description”).

This fragment aims to model the social interactions and dependencies among the agents involved in
the solution and the sequent agent society aspects are faced: communication and role description.
The UML Model of this portion of process: Communication Ontology Description Diagram is
designed following a standard UML notation.
The process that is to be performed in order to obtain the result is represented in Fig.3 as SPEM
diagram

Fig. 3. Communication Ontology Description fragment-Procedural aspect

6.3 Notation

6.3.1 Communication Ontology Description
The COD diagram is a class diagram and it is mainly composed of two elements: agents and
communications.

GiveStImageRequest

Ontology : GiveStImage
Language : RDF
Protocol : FIPARequest

<<Communication>>

GimmeStereoImageRequest

Ontology : GiveStImage
Language : RDF
Protocol : FIPARequest

<<Communication>>
SelfPositionBuildingRequest

Ontology : AutoLocalize
Language : RDF
Protocol : FIPARequest

<<Communication>>

VisionLocalizazion

Ontology : LocalizeMe
Language : RDF
Protocol : FIPARequest

<<Communication>>

Planner

robot : GenericComponent

<<Agent>>

VisionManager

robot : GenericElement[]
cameras : Camera[]
markers : Marker[]

<<Agent>>

SelfLocalizator

calibration : CalibrationData
stereoImage : StereoImage

<<Agent>>

StereoCameraGrabber

stereoImage : StereoImage

<<Agent>>

HardwareManager

cameras : Camera[]

<<Agent>>

+PositionRequester

+PositionServer

VisionLocalizazion

+PositionServer

+SelfLocalizator

SelfPositionBuildingRequest

+SelfLocalizator +ImageServer
GimmeStereoImageRequest

+ImageServer

+StereoGrabbing

GiveStImageRequest

Fig.4. Communication Ontology Description diagram

Each agent (fill colour: yellow) is described in terms of its knowledge (pieces of the ontology
described in the previous diagram). There is one relationship between two agents for each
communication they are involved in. In each relationship the roles played by the agents during the
communication are also reported.
Each communication (fill colour: white) is represented by the relationship among the two agents
and it is detailed in the relationship attribute class. The class is identified by an unique name (also
reported in the relationship among the two agents) and it is described by the ontology, language and
protocol fields.
The ontology field refers to an element of the DOD (Domain Ontology Description); the language
addresses for the content language of the communication while the protocol points out the adopted
FIPA Interaction Protocol.

In the previous diagram we can see that the HardwareManager agent asks for a stereo image to the
StereoCameraGrabber agent with the GiveStImageRequest communication.
This communication refers to the GiveStImage action defined in the previous seen DOD diagram,
uses the RDF content language and the FIPA Request interaction protocol.

6.4 Relation with MAS meta-model

-Name : String
-Owner : String
-Knowledge : Ontology

Agent
Role Task

Ontology

Concept

-Act

Action Predicate

-Name
-Exchanged Knowledge : Ontology
-Content Language

Communication

-Name : String

AIP

-Comm_act : Performative

Message

Performative

-Initiator/ Participant1

*

FIPA-Platform Task

1

1

FIPA-Platform Agent

1
1

1
1..*

Requirement

1..*

1

1..*1

Scenario

0..*

1..*

-Name : String

Resource

0..* 1..*

-Name : String

Service

0..*

1..*

Fig.5. The MAS meta-model adopted in PASSI

This fragment refers to the MAS meta-model adopted in PASSI and contributes to define and
describe a set of concepts in relation with it : communication and messages.
The following figure describes the structure of the different work products, in the fragment, and
their composition with respect to the MAS model.
Here the symbol:

represents an element of the MAS model .

Fig.6. MAS Metamodel concepts

6.5 Input/Output
Input, output and element to be designed in the fragment are detailed in the following table

Input To Be Designed Output
D.O.D. Communication and

messages
Communication
Ontology Description

6.6 Glossary
The Communication Ontology Description Fragment uses this list of model element:

Communication – a communication is an interaction between two agents. Each communication is
described in terms of: ontology (related to the part of knowledge exchanged by the agents), content
language and interaction protocol.
Message - an individual unit of communication between two or more agents that point out the
standard FIPA message format.

7 Roles Description
Version: January 13, 2003

7.1 Introduction
The PASSI process is composed of five different phases: System Requirements, Agent Society,
Agent Implementation, Code and Deployment.
Each phase produces a document that is usually composed aggregating the UML models and work
products of the work definitions that are inside each phase .

We will define a method fragment Roles Description, extracted from PASSI methodology whose
process is completely represented in the following figure

Fig. 1 The complete PASSI process

7.2 Fragment Definition

Consider the PASSI process (Fig. 1) and the phase “Agent Society” with its outcome “Agent
Society Model”, the order of activities performed in this fragment is showed in the following
SPEM diagram

Fig.2 The Agent Society phase

This fragment’s purpose is to model the lifecycle of each agent , looking at the roles it can play, at
the collaboration it needs and the communications in which it participates.

The UML Model of this portion of process, Roles Description Diagram, is designed following a
standard UML notation.

7.3 Notation

7.3.1 Roles Description Diagram

Fig.3 Roles Description diagram

We represent the Role Description diagram as a class diagram where roles are classes grouped in
packages representing the agents.
Roles can be connected by relationships representing changes of role, dependencies for a service or
the availability of a resource and communications. Each role is obtained composing several tasks
for this reason we specify the tasks involved in the role using the operation compartment of each
class.
More in details:

• Classes represent roles of the agent. They are grouped in packages that stand for the agent.

• Relationships among roles can be of 3 different kinds:

o Communications. Represented by a solid line directed from the initiator to the
participant. Names of communications come from the Communication Ontology
Description diagram.

o Dependencies. Like in i*, we can have service or resource dependencies. A service
dependency shows that a role depends on another to bring about a goal (indicated by
a dashed line with the service stereotype). In the resource dependency, a role
depends on another for the availability of an entity (indicated by a dashed line with
the resource stereotype). We can also have soft-service and soft-resource

dependencies; in this case the requested service/resource is helpful or desirable, but
not essential to achieve a role’s goal.

o Role changes. This connection is depicted as a dependency relationship because we
want to signify the dependency of the second role on the first. Sometimes the trigger
condition is not explicitly generated by the first role but its precedent appearance in
the scenario justifies the consideration that it is necessary to prepare the situation that
allows the second role to start. We use OCL or semi-formal text to express the
trigger condition.

7.4 Relation with MAS meta-model

-Name : String
-Owner : String
-Knowledge : Ontology

Agent
Role Task

Ontology

Concept

-Act

Action Predicate

-Name
-Exchanged Knowledge : Ontology
-Content Language

Communication

-Name : String

AIP

-Comm_act : Performative

Message

Performative

-Initiator/ Participant1

*

FIPA-Platform Task

1

1

FIPA-Platform Agent

1
1

1
1..*

Requirement

1..*

1

1..*1

Scenario

0..*

1..*

-Name : String

Resource

0..* 1..*

-Name : String

Service

0..*

1..*

Fig.4. The MAS meta-model adopted in PASSI

This fragment refers to the MAS meta-model adopted in PASSI and contributes to define and
describe the concept of roles.
The following figure describes the structure of the different work products, in the fragment, and
their composition with respect to the MAS model.
Here the symbol:

represents an element of the MAS model .

Fig.5. MAS Metamodel concepts

7.5 Input/Output
Input, output and element to be designed in the fragment are detailed in the following table

Input To Be Designed Output
R.Id. diagr, T.sp. diagr.,
C.O.D.

Roles Role Description diagr.
Services

7.6 Glossary
Agent Society Fragment uses this list of model element:

Role – an agent could play one or more roles in the system. Each role describes an aspect of agent
life cycle and it is often related to a service offered by the agent to the society or to the achievement
of one of its goals.
Task – An agent uses tasks to execute its plan(s). Each task is an entity that aims to reach a sub-
goal (for example dealing with a communication or executing some transformations on a specific
resource) .The term “task” can be used as synonymous of Behaviour but with the significance of
atomic part of the overall agent behaviour.

8 Protocol Description
Version: January 11, 2004

8.1 Introduction
The PASSI process is composed of five different phases: System Requirements, Agent Society,
Agent Implementation, Code and Deployment.
Each phase produces a document that is usually composed aggregating the UML models and work
products of the work definitions that are inside each phase .

We will define a method fragment Protocol Description, extracted from PASSI methodology
whose process is completely represented in the following figure

Fig. 1 The complete PASSI process

8.2 Fragment Definition

Consider the PASSI process (Fig. 1) and the phase “Agent Society” with its outcome “Agent
Society Model”, the order of activities performed in this fragment is showed in the following
SPEM diagram

Fig.2 The Agent Society phase

This fragment aims to represent the protocol used for each communication as specified by FIPA
architecture. The UML Model of this portion of process, Protocol Description, is designed
following a AUML notation.

The process that is to be performed in order to obtain the result is represented in fig. 3 as a SPEM
diagram

Fig.3 Protocols Description fragment-Procedural aspect

8.3 Notation

8.4 Protocol Description
An AUML sequence diagram for each (non standard) protocol

8.5 Relation with MAS meta-model

-Name : String
-Owner : String
-Knowledge : Ontology

Agent
Role Task

Ontology

Concept

-Act

Action Predicate

-Name
-Exchanged Knowledge : Ontology
-Content Language

Communication

-Name : String

AIP

-Comm_act : Performative

Message

Performative

-Initiator/ Participant1

*

FIPA-Platform Task

1

1

FIPA-Platform Agent

1
1

1
1..*

Requirement

1..*

1

1..*1

Scenario

0..*

1..*

-Name : String

Resource

0..* 1..*

-Name : String

Service

0..*

1..*

Fig.4. The MAS meta-model adopted in PASSI

This fragment refers to the MAS meta-model adopted in PASSI and contributes to define and
describe a set of concepts in relation with it : AIP and performative .
The following figure describes the structure of the different work products, in the fragment, and
their composition with respect to the MAS model.
Here the symbol:

represents an element of the MAS model .

Fig. 5. MAS Metamodel concept

8.6 Input/Output
Input, output and element to be designed in the fragment are detailed in the following table

Input To Be Designed Output
R.Id. diagr., C.O.D.
diagr.

Performative Protocol description

8.7 Glossary
Protocol Description Fragment uses this list of model element:

Performtaive – message’s performative indicates the adopted FIPA Interaction Protocol.

9 Multi-Agent Structure Definition (MASD)
Version: January 11, 2004

9.1 Introduction
The PASSI process is composed of five different phases: System Requirements, Agent Society,
Agent Implementation, Code and Deployment.
Each phase produces a document that is usually composed aggregating the UML models and work
products of the work definitions that are inside each phase .

We will define a method fragment Multi-Agent Structure Definition, extracted from PASSI
methodology whose process is completely represented in the following figure

Fig. 1 The complete PASSI process

9.2 Fragment Definition

Consider the PASSI process (Fig. 1) and the phase “Agent Implementation” with its outcome
“Agent Implementation Model”, the order of activities performed in this fragment is showed in the
following SPEM diagram

Fig.2 The Agent Implementation phase

This fragment aims to represent the general architecture of the system (agents their knowledge and
their tasks). The UML Model of this portion of process, MASD diagram, is designed following a
standard UML notation.

The process that is to be performed in order to obtain the result is represented in fig. 3 as a SPEM
diagram

Fig.3. Multi-Agent Structure Definition fragment-Procedural aspect

9.3 Notation

9.4 Multi-Agent Structure Definition

Fig.4. The MASD diagram

The class diagram contains classes and actors. Each class symbolizing one agent of the system.
Attributes compartments can be used to represent the knowledge of the agent (referring to entities
defined in the Domain Ontology Description), whereas operations compartments are used to signify
the agent's tasks. The relations indicates the flow of exchanged information (communications)

TLPlanner
robot : RobotPosition
robotEng : Eng
activeGrid : Grid
path : Path
envMatrix : EnvironmentMatrix

FirstLocalization()
SLListener()
MyGridInitiator()
MyPositionInitiator()
Planner()
SettingParameters()
TLDeadlockInform()

<<Agent>>
SensorReader
activeGrid : Grid

ResponderGrid()
setup()

<<Agent>>

engController
robot : RobotPosition
robotEng : Eng

Mover()
MyPositionResponder()
OdometryLocalizer()
SetParameters()
FirstLocalization()
setup()
VisionLocalizer()

<<Agent>>
Environment

9.5 Relation with MAS meta-model

-Name : String
-Owner : String
-Knowledge : Ontology

Agent
Role Task

Ontology

Concept

-Act

Action Predicate

-Name
-Exchanged Knowledge : Ontology
-Content Language

Communication

-Name : String

AIP

-Comm_act : Performative

Message

Performative

-Initiator/ Participant1

*

FIPA-Platform Task

1

1

FIPA-Platform Agent

1
1

1
1..*

Requirement

1..*

1

1..*1

Scenario

0..*

1..*

-Name : String

Resource

0..* 1..*

-Name : String

Service

0..*

1..*

Fig.4. The MAS meta-model adopted in PASSI

This fragment refers to the MAS meta-model adopted in PASSI and contributes to define and
describe a set of concepts in relation with it :agent, ontology, communication and tasks .
The following figure describes the structure of the different work products, in the fragment, and
their composition with respect to the MAS model.
Here the symbol:

represents an element of the MAS model .

Fig. 5. MAS Metamodel concepts

9.6 Input/Output
Input, output and element to be designed in the fragment are detailed in the following table

Input To Be Designed Output
A.Id. diagram Agent MASD diagram

C.O.D. diagr. Ontology MASD diagram

C.O.D. diagr. Communication MASD diagram

MABD, Task Sp.
diagram

Tasks MASD diagram

9.7 Glossary
Multi-Agent Structure Definition Fragment uses this list of model element:

Agent – an autonomous entity that is composed by roles and has a knowledge. An agent can be
seen from different level of abstraction. In this fragment agents are a logical aggregation of
functionalities (Use Case diagrams).
In general in PASSI, an agent is a significant software unit at both the abstract and concrete levels
of design. According to this view, an agent is an instance of an agent class. So it is the software
implementation of an autonomous entity capable of going after an objective through its autonomous
decisions, actions and social relationships. An agent may undertake several functional roles during
interactions with other agents to achieve its goals. A role is a collection of tasks performed by the
agent in pursuing a sub-goal. A task, in turn, is defined as a purposeful unit of individual or
interactive behaviour.
Ontology –An ontology is composed of concepts, actions and predicates.
Communication – a communication is an interaction between two agents. Each communication is
described in terms of: ontology (related to the part of knowledge exchanged by the agents), content
language and interaction protocol.
Task – It is a logical unit of individual or interactive behaviour. An agent uses tasks to execute its
plan(s). Each task is an entity that aims to reach a sub-goal (for example dealing with a
communication or executing some transformations on a specific resource).

10 Multi-Agent Behaviour Description (MABD)
Version: January 11, 2004

10.1 Introduction
The PASSI process is composed of five different phases: System Requirements, Agent Society,
Agent Implementation, Code and Deployment.
Each phase produces a document that is usually composed aggregating the UML models and work
products of the work definitions that are inside each phase .

We will define a method fragment Multi-Agent Structure Description, extracted from PASSI
methodology whose process is completely represented in the following figure

Fig. 1 The complete PASSI process

10.2 Fragment Definition

Consider the PASSI process (Fig. 1) and the phase “Agent Implementation” with its outcome
“Agent Implementation Model”, the order of activities performed in this fragment is showed in the
following SPEM diagram

Fig.2 The Agent Implementation phase

The fragment, we are describing (blue oval),aims to show flow of events between and within both
the main agents classes and their inner classes (representing their tasks). The UML Model of this
portion of process, MABD diagram, is designed following a standard UML notation.

The process that is to be performed in order to obtain the result is represented in fig. 3 as a SPEM
diagram

Fig.3. Multi-Agent Behaviour Description fragment-Procedural aspect

10.3 Notation

10.4 Multi-Agent Behaviour Description

Fig.4. The MABD diagram

This activity diagram can be used to show the flow of events among and within both the main
agents classes and their inner classes (representing their tasks).
We use one swimlane for each agent and for each of its tasks. The activities inside the swimlanes
indicate the methods of the related class.
Usual transitions of the UML standard are here depicted to signify either events (e.g. an incoming
message or a task conclusion) or invocation of methods.
If the transition is related to a conversation, the label reports the message's performative and
content.

10.5 Relation with MAS meta-model

-Name : String
-Owner : String
-Knowledge : Ontology

Agent
Role Task

Ontology

Concept

-Act

Action Predicate

-Name
-Exchanged Knowledge : Ontology
-Content Language

Communication

-Name : String

AIP

-Comm_act : Performative

Message

Performative

-Initiator/ Participant1

*

FIPA-Platform Task

1

1

FIPA-Platform Agent

1
1

1
1..*

Requirement

1..*

1

1..*1

Scenario

0..*

1..*

-Name : String

Resource

0..* 1..*

-Name : String

Service

0..*

1..*

Fig.5. The MAS meta-model adopted in PASSI

This fragment refers to the MAS meta-model adopted in PASSI and contributes to define and
describe a set of concepts in relation with it : tasks, communications, performative .
The following figure describes the structure of the different work products, in the fragment, and
their composition with respect to the MAS model.
Here the symbol:

represents an element of the MAS model .

Fig. 7. MAS Metamodel concepts

10.6 Input/Output
Input, output and element to be designed in the fragment are detailed in the following table

Input To Be Designed Output
A.Id. diagram , Task
Specification

Task MABD diagram

COD Communications MABD diagram

COD, SASD Performative MABD diagram

10.7 Glossary
Multi-Agent Behaviour Description Fragment uses this list of model element:

Task – It is a logical unit of individual or interactive behaviour. An agent uses tasks to execute its
plan(s). Each task is an entity that aims to reach a sub-goal (for example dealing with a
communication or executing some transformations on a specific resource).
Communication – a communication is an interaction between two agents. Each communication is
described in terms of: ontology (related to the part of knowledge exchanged by the agents), content
language and interaction protocol.
Message - an individual unit of communication between two or more agents that point out the
standard FIPA message format.
Performtaive – message’s performative indicates the adopted FIPA Interaction Protocol.

11 Single-Agent Structure Definition (SASD)
Version: January 11, 2004

11.1 Introduction
The PASSI process is composed of five different phases: System Requirements, Agent Society,
Agent Implementation, Code and Deployment.
Each phase produces a document that is usually composed aggregating the UML models and work
products of the work definitions that are inside each phase .

We will define a method fragment Single-Agent Structure Definition, extracted from PASSI
methodology whose process is completely represented in the following figure

Fig. 1 The complete PASSI process

11.2 Fragment Definition

Consider the PASSI process (Fig. 1) and the phase “Agent Implementation” with its outcome
“Agent Implementation Model”, the order of activities performed in this fragment is showed in the
following SPEM diagram

Fig.2 The Agent Implementation phase

The fragment, we are describing (blue oval),aims to represent each agent’s interior structure. The
UML Model of this portion of process, SASD diagram, is designed following a standard UML
notation.

The process that is to be performed in order to obtain the result is represented in fig. 3 as a SPEM
diagram

Fig.3. Single-Agent Structure Definition fragment-Procedural aspect

11.3 Notation

11.4 Single-Agent Structure Definition

Fig.4. The SASD diagram

One different class diagram is drawn for each agent. This diagram describes the structure of the
agent and all of its tasks.
Each class represents the agent or one of its task. The agent base class and the tasks are obtained
specializing the base agent and task classes of the implementation platform (FIPA-OS in the figure
above).

engCont roller

myName : String = engController
eng : Eng

engController()
setup()

<<Agent>>

Agent
(from JADE)

Behavior
(from JADE)

Mover

Mover()
action()
move()

<<Task>>MyPosit ionResponder

MyPositionResponder()
prepareResponse()
prepareResultNotification()
action()
onEnd()

<<Task>>

OdometryLocalizer

OdometryLocalizer()
action()

<<Task>>

Attributes and methods are the elements that will constitute the real (code) implementation of the
system. It is possible to automatically produce code from this diagram with many commercial tools.

11.5 Relation with MAS meta-model

-Name : String
-Owner : String
-Knowledge : Ontology

Agent
Role Task

Ontology

Concept

-Act

Action Predicate

-Name
-Exchanged Knowledge : Ontology
-Content Language

Communication

-Name : String

AIP

-Comm_act : Performative

Message

Performative

-Initiator/ Participant1

*

FIPA-Platform Task

1

1

FIPA-Platform Agent

1
1

1
1..*

Requirement

1..*

1

1..*1

Scenario

0..*

1..*

-Name : String

Resource

0..* 1..*

-Name : String

Service

0..*

1..*

Fig.5. The MAS meta-model adopted in PASSI

This fragment refers to the MAS meta-model adopted in PASSI and contributes to define and
describe a set of concepts in relation with it :agent and tasks .
The following figure describes the structure of the different work products, in the fragment, and
their composition with respect to the MAS model.
Here the symbol:

represents an element of the MAS model .

Fig. 7. MAS Metamodel concepts

11.6 Input/Output
Input, output and element to be designed in the fragment are detailed in the following table

Input To Be Designed Output
A.Id. diagram , COD
diagram

Agent (attributes and
methods)

SASD diagram

MABD, Task Sp.
diagram

Tasks SASD diagram

11.7 Glossary
Multi-Agent Structure Definition Fragment uses this list of model element:

Agent – an autonomous entity that is composed by roles and has a knowledge. An agent can be
seen from different level of abstraction. In this fragment agents are a logical aggregation of
functionalities (Use Case diagrams).
In general in PASSI, an agent is a significant software unit at both the abstract and concrete levels
of design. According to this view, an agent is an instance of an agent class. So it is the software
implementation of an autonomous entity capable of going after an objective through its autonomous
decisions, actions and social relationships. An agent may undertake several functional roles during
interactions with other agents to achieve its goals. A role is a collection of tasks performed by the
agent in pursuing a sub-goal. A task, in turn, is defined as a purposeful unit of individual or
interactive behaviour.
Task – It is a logical unit of individual or interactive behaviour. An agent uses tasks to execute its
plan(s). Each task is an entity that aims to reach a sub-goal (for example dealing with a
communication or executing some transformations on a specific resource).

12 Single-Agent Behaviour Description (MABD)
Version: January 11, 2004

12.1 Introduction
The PASSI process is composed of five different phases: System Requirements, Agent Society,
Agent Implementation, Code and Deployment.
Each phase produces a document that is usually composed aggregating the UML models and work
products of the work definitions that are inside each phase .

We will define a method fragment Single-Agent Structure Description, extracted from PASSI
methodology whose process is completely represented in the following figure

Fig. 1 The complete PASSI process

12.2 Fragment Definition

Consider the PASSI process (Fig. 1) and the phase “Agent Implementation” with its outcome
“Agent Implementation Model”, the order of activities performed in this fragment is showed in the
following SPEM diagram

Fig.2 The Agent Implementation phase

The fragment, we are describing (blue oval), is quite a common one as it involves methods
implementation, exactly the ones introduced in the SASD diagrams. The UML Model of this
portion of process, SABD diagram, is freely described in the most appropriate way (for example,
using flow charts, state diagrams or semi-formal text descriptions).

The process that is to be performed in order to obtain the result is represented in fig. 3 as a SPEM
diagram

Fig.3. Single-Agent Behaviour Description fragment-Procedural aspect

12.3 Glossary
Multi-Agent Behaviour Description Fragment uses this list of model element:

Task – It is a logical unit of individual or interactive behaviour. An agent uses tasks to execute its
plan(s). Each task is an entity that aims to reach a sub-goal (for example dealing with a
communication or executing some transformations on a specific resource).
Communication – a communication is an interaction between two agents. Each communication is
described in terms of: ontology (related to the part of knowledge exchanged by the agents), content
language and interaction protocol.
Message - an individual unit of communication between two or more agents that point out the
standard FIPA message format.
Performtaive – message’s performative indicates the adopted FIPA Interaction Protocol.

13 Code Reuse Library
Version: December 9, 2003

13.1 Introduction
The PASSI process is composed of five different phases: System Requirements, Agent Society,
Agent Implementation, Code and Deployment.
Each phase produces a document that is usually composed aggregating the UML models and work
products of the work definitions that are inside each phase .

We will define a method fragment Code Reuse Library, extracted from PASSI methodology whose
process is completely represented in the following figure

Fig. 1. The complete PASSI process

13.2 Fragment Definition

Fig.2. The Code phase

Let us consider the work definition “Code Reuse Library” whose aim is we try to reuse existing
patterns of agents and tasks
The process that is to be performed in order to obtain the result is represented in fig. 3 as a SPEM
diagram

Fig.3. Code Reuse Library fragment-Procedural aspect

13.3 Notation

 Code Reuse
The repository of patterns is described as reported below:

Name The name of the pattern
Classification The classification of the pattern according to the following

criteria and related categories:
• Application context: Action, Behavior, Component and

Service pattern

• Functionality: Access to local resource, Communication,
Elaboration, Mobility

Intent A description of what the pattern does and its rationale and
intent

Motivation A scenario that illustrates a design problem and how the agents
and their tasks in the pattern solve the problem.

Pre-conditions The initial situation in which the pattern can be applied.
Post-conditions The consequences of the application of the pattern: what

changes the pattern introduces into the system
Structure A graphical representation of the structure of the agent and its

tasks (usually done with a class diagram)
Participants A description of the agents involved in the pattern and their roles
Collaborations A (graphical) representation of the collaborations of the agents

involved in the pattern (if any)
Implementation availability

Availability of the implementation code for the FIPA-OS/JADE
platforms. Availability of the UML diagrams of the solution

(XMI) for importing them in the existing system design
Implementation description Comments on the most significant code fragments to illustrate

the pattern implementation in the specific agent platforms
Implementation Code FIPA-OS/JADE code of the solution
Related Patterns Patterns that should be used in conjunction with this one

14 Code Completion Baseline
Version: December 9, 2003

14.1 Introduction
The PASSI process is composed of five different phases: System Requirements, Agent Society,
Agent Implementation, Code and Deployment.
Each phase produces a document that is usually composed aggregating the UML models and work
products of the work definitions that are inside each phase .

We will define a method fragment Code Completion Baseline, extracted from PASSI methodology
whose process is completely represented in the following figure

Fig. 1. The complete PASSI process

14.2 Fragment Definition

Fig.2. The Code phase

Let us consider the work definition “Code Reuse Library” whose aim is we try to reuse existing
patterns of agents and tasks
The process that is to be performed in order to obtain the result is represented in fig. 3 as a SPEM
diagram

Fig.3. Code Completion Baseline fragment-Procedural aspect

This is rather a conventional phase. The programmer completes the code of the application starting
from the design, the skeleton produced and the patterns reused.

15 Deployment Configuration
Version: January 11, 2004

15.1 Introduction
The PASSI process is composed of five different phases: System Requirements, Agent Society,
Agent Implementation, Code and Deployment.
Each phase produces a document that is usually composed aggregating the UML models and work
products of the work definitions that are inside each phase .

We will define a method fragment Deployment Configuration, extracted from PASSI methodology
whose process is completely represented in the following figure

Fig. 1 The complete PASSI process

15.2 Fragment Definition

Consider the PASSI process (Fig. 1) and the phase “Agent Implementation” with its outcome
“Agent Implementation Model”, the order of activities performed in this fragment is showed in the
following SPEM diagram

Fig.2 The Deployment Configuration phase

The fragment describes where the agents are located and which different elaborating units they need
in order to communication with each other.

The process that is to be performed in order to obtain the result is represented in fig. 3 as a SPEM
diagram

Fig.3. Deployment Configuration fragment-Procedural aspect

15.3 Notation

Deployment Configuration
This phase has been thought to comply with the requirements of detailing the agents’ positions in
distributed systems or more generally in mobile-agents’ contexts.
The Deployment Configuration diagram illustrates the location of the agents (the processing units
where they live), their movement and their communication support. The standard UML notation is
useful for representing processing units (by boxes), agents (by components) and the like. What is
not supported by UML is the representation of the agent’s mobility, which we have done by means
of a syntax extension consisting of a dashed line with a “move to” stereotype..

Fig.4. The Deployment Configuration diagram

In this diagram is also possible to specify the hardware devices used by the agents (sensors and
effectors) and the modes of communication among agents in different elaborating units.

Site1 Site2

Server

A:scooter A:scooter
move_to

C:central

<<network>>

<<network>>

<<network>>

communicate

