
The Agent-Object-Relationship Metamodel:
Towards a Unified View of State and Behavior∗

Gerd Wagner
Email: G.Wagner@tm.tue.nl

Homepage: http://tmitwww.tm.tue.nl/staff/gwagner

Eindhoven University of Technology, Faculty of Technology Management

We present an agent-oriented approach to the
conceptual modeling of organizations and organi-
zational information systems, called Agent-Object-
Relationship (AOR) modeling, where an entity is ei-
ther an agent, an event, an action, a claim, a commit-
ment, or an ordinary object, and where special rela-
tionships between agents and events, actions, claims
and commitments supplement the fundamental asso-
ciation, aggregation/composition and generalization
relationship types of Entity-Relationship (ER) and
UML class modeling. Business processes are viewed
as social interaction processes emerging from the be-
havior of the participating agents. In the proposed
approach, behavior is primarily modeled by means of
interaction patterns expressed in the form of reaction
rules that are visualized in interaction pattern dia-
grams. It is an option, though, to use UML activity
and statemachine diagrams, in addition.

We propose an elaborate conceptual framework for
agent-oriented modeling that is based on a set of 19
ontological principles including those of ER modeling,
and a corresponding diagram language. In this ap-
proach, an organization is viewed as an institutional
agent defining the rights and duties of its internal
agents that act on behalf of it, and being involved in
a number of interactions with external (and internal)
agents, while an organizational information system
is viewed as an artificial internal agent possessing a
global view of the organization and interacting both
with internal and with external agents on behalf of
the organization.

We argue that AOR modeling offers a research per-
spective to conceptually integrate the static, dynamic
and deontic aspects of organizations and organiza-
tional information systems.

1 Introduction

In order to capture more semantics of the dynamic
aspects of information systems, such as the events
and actions related to the ongoing business processes
of an enterprise, we propose to make an ontological
distinction between active and passive entities, that
is, between agents and ordinary objects. In particu-
lar, the semantics of business processes may be more
adequately captured if the specific business agents
associated with the involved events and actions are
explicitly represented in the information system in
addition to passive business objects.

Our work is inspired by the Agent-Oriented Pro-
gramming proposal of [Sho93]. Agent-Oriented Pro-
gramming is an extension of object-oriented (OO)
programming. The two main points of it are:

1. While the state of an object in OO program-
ming has no generic structure, the state of an
agent has a ‘mentalistic’ structure: it consists of
mental components such as beliefs and commit-
ments.

2. While messages in object-oriented programming
are coded in an application-specific ad-hoc man-
ner, a message in Agent-Oriented Program-
ming is coded as a ‘speech act’ according to a
standard agent communication language that is
application-independent.

In this paper, we attempt to show that the intu-
itions underlying Agent-Oriented Programming have
an even greater potential for information systems
engineering than for general software engineering.
We develop an agent-oriented approach to the con-
ceptual modeling of organizational information sys-
tems, called Agent-Object-Relationship (AOR) mod-
eling, where an entity is either an agent, an event, an

1

In Information Systems 28:5 (2003).

action, a claim, a commitment, or an ordinary object,
and where special relationships between agents and
events, actions, claims and commitments supplement
the fundamental association, composition and gen-
eralization relationship types of Entity-Relationship
modeling. AOR modeling can be viewed as an exten-
sion of the Unified Modeling Language (UML). We
believe that AOR modeling, by virtue of its agent-
oriented categorization of different entity types, al-
lows more adequate models of organizations and or-
ganizational information systems than ER modeling
and the UML.

There are two basic types of AOR models: external
and internal ones. An external AOR model adopts
the perspective of an external observer who is observ-
ing the (prototypical) agents and their interactions in
the problem domain under consideration. In an inter-
nal AOR model, we adopt the internal (first-person)
view of a particular agent to be modeled. This dis-
tinction suggests the following system development
path: in the analysis phase, draw up an external
AOR model including one or more focus agents as
a domain model; in the design phase, for each focus
agent, transform the external AOR model into an in-
ternal one according to the agent’s perspective (this
is called “internalization”); then, refine the internal
AOR model of each focus agent into an implementa-
tion model for the target language (such as SQL or
Java). A complete internal AOR model is a formal
specification of a high-level state transition system,
where perception, reaction and commitment/claim
handling provide the basic transition types.

After reviewing the principles of Entity-
Relationship modeling and discussing the basic
features of agents and the ‘agentification’ of informa-
tion systems in Section 2, we discuss the principles
of Agent-Object-Relationship (AOR) modeling in
Section 3. We then introduce the two basic types of
AOR models, external and internal AOR models,
in Section 4 and 5, and discuss further behavior
modeling elements in Section 6. In Section 7, we
briefly consider the issue of tool support. Finally, in
Section 8, we review some related work, and point
out the strengths and weaknesses of AOR modeling.

2 Agents and Agentified
Information Systems

2.1 The Current Information System
Paradigms

Current information system technologies are largely
based on the Entity-Relationship (ER) metamodel of
[Che76] and the Relational Database (RDB) model
of [Cod70]. Driven both by the inherent shortcom-

ings of relational databases and the success of the
object-oriented (OO) programming paradigm, con-
cepts and techniques from OO programming are now
increasingly applied in the area of information sys-
tems. However, there is no single generally acknowl-
edged model of object-orientation, and OO program-
ming differs from object-oriented information sys-
tems engineering in various respects. In OO pro-
gramming, all software artifacts are viewed as ob-
jects, from GUI push buttons to entire server pro-
grams (which also count as active objects), while in
object-oriented information systems, typical exam-
ples of objects are customers, bank accounts and
other ‘business objects’ which are represented in
object-relational (i.e. SQL-99) databases. Obviously,
these two disciplines do not share a common concep-
tual space. Concerning database systems, the most
important object-oriented features are object IDs, ob-
ject references, abstract data types (including user-
defined base types) with subtype hierarchies (realiz-
ing inheritance relationships between ADTs), object-
valued attributes, and subtable hierarchies (realizing
generalization relationships between entity types).

While ER modeling has always been object-
oriented to some degree, through its support of gen-
eralization and complex-valued attributes, the RDB
model is going to be conservatively extended to the
Object-Relational Database (ORDB) model as exem-
plified by a number of research prototypes and com-
mercial systems, and as expressed by the new SQL-99
standard.1

Current information system technologies do not
support the concept of an agent and the distinction
between agents and objects: no matter if the cus-
tomers of an enterprise are represented in a RDB ta-
ble, in an object table of an ORDB, or in an object
class of an Enterprise Java Beans-based framework,
such as IBM’s San Francisco, they are not explicitly
represented and treated as agents but rather as ob-
jects in the same way as rental cars or bank accounts.

2.2 Principles of Entity-Relationship
Modeling

Since they form the foundation of information mod-
eling, we restate the ontological principles of Entity-
Relationship (ER) modeling:

1. An information system has to represent informa-
tion about entities that occur in the universe
of discourse associated with its application do-
main, and that can be uniquely identified and
distinguished from other entities.

1See [SM96] for a discussion of ORDBs from the SQL pro-
gramming perspective, and [Wag98] for a theoretical pre-
sentation of the ORDB model.

2

2. Entities have properties and participate in re-
lationships with other entities.

3. In order to represent entities in an information
system, they are classified by means of entity
types.

4. Each entity type defines a list of (stored and de-
rived) attributes that are used to represent the
relevant properties of the entities associated with
it.

5. Together, the values of all attributes of an entity
form the state of it.

6. In order to represent ordinary domain relation-
ships (associations) between entities, they are
classified by means of relationship types.

7. There are two designated relationships between
entity types that are independent of the appli-
cation domain: generalization (isSubclassOf)
and aggregation (isPartOf).

In addition to the way generalization is visualized
in ER diagrams and UML class diagrams, by means
of a special arrow, we also visualize a subclass as a
rectangle within its superclass, following [Har87]. In
terms of visual clarity, this seems especially useful for
the graphical rendering of subclasses that are defined
by means of a Boolean status attribute, as illustrated
in Figure 1.

BookCopy
Book

isAvailable *1

Figure 1: A library database includes two object types:
Book and BookCopy. Books for which the status
predicate isAvailable holds (determined by
checking if there is at least one copy of that
book available) form a subclass of Book.

An ER model or a UML class model does not make
a distinction between passive and active entities, that
is, between objects and agents. Also, there is no dis-
tinction between a basic entity type like Item and an
action event type like Delivery in these models.

2.3 Agents

The agent metaphor subsumes both natural and ar-
tificial systems. A formal agent concept for the pur-
pose of representing agents in an information sys-
tem, and for agentifying information systems, may

abstract away from many of the higher-level cogni-
tive aspects of human agents. It only needs to cap-
ture those aspects that are relevant for realizing the
interactions of interest. In an enterprise information
system, for instance, only perceptions (in the form of
signals), beliefs, memories and commitments associ-
ated with business processes are of interest.

There are several approaches to defining agents in
the literature, only two of them being relevant for our
purposes:

1. The software engineering approach emphasizes
the significance of application-independent high-
level agent-to-agent communication as a ba-
sis for general software interoperability. E.g., in
[GK94], the following definition of agents is pro-
posed: An entity is a software agent if and only
if it communicates correctly in an agent commu-
nication language.

2. The mentalistic approach, based on the knowl-
edge representation paradigm of AI, points out
that the state of an agent consists of mental
components such as beliefs, perceptions, mem-
ory, commitments, expectations, goals and in-
tentions, and its behavior is the result of the
concurrent operation of its perception (or event
handling) system, its knowledge system (com-
prising an update and an inference operation),
and its action system (responsible for epistemic,
communicative and physical actions and reac-
tions). E.g., in the approach of [Sho93], an agent
is an entity whose state is viewed as consisting
of mental components such as beliefs, capabili-
ties, choices, and commitments.2

According to our ontological distinction between
agents and objects, only agents can perceive events,
perform actions, communicate, or make commit-
ments. Ordinary objects are passive entities with no
such capacities.

This contrasts with the language used in the litera-
ture on object-oriented programming, where objects
‘communicate’ or ‘interact’ with each other by send-
ing ‘messages’. Notice that the UML term ‘collab-
oration’ between objects corresponds only to a very
low-level sense of communication and interaction. In
2Another choice of basic mental components is proposed in

the BDI approach of [RG91]: beliefs, desires, and inten-
tions. Notice that in both lists of basic mental state compo-
nents, two important components are missing: perceptions,
e.g. in the form of incoming messages and signals represent-
ing communication and environment events, and memory
of past events and actions. In fact, although perceptions
are temporally not as stable as beliefs, they form the basis
of reactive behavior, and are therefore more fundamental
than many other mental components such as desires and
intentions.

3

fact, sending a ‘message’ in the sense of OO program-
ming corresponds rather to a (possibly remote) proce-
dure call, and not to a communication act (or speech
act): while an OO message has no generic structure
at all, a speech act message has the mandatory form
m(c) where m is the message type (expressing the
‘illocutionary force’), and c is the message content
(composed of propositions and/or action terms).

Conceptually, it is therefore not justified to model
customers and suppliers as ‘business objects’ in the
same way as bank accounts and software artifacts
(such as GUI push buttons). Object-orientation does
not capture communication and interaction in the
high-level sense of business processes carried out by
business agents.

Our view is shared by Jacobson [Jac94] who re-
marks (p.36) that “it is bizarre to apply the way of
thinking that governs computer systems to business
processes”.

2.4 Information Systems as Agents

The following definition of [HR95] summarizes the
most important features of agency: Intelligent agents
continuously perform three functions: perception of
dynamic conditions in the environment; action to
affect conditions in the environment; and reasoning
to interpret perceptions, solve problems, draw infer-
ences, and determine actions.

In the case of an agentified information system,

1. ‘perception of dynamic conditions in the environ-
ment ’ refers to incoming messages representing
communication events (such as receiving a re-
quest for a sales quotation or an acknowledgment
of a sales order) and to incoming signals repre-
senting environment events (such as receiving a
payment);

2. ‘action to affect conditions in the environment ’
refers to communication acts of the agentified
IS (such as acknowledging a sales order) and to
physical acts (such as delivering goods or making
a payment);

3. finally, ‘reasoning to interpret perceptions, solve
problems, draw inferences, and determine ac-
tions’ refers to things like the proper processing
of incoming messages, the computational infer-
ence of correct answers to queries, and the deter-
mination of proper actions (such as locking all
sales orders of a customer whose credibility is in
question or issuing an alert when the fulfillment
of a commitment is overdue).

An information system may be explicitly designed as
an agent by

1. treating its information items as its beliefs or
knowledge;3

2. adding further mental components such as per-
ceptions (in the form of incoming messages and
signals), memory, and commitments;

3. providing support for agent-to-agent communi-
cation on the basis of a standard agent commu-
nication language.

In order to agentify an information system, its
schema has to be partitioned: in addition to the ta-
bles representing the current state of affairs that form
its beliefs, special tables are needed for representing
its memory (about past events and actions) and its
commitments and claims. For querying the percep-
tion state by processing incoming messages a built-in
data structure (such as an event queue) has to be
added. Finally, the reaction patterns representing
the reactive and communicative behavior of the in-
formation system have to be specified, e.g. by means
of reaction rules. Depending on a triggering event
type and possibly on a mental state condition (in-
volving beliefs, memory, commitments and claims),
a reaction pattern specifies an action and an associ-
ated mental effect that may lead to updates of belief,
commitment and claim tables. In this way, an in-
formation system turns into a knowledge-perception-
memory-commitment (KPMC) agent.

2.5 Potential Applications for
Agent-Oriented IS Engineering

In principle, any organizational IS that has to repre-
sent, and to interact with, agents (such as customers,
employees, or other information systems) can benefit
from an agent-oriented approach. An agent-oriented
approach to IS engineering is most useful for systems
that have to support business processes across dif-
ferent organizations and organizational units. Such
systems are required, for instance, to manage supply
chains or to support virtual enterprises. In these ap-
plication domains, large distributed information sys-
tems are needed where the nodes, representing orga-
nizations or organizational units, have to be able to
interact with each other as peers. This is the type of
interaction that is best captured by an agent-oriented
approach, and where the possibility of coordinated
co-development of several interacting systems offered
by AOR modeling seems to be especially useful.
3Unlike in philosophy, it does not make sense to distinguish

between knowledge and beliefs in the design and engineer-
ing of agent systems where both terms simply refer to the
information that is available to the agent under construc-
tion. We will interchangeably use these terms without mak-
ing any reference or commitment to philosophical theories.

4

Our considerations are supported by an increas-
ing number of publications on agent-oriented sup-
ply chain management (see, e.g., [CPF+99, FBT00,
GSP00]) and agent-based IT support for virtual en-
terprises (see, e.g., [FMHS96, WS00]).

3 Principles of
Agent-Object-Relationship
Modeling

In this section we introduce a new modeling
paradigm: the agent-object-relationship (AOR)
metamodel for modeling agent-oriented information
systems. As in ER modeling, the purpose is to
provide a generic methodology for information sys-
tems analysis and design. In the same way as an
ER model can be effectively transformed into a rela-
tional or object-relational database schema, an AOR
model should be transformable into a corresponding
database schema. Notice that this implies that the
elements of the AOR metamodel must have a for-
mal semantics. We will sketch such a transformation
briefly in Section 5.7.

ER modeling does not account for the dynamic as-
pects of information and knowledge processing sys-
tems. These aspects are related to notions like com-
munication, interaction, events, activities and pro-
cesses. For capturing semantic aspects related to
the dynamics of information systems, it is necessary
to distinguish between agents and passive objects.
While both objects and agents are represented in the
system, only agents interact with it, and the possible
interactions may have to be represented in the system
as well.

The UML does not support the concept of an agent
as a first class citizen. In the UML, there is a certain
ambiguity with respect to the agent concept. Human
and artificial agents, if they are ‘users’ of a system,
are called actors being involved in use cases but re-
maining external to the system model, while software
agents within the boundaries of the system consid-
ered are called ‘active objects’. In the UML, the cus-
tomers and the employees of a company would have to
be modeled as ‘objects’ in the same way as rental cars
and bank accounts, while in the AOR approach they
would be modeled as institutional or human agents to
be represented in the system of that company (which
itself could be modeled as an artificial agent).

Since interaction between agents takes place in a
social context, deontic concepts such as commitments
and claims with respect to external agents, and rights
and duties with respect to internal agents, are essen-
tial for understanding and controlling coherent inter-
action between agents and other systems. Neither ER

modeling nor UML provide any means to account for
the deontic aspects of an information system.

In AOR modeling, an entity is either an event, an
action, a claim, a commitment, an agent, or an ob-
ject. Only agents can communicate, perceive, act,
make commitments and satisfy claims. Objects do
not communicate, cannot perceive anything, are un-
able to act, and do not have any commitments or
claims. Being entities, agents and objects of the same
type share a number of attributes representing their
properties or characteristics. So, in AOR modeling,
there are the same notions as in ER modeling (such
as entity types, relationship types, attributes, etc.).

The AOR modeling language (AORML) is based
on the AOR metamodel. While ER modeling and
UML support the design of object-oriented informa-
tion systems realized with the help of relational and
object-relational database technology, AORML is to
support the high-level design of agent-oriented infor-
mation systems.

3.1 Ontological Foundations of AOR
Modeling

In [WW99], it is convincingly argued that a domain
modeling approach should be based on clear ontolog-
ical principles explaining and justifying the vocabu-
lary employed independently of any specific imple-
mentation technique. In laying out the ontological
foundations of a modeling method, one may consider
both the concepts and terminologies established in
the practice of developing and using information tech-
nologies and the theories of traditional and contem-
porary philosophy. In traditional philosophy, how-
ever, ontology was mainly an issue of theological and
metaphysical speculation, while for the purpose of
information system modeling, ontology is a purely
pragmatic issue.

AOR modeling adds to the above seven ontological
principles of ER modeling the following ones:

8. Different entities may belong to different epis-
temic categories. There are agents, events, ac-
tions, commitments, claims, and objects.

9. We distinguish between communicative and non-
communicative actions and events.

10. Actions create events (called action events),
but not all events are created by actions.

11. Some of these modeling concepts are indexi-
cal, that is, they depend on the perspective cho-
sen: in the perspective of a particular agent a1,
actions of other agents are viewed as events,
and commitments of an agent a2 towards a1 are
viewed as claims of a1 against a2.

5

12. In the internal perspective of an agent, a com-
mitment refers to a specific action to be per-
formed in due time, while a claim refers to a
specific action event that ought to happen in due
time.

13. Communication is viewed as asynchronous
point-to-point message passing. We take the ex-
pressions receiving a message and sending a mes-
sage as synonyms of perceiving a communication
event and performing a communication act.

14. There are six designated relationships in which
specifically agents, but not objects, partici-
pate: only an agent perceives environment
events, receives and sends messages, does non-
communicative actions, hasCommitment to per-
form some action in due time, and hasClaim that
some action event will happen in due time.

15. We distinguish between artificial, biological and
institutional agents. Software agents and robots
are artificial agents. For our purposes, hu-
mans form the only relevant subclass of bio-
logical agents. Institutional agents are social
constructs,4 such as organizations and organiza-
tional units.

16. An institutional agent consists of a certain
number of (human, artificial or institutional) in-
ternal agents that act on behalf of it. This is
illustrated in Figure 2. An institutional agent
can only perceive and act through its human and
artificial internal agents.

17. In the context of an institutional agent, each in-
ternal agent has certain rights and duties.

18. There are three kinds of duties: an internal
agent may have the duty to fulfill commitments
of a certain type, the duty to monitor claims of
a certain type, or the duty to react to events of
a certain type on behalf of the organization.

19. A right refers to an action type such that the
internal agent is permitted to perform actions of
that type on behalf of the organization.

3.2 Object Types

Object types, such as sales orders or product items,
are visualized as rectangles essentially in the same
way like entity types in ER diagrams, or object classes
4With this notion we refer to the terminology of [Sea95] where

social facts are defined as those facts “involving two or more
agents who have collective intentionality”, and institutional
facts are defined as those social facts that are based on the
collective assignment of status functions and on constitu-
tive rules.

in UML class diagrams. They may participate in as-
sociation, generalization or aggregation/composition
relationships with other object types, and in associ-
ation or aggregation/composition relationships with
agent types.

The multiplicity constraints of an association are
specified like in the UML (by means of declarations
such as 0..1 or 1..∗ at the respective association end).

3.3 Agent Types

We distinguish between artificial agents, human
agents and institutional agents.5 Examples of human
agent types are Person, Employee, Student, Nurse,
or Patient. Examples of institutional agents are or-
ganizations, such as a bank or a hospital, or organi-
zational units. An institutional agent consists of a
number of internal agents that perceive events and
perform actions on behalf of it, by playing certain
roles.

In many cases, the agent types of a problem do-
main represent a role played by agents of a more
generic (domain-independent) type. Such a role
can be represented as a subclass of a more generic
class whose extension is more stable. Examples of
generic agent types are: Person in the case of human
agent roles, Corporation in the case of institutional
agent roles, and LegalEntity in the case of mixed hu-
man/institutional agent roles.6

In certain application domains, there may also be
artificial agent types, such as software agents (e.g.,
involved in electronic commerce transactions), em-
bedded systems (such as automated teller machines),
or robots. For instance, in an automated contract
negotiation or in an automated purchase decision, a
legal entity may be represented by an artificial agent.
Typically, an artificial agent is owned, and is run, by
a legal entity that is responsible for its actions.

In AOR diagrams, an agent type is visualized as
a rectangle with rounded corners. Icons indicating a
single human, a group, or a robot may be used for
visualizing the distinction between human, institu-
tional and artificial agent.

An agent type may be defined as a subclass of an-
other agent type, thus inheriting all of its attributes
(and operations). For instance, in Figure 3, Person
is a subclass of LegalEntity.

Agents may be related to other entities by means of
ordinary domain relationships (associations). In ad-
dition to the designated relationship types generaliza-
tion and composition of ER/OO modeling, there are
5Notice that we do not distinguish between ‘agents’ and ‘ac-

tors’. Both terms denote the same concept. By default, we
use the term ‘agent’.

6These concepts have been proposed in the Enterprise On-
tology of [UKMZ98].

6

Agent

BiologicalAgent Institutional
Agent

ArtificialAgent

internal agentexternal agent

*

*

*

*HumanAgent

SoftwareAgent Robot EmbeddedSystem

Figure 2: The meta-entity type Agent and its subtypes. An institutional agent aggregates a number of internal
agents, and is associated with a number of external agents.

LegalEntity

Person Corporation

PostalAddress
* 1..*

Figure 3: The agent types Person and Corporation are
subclasses of the agent type LegalEntity that
is many-to-many associated with the object
type PostalAddress.

further designated relationship types relating agents
with events, actions and commitments. They are dis-
cussed below.

3.4 External and Internal Agents

With respect to an institutional agent, one has to
distinguish between external and internal agents. In-
ternal agents, by virtue of their contractual status
(or ownership status, in the case of artificial internal
agents), have certain rights and duties, and assume
a certain position within the subordination hierarchy
of the institution they belong to.7 In the case of a
hospital, examples of human internal agents are doc-
tors and nurses; examples of artificial internal agents
are communication-enabled information systems and
agentified embedded systems, such as patient moni-
toring systems.

3.5 Concrete and Prototypical Entities

As in the UML, instances of a type are graphically
rendered by a respective rectangle with the under-
lined name of the particular instance as its title, pos-
sibly followed by a colon and its type (see Figure
7We do not define the concept of position in this paper.

4). For depicting a prototypical instance, the instance
name is left empty, such as for :LegalEntity in Figure
4.

GerdWagner: Person :LegalEntity

Figure 4: Two agents: the agent GerdWagner, as an in-
stance of the agent type Person, and a proto-
typical instance of LegalEntity.

The same notation for instances applies also to ob-
jects, actions/events, and commitments/claims.

3.6 Commitments and Claims

Commitments and claims are fundamental compo-
nents of social interaction processes. Consequently, a
proper representation and handling of commitments
and claims is vital for automating business processes.
This is acknowledged by the ebXML standardization
initiative in the statement “The business semantics
of each commercial transaction are defined in terms
of the Business Objects affected, and the commit-
ment(s) formed or agreed.”8

Representing and processing commitments and
claims in information systems explicitly helps to
achieve coherent behavior in (semi-)automated in-
teraction processes. In [Sin99], the social dimen-
sion of coherent behavior is emphasized, and commit-
ments are treated as ternary relationships between
two agents and a ‘context group’ they both belong
to. For simplicity, we treat commitments as binary
relationships between two agents.

Commitments to perform certain actions, or to see
to it that certain conditions hold, typically arise from
certain communication acts. For instance, sending a
8From the ebXML Technical Architecture Specification v0.9.

7

sales quotation to a customer commits the vendor to
reserve adequate stocks of the quoted item for some
time. Likewise, acknowledging a sales order implies
the creation of a commitment to deliver the ordered
items on or before the specified delivery date.

There are two kinds of commitments: commit-
ments to do an action and commitments to see to it
that some condition holds. We call the former to-do
commitments, and the latter see-to-it-that commit-
ments. Formally, a to-do commitment of agent a1

towards agent a2 may be expressed as a quadruple,

〈 a1, a2, α(c1, . . . , cn), TimeSpec 〉

where α denotes an action type, c1, . . . , cn is a suit-
able list of parameters, and TimeSpec specifies, e.g.
in the form of a deadline, the time constraints for the
fulfillment of the commitment. An example of a to-
do commitment where Gerd Wagner is committed to
return the book with inventory number 980114 to the
department library by November 9, 2000, is expressed
as

〈 GerdWagner, DepLib, return-
Book(980114),
9-Nov-2000 〉

A see-to-it-that commitment is expressed in the same
form, but now α(c1, . . . , cn) represents a proposition
(logical sentence) instead of an action term. In the
sequel, because they are more fundamental, we only
consider to-do commitments.

Obviously, a commitment of a1 (the debtor) to-
wards a2 (the creditor) to do the action α is mirrored
as a claim of a2 against a1 to create the action event
α. Commitment and claim processing (that is, the
operational semantics of commitments and claims)
includes the following operations:

• the creation of a commitment/claim through the
performance of certain actions or the occurrence
of certain events,

• the cancellation of a commitment by the debtor,

• waiving a claim by the creditor (or releasing the
debtor from the corresponding commitment),

• the delegation of a commitment by the debtor to
another agent who becomes the new debtor,

• assigning a claim by the creditor to another
agent who becomes the new creditor

• fulfilling a commitment.

A commitment has to be fulfilled unless the debtor is
released from it, or certain exceptional circumstances
warrant its cancellation. If a commitment cannot be

fulfilled or is otherwise violated, some form of com-
pensation may have to be negotiated. We propose to
express these commitment processing steps by means
of reaction rules in a declarative way.

4 External AOR Models

In an external AOR model, we adopt the view of
an external observer who is observing the (proto-
typical) agents and their interactions in the problem
domain under consideration. Typically, an external
AOR model has a focus, that is an agent, or a group
of agents, for which we would like to develop a state
and behavior model. In this external-observer-view,
‘the world’ (i.e. the application domain) consists of
various types of

1. agents,

2. communicative and non-communicative action
events,

3. non-action events,

4. commitments/claims between two agent
types,

5. ordinary objects,

6. various designated relationships, such as
sends and does,

7. ordinary associations.

In the view of an external observer, actions are also
events, and commitments are also claims, exactly like
two sides of the same coin. Therefore, an external
AOR model contains, besides the agent and object
types of interest, the action event types and com-
mitment/claim types that are needed to describe the
interaction between the focus agent(s) and the other
types of agents. These meta-entity types of external
AOR modeling are shown in Figure 5.

Object types, in an external AOR model, belong
to one or more agents (or agent types). They define
containers for beliefs. If an object type belongs ex-
clusively to one agent or agent type (in the sense of a
UML component class), the corresponding rectangle
is drawn inside this agent (type) rectangle. If an ob-
ject type represents beliefs that are shared among two
or more agents (or agent types), the object type rect-
angle is drawn outside of the respective agent (type)
rectangles. An object type may be shared by a num-
ber of agent types in two different ways: all agents
may use the same representation (schema) for the
shared object type, or each agent may use its own
internal representation of it, in which case a depen-
dency arrow between the internal representations and

8

Entity

Agent Commitment /
Claim ObjectEvent

Action Event
Non-Action

Event

Biological
Agent

Institutional
Agent

Artificial
Agent

internal agent

Comm.
Action Event

Non-Comm.
Action Event

0..1

1

1..*

*

Figure 5: The meta-entity types of external AOR modeling. Notice that a commitment/claim type is conceptually
coupled to an action event type.

the shared object type is used, as for the object type
Book in the agent diagram shown in Figure 7. In
any case, sharing an object type among a number of
agents does not imply that all these agents have the
same beliefs about it, or, in other words, that there
is a common extension of it shared by all agents.

An external AOR model does not include any soft-
ware artifacts. It rather represents a conceptual anal-
ysis view of the problem domain and may also con-
tain elements which are merely descriptive and not
executable by a computer program (as required for
enterprise modeling).

An external AOR model may comprise one or more
of the following diagrams:

Agent Diagrams depicting the agent types of the do-
main, certain relevant object types, and the re-
lationships among them.

Interaction Frame Diagrams depicting the action
event types and commitment/claim types that
determine the possible interactions between two
agent types (or instances).

Interaction Sequence Diagrams depicting proto-
typical instances of interaction processes.

Interaction Pattern Diagrams focusing on general
interaction patterns expressed by means of a set
of reaction rules defining an interaction process
type.

The agent diagrams, interaction frame diagrams and
interaction pattern diagrams of a model may be

merged into a single all-encompassing External AOR
Diagram (EAORD). Interaction sequence diagrams
are normally not included in such an EAORD, since
they depict instances only, and are not at the type
level.

4.1 Agent Diagrams

An agent diagram depicts the agents and agent types
of an application domain, together with their inter-
nal agents and agent types, their beliefs about objects
and the relationships among them. Object types oc-
cur in two forms: external representations of object
types (graphically rendered by rectangles drawn out-
side any agent type rectangle) representing shared be-
liefs about objects, and internal representations of ob-
ject types (graphically rendered by rectangles drawn
inside an agent type rectangle) representing ‘private’
beliefs about objects. In certain cases, internal repre-
sentations are views of external representations. We
indicate such a dependency with a dashed arrow from
the internal representations to the external represen-
tations. An example of an agent diagram is shown in
Figure 7.

4.2 Actions Are Events but Not All
Events are Actions

In the external observer perspective, all actions of
agents are at the same time also events that may be
perceived by other agents. The other way around,
there are many events that are created by the corre-

9

Agent Type

Message Type

Non-Communicative
Action Event Type

Non-Action
Event Type

Commitment/Claim
Type

sends

does
Internal
Object Type

External
Object Type receives

perceives

perceives

Action Event Type

Figure 6: The core elements of external AOR modeling.

sponding actions of agents. However, there are also
events which are not created by actions (e.g., tem-
poral events, or events created by natural forces).
Consequently, we make a distinction between action
events and non-action events.

In an External AOR Diagram, an action event type
is graphically rendered by a special arrow rectangle
where one side is an incoming arrow linked to the
agent (or agent type) that performs this type of ac-
tion, and the other side is an outgoing arrow linked to
the agent (or agent type) that perceives this type of
event. Communicative action event rectangles have
a dot-dashed line. In the case of a non-action event,
the corresponding event rectangle does not have an
outgoing arrow (see Figure 8).

4.3 Commitments/Claims

In external AOR modeling, a commitment of agent
a1 towards agent a2 to perform an action of a cer-
tain type (such as a commitment to deliver an item)
can also be viewed as a claim of a2 against a1 that
an action event of that type will happen. Commit-
ments/claims are conceptually coupled with the type
of action event they refer to (such as deliverItem ac-
tion events). This is graphically rendered by an arrow
rectangle with a dotted line on top of the action event
rectangle it refers to, as depicted in Figure 9.

4.4 Interaction Frame Diagrams

In an external AOR model, there are four types
of designated relationships between agents and ac-
tion events: sends and receives are relationship types
that relate an agent with communicative action
events, while does and perceives are relationship types
that relate an agent with non-communicative action
events. In addition, there are two types of des-
ignated relationships between agents and commit-
ments/claims: hasCommitment and hasClaim. These

deliverBook

deliverBook

Figure 9: The commitments/claim type to deliver a book
is coupled with the corresponding action event
type of delivering books. Normally, the occur-
rence of a deliverBook action event is pre-
ceded by the formation of the corresponding
commitment/claim (e.g., as a consequence of a
communicative action of the type confirm book
request).

designated relationship types are visualized with par-
ticular connector types as depicted in Figure 10. No-
tice that all of them come with the multiplicity con-
straint one-to-many which, for simplicity, is not ex-
plicitly shown in the diagram. The name of these
designated relationship types will usually be omitted
in AOR diagrams.

An interaction frame diagram, in an external AOR
model, describes the possible interactions between
two (types of) agents. It consists of various types
of

1. communicative action events,

2. non-communicative action events,

3. commitments/claims (coupled with the corre-
sponding types of action events), and

4. non-action events.

An example of an interaction frame diagram is
shown in Figure 11.

10

CentralLibrary

LibIS

DepLibrary

Loan

BookCopy

LoanFacultyMember

LibIS

Book

isAvailable

BookCopy

Book
isAvailable

Person

1 1* *

1

*

1

0..1

1

0..1

1

*

Librarian
Librarian

Book

ISBN
Title
Author

FirstName
LastName
DateOfBirth

LibClerk

Figure 7: An AOR agent diagram for the university libraries domain. The central library and the department
libraries are institutional agents, having librarians as human internal agents and a library information
system (LibIS) as an artificial internal agent. FacultyMember is another agent type in this domain.
Important object types are Book, BookCopy and Loan, that is, libraries have beliefs about their books,
their book copies, and their loans. Notice that the dependency arrows from the internal Book rectangles
of CentralLibrary and DepLibrary to the external Book rectangle indicates that Book is a shared ob-
ject type with specific internal representations. The subclasses CentralLibrary::Book.isAvailable and
DepLibrary::Book.isAvailable are formed by all books that satisfy the status predicate isAvailable,
that is, for which there is at least one book copy available, in the respective context.

requestReservation provideCar
temperature raises
above 30 degree

Figure 8: A communicative action event, a non-communicative action event, and a non-action event.

4.5 Interaction Sequence Diagrams

An interaction sequence diagram depicts (some part
of) an instance of an interaction process. An interac-
tion process is a sequence of action events and non-
action events, performed and perceived by agents,
and following a set of rules (or protocol) that speci-
fies the type of the interaction process. Agents may
interact with their inanimate environment, or they
may interact with each other. A simple example of
the former type of interaction process is my reaction
to turn on the light in my office when it becomes dark
outside, that is depicted in Figure 12.

A social interaction process is a temporally or-
dered, coherent set of action events and non-action
events, involving at least one communicative action
event, performed and perceived by agents, and fol-
lowing a set of rules, or protocol, that is governed
by norms, and that specifies the type of the inter-
action process.9 An example of a social interaction
9Notice that we did not choose activities as the basic elements

GerdWagner
"It becomes dark

outside."

"turn on the light"

1

2

Figure 12: A non-social interaction process involving an
agent and his inanimate environment.

process is shown in Figure 13. Social norms im-
ply, for instance, that after having confirmed a book
request, the library is committed to deliver the re-
quested book.

We consider a business process as a special kind of a

of a process. While an action happens at a time instant
(i.e., it is immediate), an activity is being performed during
a time interval (i.e., it has duration), and may consist of a
sequence of actions.

11

Agent Non-Action Eventperceives

Agent1 Non-Communicative
Action Event

does
Agent2< perceives

Agent1 Message
sends

Agent2< receives

Agent1
Commitment /

Claim
hasCommitment

Agent2< hasClaim

Action Event

Figure 10: The designated relationship types sends, receives, does, perceives, hasCommitment and hasClaim.

CentralLibrary DepLibraryrequestBook

confBookReq

deliverBook

deliverBook

returnBook

returnBook

Figure 11: The interaction frame between the central library and the department libraries: a department library
may request a book from the central library; when such a book request has been confirmed by the
central library, then there is a commitment to deliver the requested book (visualized by the dashed-line
deliverBook arrow rectangle); normally, such a commitment leads to a corresponding action (visualized
by the solid-line deliverBook arrow rectangle); after a book has been delivered, there is a commitment to
return it in due time.

social interaction process. Unlike physical or chemical
processes, social interaction processes are based on
communication acts that may create commitments
and are governed by norms. We distinguish between
an interaction process type and a concrete interaction
process (instance), while in the literature the term
‘business process’ is ambiguously used both at the
type and the instance level. Reaction rules are the
most important type of business rules, as we argue in
[TW01a].

4.6 Reaction Rules and Interaction
Pattern Diagrams

We model interaction process types by identifying in-
teraction patterns and expressing them by means of

reaction rules. Reaction rules may be used both
for describing the reactive behavior of all kinds of
agents, and for the executable specification of the re-
action patterns of an artificial agent to be built.

An example of a reaction rule is the following:
When the central library receives a certain book re-
quest from a department library, it checks if a copy
of that book is available, and if this is the case, the re-
quest is confirmed, and a new corresponding loan ob-
ject as well as a commitment to deliver the requested
book in due time is created. This rule is visualized as
rule R2 in Figure 14.

A reaction rule is visualized as a circle with in-
coming and outgoing arrows drawn within the agent
rectangle whose reaction pattern it represents. Each
reaction rule has exactly one incoming arrow with

12

confBookReq

GerdWagner TM-DepLibrary
requestBook

Title="UML in 3 sec"
Author="Boorumjac"

pickupBook

CentralLibrary

1 2

3

56

4

requestBook

Title="UML in 3 sec"
Author="Boorumjac"

confBookReq

deliverBook

returnBook
7

returnBook
8

Figure 13: A social interaction process involving three agents: GerdWagner’s request to lend the book “UML in 3
sec” (1) is forwarded by the TM-DepLibrary (the library of the technology management department) to
the CentralLibrary (2).

DepLibrary CentralLibrary

confBookReq

 requestBook

 ISBN

deliverBook
Book

Loan

R2

isAvailable

deliverBook

BookCopy

Book

Loan

isAvailable

BookCopy

Faculty
Member requestBook

 ISBN
R1

R3confBookReq

deliverBook

deliverBook

1
*

1

0..1

1
*

1

0..1

Figure 14: An interaction pattern diagram describing the process type where a faculty member requests a book from
a department library such that the request is forwarded to the central library because the requested book
is not available at the department library.

a solid arrowhead: it represents the triggering event
condition which is also responsible for instantiating
the reaction rule (binding its variables to certain val-
ues). In addition, there may be ordinary incoming
arrows representing state conditions (referring to cor-
responding instances of other entity types). There
are two kinds of outgoing arrows. An outgoing ar-
row of the form −. denotes a mental effect referring
to a change of beliefs and/or commitments. An out-
going connector to an action event type denotes the
performance of an action of that type.

Reaction rules may also be represented in textual
template form. For, instance, R2 could be expressed
as in Table 1. In symbolic form, a reaction rule is
defined as a quadruple

ε, C −→ α, F

where ε denotes the triggering event term, C denotes

the state condition formula, α denotes the resulting
action term, and F denotes the mental effect for-
mula. Both C and F are formulas from a logical
language corresponding to the (mental state) schema
of the agent whose reaction pattern is specified by
the rule.10

Notice that in an EAORD, the actions performed
by one agent may be at the same time the events
perceived by another agent. An EAORD can there-
fore visualize the reaction chains that arise by one
reaction triggering another one.
10The reader is referred to [Wag98] for further explanations of

the formal semantics of reaction rules

13

ON Event RECEIVE requestBook(?ISBN) FROM ?DepLib
IF Condition BookCopy.isAvailable(?ISBN, ?InvNo)
THEN Action SEND confBookReq(?ISBN) TO ?DepLib

Effect CREATE COMMITMENT TOWARDS ?DepLib
TO deliverBook(?ISBN) BY tomorrow();

CREATE BELIEF Loan(?DepLib, ?ISBN, ?InvNo, today())

Table 1: The reaction rule R2 of Figure 14 in textual template form.

5 Internal AOR Models

In an internal AOR model, we adopt the internal
view of a particular agent to be modeled. In this first-
person-view, ‘the world’ (i.e. the domain of interest)
consists of various types of

1. other agents;

2. actions;

3. commitments towards other agents to perform
certain actions;

4. events, many of them created by actions of
other agents;

5. claims against other agents that certain action
events happen,

6. ordinary objects;

7. various designated relationships, such as is-
SentTo and isPerceivedBy ;

8. ordinary associations.

These meta-entity types of internal AOR modeling
are shown in Figure 15.

An internal AOR model depicts ‘the world’ as it
may be represented in the mental state of the focus
agent. If the focus agent is an organization, the in-
ternal AOR model represents its view of ‘the world’,
and may be used to design its information system.
Thus, AOR modeling suggests the following develop-
ment path for organizational information systems:

1. In the domain analysis, develop an external AOR
model of an organization (or a group of organi-
zations) and its (or their) environment from the
perspective of an external observer of the sce-
nario.

2. Transform the external AOR model into an in-
ternal AOR model for the focus agent for that
an information system is to be developed (typi-
cally an organization or an organizational unit).
If there are several focus agents, and for each of
them an information system is to be developed,
this step can be iterated.

3. Transform the internal AOR models obtained
in the previous step into database design mod-
els (logical database schemas), e.g. for object-
relational (SQL-99) database management sys-
tems, or into sets of corresponding logical data
structure definitions in a target language such as
Java.

4. Refine the design models into implementation
models (physical database schemas) by taking
performance and storage management issues, as
well as the specific features of the target language
(such as SQL-99 or Java), into consideration.

5. Generate the target language code.

An internal AOR model may comprise one or more
of the following diagrams:

Reaction Frame Diagrams depicting other agents
(or agent types) and the action and event types,
as well as the commitment and claim types that
determine the possible interactions with them.

Reaction Sequence Diagrams depicting proto-
typical instances of interaction processes in the
internal perspective.

Reaction Pattern Diagrams focusing on the reac-
tion patterns of the agent under consideration
expressed by means of reaction rules.

The reaction frame diagrams and reaction pattern
diagrams of a model may be merged into a single all-
encompassing Internal AOR Diagram (IAORD). Re-
action sequence diagrams are normally not included
in such an IAORD, since they depict instances only,
and are not at the type level. All internal AOR dia-
grams are drawn within a surrounding frame, prefer-
ably with rounded corners and with the name of the
agent that is being modeled in the top left corner.

5.1 External and Internal Agents

In an internal AOR Diagram for an institutional
agent, the internal agents (and/or agent types) of the
institutional agent to be modeled may appear at the
top level, like the internal agent type SalesDepart-
ment in Figure 16, where they are distinguished from

14

Entity

Agent

Action
Event

Non-
Action
Event

Commitment ObjectAction Event Claim

Non-
Comm.
Action

Comm.
Action

Comm.
Action
Event

Non-
Comm.
Action
Event

Biologi-
cal
Agent

Institu-
tional
Agent

Artificial
Agent

1 0..1

1

0..1

internal agent

Figure 15: The most important meta-entity types of internal AOR modeling.

external agents by dashing their rectangle line. All
internal agents of internal agents, like SalesPerson
within SalesDepartment, are again internal agents.

:Enterprise

Customer SalesDepartment

SalesPerson* 1

Figure 16: From the point of view of an enterprise,
Customer is an external agent type, while
SalesDepartment is an internal agent and
SalesPerson is an internal agent type of
SalesDepartment. Each salesperson has a
certain number of associated customers.

5.2 Actions and Events

In the perspective of an institutional agent, only the
actions of internal agents performed on behalf of the
institution count as actions, while the actions of ex-
ternal agents count as events.

An event type is graphically rendered by a rect-
angle with an incoming arrow side, while an action
type is graphically rendered by a rectangle with an
outgoing arrow side. Communication event types and
communication act types are visualized by a dashed-
dotted line.

In an internal model of an agent, events and ac-
tions are related to other agents by means of four
designated relationship types: an outgoing message

isSentTo – and an incoming message isReceivedFrom
– another agent, while a physical action isPerceivedBy
– and an action event isCreatedBy – another agent.
These special relationship types are designated with
particular connector types as illustrated in Figure 17.

Notice that, typically, an organizational informa-
tion system does not perceive environment events
since it does usually not have any sensor devices. In
many cases, environment events are reported to an
information system through communication acts of
internal agents. But in principle, information sys-
tems may receive perception signals representing en-
vironment events from sensors that are attached to
it. Temporal events, such as represented by the sig-
nals “it is now 11:00 on 11-Nov-2000” or “the time for
collecting bids is now over”, are an important kind of
non-action event. They are created by a timer that
may be regarded as a particular sensor device.

An action type may be defined like a table in a
SQL-like language in the following way:

CREATE ACTION TABLE deliverItem(

ItemCode INTEGER,

Quantity DECIMAL(5,2),

SalesOrderNo CHAR(10),

DeliveryAddress CHAR(30)

)

Event types may be defined in the same way:

CREATE EVENT TABLE payInvoice(

InvoiceNo INTEGER,

Amount DECIMAL(5,2)

)

15

CentralLibrary

requestBook
DepLibrary

confBookReq

deliverBook

returnBook

Figure 17: In an internal AOR model of the central library, a requestBook message isReceivedFrom a department
library, an confBookReq message isSentTo the department library, a deliverBook action isPerceivedBy
the department library, and a returnBook action event isCreatedBy a department library.

Unlike ordinary SQL tables, both types of tables
would have additional implicit columns for recording

1. the internal agent that has performed the action,
or the external agent that has created the event;

2. in the case of a communicative action/event: the
addressee(s) of the message;

3. the time instant when the action has been per-
formed, or when the event has happened.

By recording all perceived events and all performed
actions, an artificial agent (such as an information
system) implements a basic form of memory. It
follows from the principle that the past cannot be
changed, that the rows of action and event tables
must not be deleted or modified.

5.3 Commitments and Claims

A commitment towards another agent (such as a com-
mitment towards a customer to deliver an item) is
coupled with the associated action (such as a de-
liverItem action) to be performed. It is visualized
as a rectangle with a dotted line on top of the asso-
ciated action rectangle as in Figure 18.

CentralLibrary

deliverBook

deliverBookDepLibrary

Figure 18: A commitment towards another agent (to de-
liver a book) is visualized together with the
associated action (of carrying out the deliv-
ery).

A claim against another agent (such as a claim
against a customer to pay an invoice) is coupled with

the associated event (such as a payInvoice event). It
is visualized as a rectangle with a dotted line on top
of the associated event rectangle as in Figure 19.

CentralLibrary

returnBook

returnBookDepLibrary

Figure 19: A claim against another agent (here: a claim
against a department library to return a
book) is visualized together with the associ-
ated event (of returning the book).

Technically, a commitment may be represented in
a special table whose definition requires that there is
a previously defined action type with the same name.
For instance,

CREATE COMMITMENT TABLE deliverItem

defines a table for recording commitments to de-
liver items to customers. It requires that the action
table deliverItem has already been defined. Commit-
ment tables have two implicit additional columns: 1)
for storing the ID of the agent towards whom the
commitment holds, 2) for representing the deadline
for the fulfillment of the commitment.

Likewise, for representing claims against other
agents, a claim table may be defined by referring to
a previously defined event type:

CREATE CLAIM TABLE payInvoice

Claim tables have two implicit additional columns:
1) for storing the ID of the agent against whom the
claim holds, 2) for representing the deadline for the
fulfillment of the claim.

16

5.4 Reaction Frames

In an internal AOR model, the reactive behavior of
the agent (type) under consideration with respect to
another agent (type) A is described by means of six
kinds of entity types:

1. communication events, or incoming mes-
sages, created by the communication acts of in-
stances of A;

2. communication acts, or outgoing messages,
directed to instances of A;

3. claims against instances of A;

4. non-communicative events created by the ac-
tions of instances of A;

5. commitments towards instances of A;

6. non-communicative actions which may be
performed in order to fulfill corresponding com-
mitments towards instances of A, or in response
to events within the interaction frame.

Figure 20 shows a Reaction Frame Diagram for
the central library describing the reactive behavior
with respect to the agent type DepLibrary. There is
the incoming message type requestBook, the outgo-
ing message type confBookReq, the commitment type
deliverBook coupled with the corresponding action
type, and the claim type returnBook coupled with
the corresponding event type.

Notice that when actions and events are recorded
in an artificial agent (e.g., in special tables), an in-
teraction log is created that can be viewed as a kind
of memory.

5.5 Internalization

An external AOR diagram can be transformed into
an internal AOR diagram for one of the focus agents
(or agent types) by

1. omitting the focus agent whose perspective is
modeled (the ‘first-person agent’);

2. turning all action event rectangles directed to-
wards the first-person agent into event rectan-
gles;

3. turning all action event rectangles directed to-
wards an interaction partner of the first-person
agent into action rectangles;

4. turning all commitment/claim rectangles di-
rected towards the first-person agent into claim
rectangles;

5. turning all commitment/claim rectangles di-
rected towards an interaction partner of the first-
person agent into commitment rectangles;

6. dashing the rectangle lines of all top-level inter-
nal agents; and

7. merging the internal and external representa-
tions of object types.

This transformation is called internalization.
For instance, the interaction frame diagram shown

in Figure 11, modeling the interaction frame between
the central library and the department libraries, can
be transformed into the reaction frame diagram for
the central library information system shown in Fig-
ure 20.

In an Internal AOR Diagram (IAORD), since its
scope is a single agent, we can no longer see complete
interaction patterns involving two or more agents.
The behavior of the agent under consideration is
modeled by identifying its reaction patterns and ex-
pressing them in the form of reaction rules, as in
the IAORD for the central library shown in Figure 21
and in the IAORD for the department libraries shown
in Figure 22. Both of these IAORDs are derived from
the EAORD of Figure 14.

5.6 Modeling the Rights and Duties of
Internal Agents

An internal agent, by virtue of its position and the
roles assigned to it, has certain rights and duties.

Both duties and rights correspond to designated
relationships between internal agent types (or specific
internal agents) and commitment, claim, event, and
action types. They are visualized with the help of
special connectors having a bullet at the side of the
internal agent type rectangle. The bullet is empty in
the case of a right, while it is solid in the case of a
duty.

5.6.1 Having a Duty to React to Certain Events

The duty to react to events of a certain type
– the hasDutyToReact relationship – is visualized
by means of a dotted connector line from the
responsible internal agent type rectangle to the
event type rectangle, as shown in Figure 23 be-
tween the submitPurchaseOrder event type and the
SalesPerson agent type. If i denotes an agent, and
ε denotes an event type, we can express the deontic
statement that i has the duty to react to events of
type ε by means of

DR(i, ε)

17

CentralLibrary

DepLibraryrequestBook

confBookReq

deliverBook

deliverBook

returnBook

returnBook

Figure 20: The interaction frame between department libraries and the central library, as shown in Figure 11, pro-
jected onto a Reaction Frame Diagram for the central library. Its content can be described as follows: the
central library receives requestBook messages from department libraries; it sends confBookReq messages
to department libraries; it has deliverBook commitments towards department libraries, and performs
deliverBook actions that are perceived by department libraries; it has returnBook claims against de-
partment libraries, and it perceives returnBook events created by department libraries.

5.6.2 Having a Duty to Fulfill Certain
Commitments

The duty to fulfill commitments of a certain type –
the hasDutyToFulfill relationship – is visualized by
means of a dotted connector line between the agent
type rectangle and the commitment type rectangle.
This is illustrated in Figure 23 where a hasDutyTo-
Fulfill connector is drawn between the deliverItem
commitment type and the DelivAgt agent type in
order to express the duty of a delivery agent to fulfill
commitments to deliver items to customers.

If α denotes an action type, we can express the
deontic statement that i has the duty to fulfill com-
mitments to perform actions of type α in due time
by means of

DfC(i, α)

5.6.3 Having a Duty to Monitor Certain Claims

The duty (say, of a Clerk) to monitor claims of a
certain type (e.g., to pay an invoice) – the hasDuty-
ToMonitor relationship – is visualized by means of a
dotted connector line between the (Clerk) agent type
rectangle and the (payInvoice) claim type rectangle.

If ε denotes an event type, we can express the de-
ontic statement that i has the duty to monitor claims
that action events of type ε happen in due time by
means of

DmC(i, ε)

5.6.4 Having a Right to Perform Certain Actions

The right to perform actions of a certain type – the
hasRightToPerform relationship – is visualized by
means of a dotted connector line between the internal
agent type rectangle and the action type rectangle,
as shown in Figure 23 between the acknSalesOrder
communication act type and the SalesPerson agent
type.

If α denotes an action type, we can express the
deontic statement that i has the right to perform ac-
tions of type α by means of

Right(i, α)

There are also derived rights: whenever an agent has
the duty to fulfill certain commitments, it also has
the implicit right to do the respective actions. This
can be expressed in the form of an implication:

DfC(i, α) ⊃ Right(i, α)

In such a case, we do usually not draw the derived
hasRightToPerform relationship in the diagram.

5.6.5 Having No Right to Perform Certain
Actions

It may be prohibited for certain agents to perform ac-
tions of a certain type. For instance, we may want
to specify that delivery agents do not have the right
to acknowledge sales orders using a hasNoRightToP-
erform connector, as in Figure 23.

18

CentralLibrary

DepLibraryrequestBook

confBookReq

deliverBook

deliverBook

returnBook

returnBook

Book

Loan

R2

isAvailable

BookCopy

Figure 21: A Reaction Pattern Diagram for the central library describing the process step where the central library
has to react to a book request from a department library.

Formally, we can express the deontic statement
that it is prohibited for i to perform actions of type
α by

Proh(i, α)

5.6.6 The Deontic Logic of AOR Modeling

The deontic logic arising from the AOR metamodel
is still under investigation. However, we can already
express some fundamental deontic principles.

It is quite common in an organization, that it is
not completely determined for every action whether
it is permitted or prohibited. In the AOR metamodel,
this principle of normative underdetermination takes
the following form: in a specific AOR model, it needs
not be the case that for every internal agent i, and
every action type α, either i has the right to do ac-
tions of type α, or it is prohibited for i to perform
actions of type α. Symbolically,

¬∀i∀α (Right(i, α) ∨ Proh(i, α))

or, equivalently,

∃i∃α (¬Right(i, α) ∧ ¬Proh(i, α))

Due to inconsistent specifications of regulations, it is
also quite common in practice that certain actions are
both permitted and prohibited. For a specific AOR
model, this principle of normative inconsistency is
expressed in the following way:

∃i∃α (Right(i, α) ∧ Proh(i, α))

stating that for a certain internal agent i, there is an
action type α, such that i has the right to do actions

of type α and, at the same time, it is prohibited for
i to perform actions of type α.

5.7 Transforming an Internal AOR
Model into a Database Schema

We briefly sketch the transformation of an inter-
nal AOR model into an object-relational (SQL-99)
database schema. Such a mapping may be viewed as
defining a semantics for the AOR metamodel assign-
ing an operational meaning to the modeling elements
action, event, commitment, and claim.

Object types and association types are transformed
like in the standard implementation of ER mod-
els (that is, object types and many-to-many asso-
ciation types are implemented as separate tables,
one-to-many and one-to-one association types are
represented as additional reference columns in the
participating object tables). A component class is
transformed into a corresponding complex-valued at-
tribute of its superior class. Subclasses are repre-
sented by means of the SQL-99 subtable construct.

A communication event type (or incoming message
type) is transformed into a special table schema with
three additional implicit columns for the ID of the
sender, the ID of the internal agent who is the ad-
dressee, and the time instant at which the message
has arrived. Likewise, a communication act type (or
outgoing message type) is transformed into a special
table schema with three additional implicit columns
for the ID of the internal agent who has sent the
message, the ID of the external agent who is the ad-
dressee, and the time instant at which the message

19

:DepLibrary

CentralLibrary

Book

Loan

isAvailable

BookCopy

Faculty
Member

R1

R3

requestBook requestBook

confBookReq
confBook

Req

Figure 22: A Reaction Pattern Diagram for the department libraries describing the process steps where a department
library has to react to a book request from a faculty member and to a confirmation message from the
central library.

has been sent.
A commitment (or claim) type is transformed into

a table with the same base schema as the action (or
event) type it refers to but with different implicit
columns: the first additional column represents the
ID of the agent towards whom the commitment (or
against whom the claim) holds, and the second ad-
ditional column represents the temporal constraints
for fulfilling the commitment (or for obtaining the
benefits from the claim).

An external agent type is transformed into a spe-
cial table schema including declarations of the actions
and events that can be performed and perceived by
representatives of that class, and of the commitments
and claims that the organization may have towards
and against them.

An internal agent type is transformed into a spe-
cial table schema including declarations of the events,
commitments and claims that its representatives
must react to, fulfill and monitor, and the actions
they may perform.

The assignment of event, commitment and claim
types as responsibilities to internal agent types en-
ables the organizational information system to play
an active role in a number of basic business processes,
such as to

1. define tasks to be performed in an automated
fashion by artificial internal agents;

2. maintain role-specific to-do-lists for communi-
cating the current duties to human internal
agents;

3. remind the responsible internal agents of an ap-

proaching deadline to fulfill a commitment to-
wards another agent;

4. remind the responsible internal agents of dead-
lines in connection with claims against other
agents.

6 Further Techniques for
Behavior Modeling

In addition to using reaction rules for behavior mod-
eling in Interaction Pattern Diagrams in external
AOR modeling, and in Reaction Pattern Diagrams
in internal AOR modeling, we propose to use activity
diagrams in requirements analysis and behavior con-
straints for defining the correct behavior of an agent
in a declarative fashion in design. Furthermore, it
is an option to include in an internal AOR model
UML statemachine diagrams for adding more detail
and further views.

6.1 Activity Diagrams

UML activity diagrams seem to be well-suited
for agent-oriented requirements analysis since their
swimlane construct can be used to assign activity
types to agents, and the �signal� class stereotype
can be used to model communicative action events. It
is an issue for future research to adapt and integrate
UML activity diagrams with external AOR diagrams.

20

:Enterprise

Employee

SalesPersonsubmit
PurchaseOrder

ackn
SalesOrder

deliverItem

deliverItem

DelivAgt

Figure 23: SalesPerson hasDutyToReact to submitPurchaseOrder messages and hasRightToSend acknSalesOrder

messages. DelivAgt hasDutyToFulfill deliverItem commitments (implying the right to do deliverItem

actions). DelivAgt hasNoRightToSend acknSalesOrder messages.

6.2 Behavior Constraints

Like correctness properties in the theory of formal
verification,11 behavior constraints can be viewed as
temporal logic assertions expressing, e.g., a safety
property (‘something undesirable will never happen’)
or a progress property (‘something desirable will hap-
pen’). Typically, these constraints refer to communi-
cation events (or messages) and to beliefs and com-
mitments. We can only sketch this topic here (we
plan to elaborate it in our future work).

Examples of progress constraints are the require-
ments that

• After a book has been requested by a faculty
member, either a denial or a confirmation will
be sent to him.

• After a book request has been confirmed by the
central library, the requested book will be deliv-
ered to the department library.

Examples of safety constraints are the require-
ments that

• A book request must not be confirmed if the li-
brary IS does not belief that the requested book
is available.

• A book delivery to a faculty member who still
has books that are overdue must not be carried
out before the concerned books have been re-
turned.

11The formal verification of safety and progress properties in
the software engineering of concurrent reactive systems is
the topic of [MP92].

Behavior constraints can be used to express impor-
tant properties of a system independently of its im-
plementation. A particular implementation of an au-
tomated business process may be proved as correct by
formally deriving the behavior constraints from (an
executable specification of) the implementation code.
Behavior constraints can also be used for the auto-
mated supervision of semi-automated business pro-
cesses.

Basic progress constraints concern actions to be
performed, while basic safety constraints concern ac-
tions to be suppressed. An agent-oriented informa-
tion management system should support the declara-
tive specification of behavior constraints in a similar
way as SQL supports static integrity constraints by
means of CREATE ASSERTION. Similarly like cer-
tain SQL assertions can be operationalized by means
of SQL triggers, certain progress constraints in Inter-
nal AOR modeling can be operationalized by means
of reaction rules.

The formalization and visualization of behavior
constraints within AOR Diagrams is an issue for fu-
ture research.

7 Tool Support for AOR
Modeling

AORML tools are available from
www.AOR.rezearch.info. There is a Microsoft
Visio template for AOR modeling, providing the
specific graphical shapes of the AOR modeling
elements. Code generation tools may be provided in

21

the future.

8 Related Work

We briefly discuss the relationship of the AORML
to Entity-Relationship (ER) modeling, to the Unified
Modeling Language (UML), to some of its business
modeling extensions, and to a number of other works.

8.1 Entity-Relationship Modeling

As discussed in section 3.1, AOR modeling follows
ER modeling and extends it by introducing a dis-
tinction between a number of fundamentally different
categories of entity types, and by adding modeling
elements and a notation for behavior modeling. The
commonalities and differences between ER, UML and
AORML are summarized in Table 2.

8.2 The Unified Modeling Language

The Unified Modeling Language (UML) offers a
comprehensive set of (visual) modeling constructs
for object-oriented information and process model-
ing. The UML also has an extensibility mecha-
nism that allows to introduce subcategories of UML
meta-concepts, together with their specific graphical
renderings, in the form of ‘stereotype’ declarations.
Some predefined UML ‘stereotypes’ come quite close
to some of the AOR meta-concepts:

Signals are defined as a class ‘stereotype’. They cor-
respond to some degree to a communicative ac-
tion event (or message) type in external AOR
models. For activity diagrams, there are two sig-
nal symbols: one for sent signals, and one for re-
ceived signals, corresponding to the AORML dis-
tinction between communication acts (outgoing
messages) and communication events (incoming
messages). Strangely, the receipt of a signal is
treated as an action that may follow any activity
(which seems to denote the special action type
wait for signal).

Active objects are another example of a class
‘stereotype’. An active object is an object that
“owns a thread and can initiate control activ-
ity” (cited from the OMG Unified Modeling Lan-
guage Specification). Thus, active objects are
rather an implementation, and not a domain,
modeling concept. In a certain sense, they form a
superclass of software agents, but they do not re-
flect the AORML distinction between agent and
object.

While AOR modeling allows the tight integration
of state and behavior modeling by means of reaction

rules and interaction pattern diagrams, a similar in-
tegration is not possible in the UML. Only a rudi-
mentary integration of state and behavior modeling
is possible: in activity diagrams, objects and signals
can ‘flow’ between activities. However, in [War], it is
admitted that “Activity diagrams have an ill-defined
connection with the other diagrams and are too lim-
ited in their expressibility.”

Furthermore, the UML provides no predefined
‘stereotypes’ corresponding to commitments and
claims. But it allows to express all the AORML
entity subcategories AgentType, ActionType, Event-
Type, CommitmentType, ClaimType, and Object-
Type as user-defined stereotypes of the UML meta-
concept CLASS, and the designated AORML rela-
tionship types (sends, receives, does, perceives, has-
Commitment, and hasClaim) as stereotypes of the
UML meta-concept ASSOCIATION. In this way we
could define a UML profile for AOR modeling (in
fact, we would need to define two profiles, one for
external and one for internal AOR modeling). We
would, however, have difficulties with expressing re-
action rules since these rules are not expressible as
UML ‘stereotypes’. So, we could only cast the AOR
state modeling fragment as a UML profile. The in-
clusion of reaction rules for AOR behavior modeling
is not supported by the UML extension mechanisms.

UML and AORML are compared with each other
in Table 2.

8.2.1 Agent UML

Recently, in [OvDPB00], an agent-oriented extension
of UML, called AUML, mainly concerning sequence
diagrams and activity diagrams, has been proposed.
However, UML class diagrams are not modified, and
no distinction between agents and objects is made in
AUML.

8.3 Business Modeling

In many business modeling approaches, such as
CIMOSA (see 8.3.1), the UML 1.3 Profile for Busi-
ness Modeling (see 8.3.2), or the Enterprise Ontology
(see 8.4), a distinction between passive and active en-
tities is made, as in AOR modeling. However, none
of the approaches discussed below includes a system-
atic treatment of agent-oriented meta-concepts such
as actions, events, commitments and claims.

8.3.1 The Open System Architecture for
Computer Integrated Manufacturing
(CIMOSA)

In CIMOSA (see [AMI93]), an enterprise is viewed
as a large collection of concurrent processes being ex-

22

(Extended) ER UML External AORML Internal AORML
entity type class object type object type

active class agent type agent type
sent signal message type outgoing message

type
received signal incoming message

type
commitment/claim
type

commitment type

claim type
relationship type association association association

sends isSentTo
receives isReceivedFrom
does isPerceivedBy
perceives isCreatedBy
hasCommitment hasCommitment

Towards
hasClaim hasClaimAgainst

– – reaction rule reaction rule
ER diagram class diagram agent diagram

interaction frame
diagram

reaction frame dia-
gram

– sequence diagram interaction se-
quence diagram

reaction sequence
diagram

– activity diagram activity diagram activity diagram
state machine d. state machine d.

– – interaction pattern
diagram

reaction pattern di-
agram

Table 2: A comparison of some important concepts of ER, UML and AORML.

23

AORML CIMOSA Enterprise Ontology PfBM
agent functional entity actor worker
action functional operation activity, action –
event event – –
object enterprise object entity entity
reaction rule behavioral rule – –

Table 3: Comparing the basic terms of AORML with CIMOSA, the Enterprise Ontology and the UML
Profile for Business Modeling (PfBM).

ecuted by agents (called ‘functional entities’) in the
various functional areas (called ‘domains’) of the en-
terprise. A ‘domain process’ is described as ‘a com-
plete chain of activities flowing through the enter-
prise’ ([BV99]) that is triggered by one or more events
and further decomposed into subprocesses (called
‘business processes’) and/or elementary process steps
(called ‘enterprise activities’).

A restricted form of reaction rules, called ‘proce-
dural rules’ (and more recently ‘behavioral rules’), is
used to specify business process steps. These rules
have the form

WHEN event DO action

where the event expression typically refers to the end-
ing status of some activity, such as in the following
rule

WHEN ES(ea1) = ok DO ea2.

specifying that the enterprise activity ea2 is started
when the ending status of the enterprise activity ea1
is ‘ok’.

Some CIMOSA concepts have a direct correspon-
dence to AORML concepts, as shown in Table 3.
Unlike the AORML, CIMOSA does not provide any
graphical language for visualizing its textually speci-
fied models.

8.3.2 The UML Profile for Business Modeling

The UML 1.3 standard contains a UML Profile
for Business Modeling that defines the following
UML::Class stereotypes: ‘worker’, ‘case worker’, ‘in-
ternal worker’, and ‘entity’. A �Worker� is “an
abstraction of a human that acts within the sys-
tem”. Although it is not clear what “system” means
here, the concept of a worker seems to correspond
to the AORML concept of an internal human agent.
While an �Internal Worker� does not interact
with actors outside the system, a �Case Worker�
does. All other (passive) business objects are called
�Entity�. In addition, the concepts organization
unit and work unit are proposed as UML::Subsystem

stereotypes. An �Organization Unit� is “a subsys-
tem corresponding to an organization unit of the ac-
tual business”; it “contains organization units, work
units, classes (workers and entities), and relation-
ships”; thus, it corresponds to the AORML concept
of an internal institutional agent. A �Work Unit�
is “a subsystem that contains one or more entities”;
it is “a task-oriented set of objects that form a rec-
ognizable whole to the end user”.

The UML Profile for Business Modeling seems to
be a rather ad-hoc proposal for making a distinc-
tion between active and passive ‘business objects’
and for resolving some of the conceptual difficulties
arising from the UML definition of an �Actor�.
While it shares some of its motivations with the AOR
metamodel, it is, in many respects, quite incomplete.
For instance, the only specific semantics assigned to
�Worker� (by means of well-formedness rules for
associations) is that they may�communicate� with
each other and may �subscribe� to an �Entity�.
However, it is not explained, what these special asso-
ciations mean.

8.3.3 The Eriksson-Penker Business Extensions

In [EP99], Eriksson and Penker propose an approach
to business modeling with UML based on four pri-
mary concepts: resources, processes, goals, and rules.
In this proposal, there is no specific treatment of
agents. They are subsumed, together with “mate-
rial, information, and products” under the concept
of resources. This unfortunate subsumption of hu-
man agents under the traditional ‘resource’ metaphor
prevents a proper treatment of many agent-related
concepts such as commitments, authorization, and
communication/interaction.

A business process, in the Eriksson-Penker ap-
proach, is viewed as a sequence of activities, and
a business process type is modeled by means of a
UML activity diagram, while in AOR modeling, a
business process is viewed as a sequence of events
and actions/activities, and a business process type is
specified by a set of reaction rules.

24

8.4 The Enterprise Ontology

The Enterprise Ontology was developed within the
Enterprise Project, a collaborative effort to provide
a framework for enterprise modeling, led by the AI
Applications Institute at the University of Edinburgh
(see [UKMZ98]). It consists of definitions for nearly
100 terms, starting with the fundamental concepts of
its ‘meta-ontology’ (entity, relationship and actor),
both in natural language and in the formalism of
Ontolingua. The latter formalization is supposed to
support reasoning about enterprises.

For simplicity, the distinction between an entity
(instance) and an entity type (class) is avoided. Ac-
tors are defined as special entities that can play an
actor role in certain relationships (such as performA-
ctivity, haveCapability, etc.).

In order to give a flavor of this work, we present
some of the main concept definitions proposed.

An activity is an entity that is characterized by
being performed by one or more actors over a partic-
ular time interval, having pre-conditions and effects,
possibly being decomposable into more detailed sub-
activities, possibly using and/or consuming resources,
being owned by an actor on behalf of whom the ac-
tivity is performed.

There is no independent concept of an event:
events are defined as “a kind of activity”.12 Syn-
onyms of activity are: behavior, task, action.

A person is a human actor. A machine is a non-
human actor. A corporation is a group of persons
recognized in law as having existence, rights and du-
ties distinct from those of the individual persons who
comprise the group. A legal entity is either a person
or a corporation.

The following points highlight some shortcomings
of the Enterprise Ontology:

1. For analysis and design modeling, it is essential
to distinguish between entities and entity types.

2. It seems to be questionable to view natural forces
that cause certain events to happen, such as
gravity, as actors.

3. Events should not be subsumed under activities.
Rather, they should be first-class citizens.

4. Like in the UML, activities should be distin-
guished from actions which are conceived at the
lowest level of temporal granularity, that is, as
instantaneous events without duration.

5. The concepts of commitments/claims and du-
ties/responsibilities are missing.

12Remarkably, the authors consider also events which take
place as a result of natural necessity (such as “water flow-
ing down a hill”) as activities of inanimate actors (such as
gravity).

8.5 Other Related Work

Agent-oriented modeling techniques are still in a very
early stage. The Resource-Event-Agent (REA) mod-
eling framework of [McC82] can be regarded as an
early predecessor of agent-oriented information sys-
tems modeling. It was proposed as a new approach
to accounting systems that aims at reconciling the
specialist accounting view of enterprise resource man-
agement with the more general views of other busi-
ness areas. In accounting, special attention is paid
to economic resources that are subject to financial
and managerial accounting requirements. These re-
sources are associated with increment and decrement
events which are, in turn, associated with economic
agents. While the REA framework suggests to dis-
tinguish between the entity categories of resources,
events and agents, it does not provide any visual or
formal modeling language that allows to map these
conceptual distinctions. AORML, by providing such
visualization and formal language constructs, seems
to support the REA accounting framework very well.

In [Yu95, YM95], an agent-oriented modeling
framework, called i?, for early requirements engineer-
ing is proposed stressing the role of dependencies
between agents. Since the AORML provides a (vi-
sual) language for designing information systems, it
may be a possible target language for transforming
i? models into it.

In [KGR96], a methodology for the analysis and de-
sign of multiagent systems based on object-oriented
modeling principles is presented, requiring compli-
ance with the particular paradigm of ‘Belief-Desire-
Intention (BDI)’ agents proposed in [RG91]. More
general approaches, considering issues such as agent
roles, rights and duties, contracts and communication
protocols, are proposed in [EL99, WJK00]. However,
these approaches provide no diagram language and
their relationship to the UML is not clear.

A conceptual framework for agent-oriented work-
flow modeling based on agent roles and the communi-
cation protocols, qualifications, and rights and duties
associated with them, is proposed in [YS99]. In the
business-rules-centered approach to the modeling of
agent-oriented information systems of [Tav99], soft-
ware agents are used to represent “functional business
units/actors and also external units/actors like cus-
tomers or suppliers”. The business case of a car rental
company is used to demonstrate the agent-based im-
plementation of business rules.

8.6 Strengths and Weaknesses of AOR
Modeling

The main strengths of AORML with respect to con-
ceptual modeling are:

25

1. AORML has a richer set of basic ontological con-
cepts, allowing to capture more semantics of a
domain, as compared to ER, UML and AUML.

2. AORML includes and unifies many of the funda-
mental domain modeling concepts found in en-
terprise modeling approaches such as CIMOSA
and the Eriksson-Penker business extensions.

3. Unlike the UML, AORML allows to integrate
state and behavior modeling in one diagram.

4. AORML allows to include the deontic concepts
of rights and duties for organization modeling in
an ER/UML-based information model.

5. AORML seems to be the first approach that al-
lows to systematically distinguish between exter-
nal and internal models, and to account for the
phenomenon of internalization.

6. AORML seems to be the first approach that em-
ploys and visualizes the important concept of re-
action rules for behavior modeling.

Weaknesses of AOR modeling in its current form
include:

1. The entire development path from analysis to
implementation is not fully defined yet.

2. AORML does currently not include the concept
of activities. It will be added, however, in future
work (a first sketch can be found in [TW01b]).

3. AORML does currently not include the concept
of goals which is fundamental in several other
approaches, such as [YM95, EP99].

4. AORML does currently not allow to model the
proactive behavior of agents. This type of behav-
ior, which is the focus of Artificial Intelligence
approaches to agents, is based on action plan-
ning and plan execution for achieving goals.

9 Conclusion

Similar to ‘object’, the term ‘agent’ denotes an ab-
straction that leads to more natural and more mod-
ular software concepts. It helps to capture more se-
mantics about natural and artificial systems an in-
formation system has to represent and to interact
with. We have presented an agent-oriented approach
to state and behavior modeling that allows an inte-
grated treatment of the static, dynamic and deontic
aspects of these systems, and thus offers a methodol-
ogy that is semantically richer than many other ap-
proaches.

In future work we plan to extend the AOR meta-
model by adding the meta-concepts of activities and
goals. We also plan to develop a suitable method for
agent-oriented requirements engineering. Further-
more, in two ongoing research projects (see [AGV,
Coh]), we develop extensions and tools for modeling
and running simulations of socio-technical, economic
and social systems based on the AOR metamodel.
For up-to-date information on AOR modeling, see
www.AOR.rezearch.info.

Acknowledgements

I am grateful to Kuldar Taveter and to the anony-
mous referees for their valuable comments on prelim-
inary versions of this article.

References

[AGV] AGV transport systems as cooopera-
tive and adaptive multiagent systems.
Research project. http://www.inf.fu-
berlin.de/inst/ag-ki/projects/fts/.

[AMI93] ESPRIT Consortium AMICE, editor.
CIMOSA – Open System Architecture
for CIM. Springer-Verlag, 2nd edition,
1993.

[BV99] G. Berio and F.B. Vernadat. New de-
velopments in enterprise modeling us-
ing CIMOSA. Computers in Industry,
40:99–114, 1999.

[Che76] P. Chen. The entity-relationship model
– toward a unified view of data.
ACM Transactions on Database Sys-
tems, 1(1):9–36, 1976.

[Cod70] E.F. Codd. A relational model of data
for large shared data banks. Communi-
cations of the ACM, 13(6), 1970.

[Coh] Coherence in automated and
semi-automated interaction
processes. Research project.
http://tmitwww.tm.tue.nl/staff/gwag-
ner/coherence.

[CPF+99] Y. Chen, Y. Peng, T. Finin, Y. Labrou,
S. Cost, B. Chu, R. Sun, and B. Wil-
helm. A negotiation-based multi-
agent system for supply chain man-
agement. In Proc. of Workshop
on Agent based Decision-Support for

26

Managing the Internet-Enabled Supply-
Chain, at Third Conference on Au-
tonomous Agents (Agents-99), Seattle,
WA, May 1999.

[EL99] M. Elammari and W. Lalonde. An
agent-oriented methodology: High-level
and intermediate models. In G. Wagner
and E. Yu, editors, Proc. of the 1st Int.
Workshop. on Agent-Oriented Informa-
tion Systems, 1999.

[EP99] H.E. Eriksson and M. Penker. Business
Modeling with UML: Business Patterns
at Work. John Wiley & Sons, 1999.

[FBT00] M.S. Fox, M. Barbuceanu, and
R. Teigen. Agent-oriented supply
chain management. Int. J. of Flexible
Manufacturing Systems, 12:165–188,
2000.

[FMHS96] K. Fischer, J.P. Mueller, I. Heimig, and
A.-W. Scheer. Intelligent agents in vir-
tual enterprises. In Proc. of PAAM96,
pages 205–223, 1996.

[GK94] M.R. Genesereth and S.P. Ketchpel.
Software agents. Communication of the
ACM, 37(7):48–53, 1994.

[GSP00] J. Gjerdrum, N. Shah, and L.G. Pap-
georgiou. A combined optimization
and agent-based approach for supply
chain modeling and performance assess-
ment. Production Planning and Control,
12:81–88, 2000.

[Har87] D. Harel. Statecharts: A visual for-
malism for complex systems. Science
of Computer Programming, 8:231–274,
1987.

[HR95] B. Hayes-Roth. An architecture for
adaptive intelligent systems. Artificial
Intelligence, 72:329–365, 1995.

[Jac94] I. Jacobson. The Object Advan-
tage. Addison-Wesley, Workingham
(England), 1994.

[KGR96] D. Kinny, M. Georgeff, and A. Rao. A
methodology and modeling technique for
systems of BDI agents. In W. Van de
Velde and J.W. Perram, editors, Agents
Breaking Away, volume 1038 of Lecture
Notes in Artificial Intelligence, pages
56–71. Springer-Verlag, 1996.

[McC82] W.E. McCarthy. The REA account-
ing model: A generalized framework
for accounting systems in a shared data
environment. The Accounting Review,
LVII(3):554–578, July 1982.

[MP92] Z. Manna and A. Pnueli. The Temporal
Logic of Reactive and Concurrent Sys-
tems. Springer-Verlag, 1992.

[OvDPB00] J. Odell, H. van Dyke Parunak, and
B. Bauer. Extending UML for agents.
In G. Wagner, Y. Lesperance, and E. Yu,
editors, Proc. of the 2nd Int. Workshop
on Agent-Oriented Information Systems,
Berlin, 2000. iCue Publishing.

[RG91] A.S. Rao and M.P. Georgeff. Mod-
eling rational agents within a BDI-
architecture. In J. Allen, R. Fikes, and
E. Sandewall, editors, Proc. KR-91, San
Mateo (CA), 1991. Morgan Kaufmann.

[Sea95] John R. Searle. The Construction of So-
cial Reality. Free Press, New York, 1995.

[Sho93] Y. Shoham. Agent-oriented program-
ming. Artificial Intelligence, 60:51–92,
1993.

[Sin99] M.P. Singh. An ontology for commit-
ments in multiagent systems. Artificial
Intelligence and Law, 7:97–113, 1999.

[SM96] M. Stonebraker and D. Moore. Object-
Relational DBMS. Morgan Kaufmann
Publishers, San Francisco, 1996.

[Tav99] K. Taveter. Business rules approach to
the modeling, design and implementa-
tion of agent-oriented information sys-
tems. In G. Wagner and E. Yu, editors,
Proc. of the 1st Int. Workshop on Agent-
Oriented Information Systems, 1999.

[TW01a] K. Taveter and G. Wagner. Agent-
oriented enterprise modeling based on
business rules. In Proc. of 20th
Int. Conf. on Conceptual Modeling
(ER2001), pages 527–540, Yokohama,
Japan, November 2001. Springer-Verlag.
LNCS 2224.

[TW01b] K. Taveter and G. Wagner. A multi
paradigm methodology for modelling
inter-enterprises business processes. In
Proc. of 2nd Int. Workshop on Con-
ceptual Modeling Approaches for e-
Business, held in conjunction with the

27

20th Int. Conf. on Conceptual Modeling
(ER2001), pages 205–223, Yokohama,
Japan, November 2001. Springer-Verlag.

[UKMZ98] M. Uschold, M. King, S. Moralee, and
Y. Zorgios. The enterprise ontology.
The Knowledge Engineering Review, 13,
1998.

[Wag98] G. Wagner. Foundations of Knowl-
edge Systems – with Applications
to Databases and Agents, vol-
ume 13 of Advances in Database
Systems. Kluwer Academic Publish-
ers, 1998. See http://www.inf.fu-
berlin.de/∼wagnerg/ks.html.

[War] J. Warmer. The future of UML.
http://www.klasse.nl/english/uml/uml2.pdf.

[WJK00] M. Wooldridge, N.R. Jennings, and
D. Kinny. The GAIA methodology for
agent-oriented analysis and design. Au-
tonomous Agents and Multi-Agent Sys-
tems, 3:285–312, 2000.

[WS00] J.C. Wortmann and N.B. Szirbik. ICT
issues among collaborative enterprises:
from rigid to adaptive agent-based tech-
nologies. Production Planning and Con-
trol, 12(5):452–465, 2000.

[WW99] Y. Wand and C.C. Woo. Ontology-
based rules for object-oriented enterprise
modeling. Technical Report 99-MIS-001,
Faculty of Commerce and Business Ad-
ministration, Univ. of British Columbia,
1999.

[YM95] E. Yu and J. Mylopoulos. From E-
R to ‘A-R’ – modeling strategic ac-
tor relationships for business process
reengineering. Int. J. of Intelligent and
Cooperative Information Systems, 4(2-
3):125–144, 1995.

[YS99] L. Yu and B.F. Schmid. A conceptual
framework for agent-oriented and role-
based workflow modeling. In G. Wagner
and E. Yu, editors, Proc. of the 1st Int.
Workshop. on Agent-Oriented Informa-
tion Systems, 1999.

[Yu95] E.S.K. Yu. Modeling Strategic Relation-
ships for Process Reengineering. PhD
thesis, Computer Science Department,
Univ. of Toronto, Toronto (Canada),
1995.

28

