
The PASSI and Agile PASSI MAS meta-models

Antonio Chella1,2, Massimo Cossentino2, Luca Sabatucci1, and Valeria Seidita1

1 Dipartimento di Ingegneria Informatica (DINFO)
University of Palermo

Viale delle Scienze, 90128 -Palermo- Italy
2 Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR)

Consiglio Nazionale delle Ricerche(CNR)
Viale delle Scienze, 90128 -Palermo- Italy

chella@unipa.it, cossentino@pa.icar.cnr.it, sabatucci@csai.unipa.it,
seidita@csai.unipa.it

Abstract. A great number of processes for multi-agent systems have
been presented in last years to support the different approaches to agent-
oriented design; every process is specific for a particular class of problems
and it deals with a specific MAS meta-model. These differences produce
inconsistences and overlaps: a MAS meta-model may define a term not
referred by another, or the same term can be used with a different mean-
ing.
We think that the lack of a standardization may cause a significant de-
lay to the diffusion of the agent paradigm outside research contexts, and
working for this unification goal, it is also necessary to unambiguously
define the terms of the agent model and their relationships thus obtain-
ing a unified MAS meta-model. In this work we propose the PASSI MAS
meta-model and the results of its adaptation to the needs of an agile
process (agile PASSI).

1 Introduction

Overall the years it has been accepted that agents, rather than just a technology,
represent a new paradigm that proved particularly suitable to approach complex
software systems.
In order to approach the design and the implementation of a multi-agent system
(MAS) in a rigorous way, many modeling methods have been explored: all of
these processes, during the development, address high level terms such as agent,
goal, role, task and collaboration: they represent the key issues of this type of
approach to the problem. The description of the elements involved in a design
process, and their relationships, represent one of the fundamental steps of defin-
ing a new design process: its MAS meta model (MMM) definition. Hence, the
design of a system may be seen as the instantiation of the correspondent MAS
meta-model in order to fulfill some specific problem requirements.



The various agent oriented design processes, presented in these years, are
significantly different: goal-oriented, situation-oriented, requirement-oriented are
examples of different philosophical approaches represented in some of the existing
agent oriented processes [1][2][3][4][5]. Each approach suggests a different way to
face modeling; this because the system is observed from different perspectives,
with the aim of modeling different aspects, considering a different theoretical
background or a specific application context. Besides each process forces the de-
signer to assign an implicit meaning to each MMM component and this is often
not coherent with the choices of other authors.
Even if this variety of methods may be viewed as a richness, the differences
among their meta-model components could create some perplexities when a de-
signer moves from a design process to another, or when two designers try to
communicate about a shared solution.

The purpose of this work is to present a description of the MAS meta-models
of two design processes that use a quite different approach to face the problem:
PASSI[3, 6] and Agile PASSI[7, 8]. PASSI is a requirement driven agent-oriented
iterative-incremental design process inspired by a multi-perspective approach
that requires a large number of models and views, while Agile PASSI is a method-
ology derived from PASSI, defined to meet the manifesto for Agile Software De-
velopment prescriptions [9].
This paper is structured as follows: in section 2 we present the PASSI and Agile
PASSI design processes while their meta-models are described in sections 3 and
4 where we also underline the most relevant differences among them. Finally a
glossary of all terms that are used in the MAS meta-model is reported in section
5.

2 PASSI and Agile PASSI Design Process

PASSI (Process for Agent Societies Specification and Implementation)[3, 6] is a
step-by-step requirement-to-code design process conceived for developing multi-
agent systems. It is characterized by two distinctive features: (i) it is requirement
driven and (ii) it integrates contributes from both the object-oriented and agent-
oriented paradigms.

PASSI is composed of five phases (or models) addressing different design
levels of abstraction.
The System Requirements Model represents an anthropomorphic model
of the system requirements in terms of agency and purpose. It consists of a
functional description of the system to achieve: the designer identifies system
requirements using use case diagrams, and then he separates the functionalities
in packages. Then, the designer explores responsibilities through role-specific
scenarios. In this phase the involved activities are not too different from other
system requirement phases coming from traditional object-oriented processes.
Hardly any term of the agent paradigm is used in this phase: system agents are
yet identified but in this stage they are only an abstract entity, used to separate



responsibilities and, except the autonomy, no other classical agent features are
referred, used or defined.

The next phase, the Agent Society Model, fully exploits the agent para-
digm: now an agent is seen as an autonomous entity capable of pursuing an ob-
jective through its autonomous decisions, actions and social relationships. The
activities of this phase aim to depict agent internal plans and social abilities
in order to model interactions and dependencies among entities of the society.
In the Ontology Description the designer depicts the domain ontology that is
used to capture the domain complexity and to structure agents’ knowledge and
communications content. Then, in the Role Description the designer defines the
life-cycle of each agent by looking at the roles it can play, at the collaboration
that it needs, and the communications in which it participates. Finally, if neces-
sary specific agent interaction protocols are designed to meet specific needs risen
from previous activities.

The Agent Implementation Model defines the implementing details of
the solution in terms of classes and methods. In this phase the designer uses con-
ventional class diagrams, to describe the static structure of the involved agents,
and activity diagrams or state charts, to describe the behaviour of individual
agents. From these diagrams the programmer can directly produce the source
code for a specific agent platform.

The Code Model is a representation of the solution at the code level while
the Deployment Model describes the distribution of the parts of the system
across hardware processing units, and their migration between processing units.

Agile PASSI [8, 7] derives from PASSI through the reuse of some of its parts
and it has been assembled complying a method engineering approach [10–12].
It is a light process created, according to the agile manifesto [9], with the aim
to front, in a short time, small-medium size systems. An agile process is easy to
understand and to use because it is principally code oriented; for these reasons
Agile PASSI comes to be well suited for those applications where coding is more
important code than documentation. It is also useful when the programmer
wants to reuse portions of design models and source code from other projects.

In order to be compliant with agile modeling principles [9, 13], Agile PASSI
is an iterative process; it is composes of five steps (a low number) and it strongly
involves users and customers during the development phases, especially during
the planning one.

The fragments (portions of the design process) we have extracted from PASSI
are: (i) Domain Requirements description (the description of system functional-
ities through use case diagrams), (ii) Agent Identification (the identification of
logically related sets of functionalities that are put under an agent’s responsibil-
ity), (iii) Domain Ontology description (the description of the agent knowledge
in term of concepts, predicates and actions), (iv) Code Reuse (a technique for
pattern reuse) and (v) Testing (single agent and society test).

This selection was done according to the PASSI philosophy; we have main-
tained use cases as the base for agents identification and we have not changed
the fundamental role of the ontology in the process. From the other side we



Fig. 1. The PASSI MAS meta-model

have respected the requirements for an agile process: low importance of high
level documentation and rapid code production. The result of the composition
of these fragments is a new process including five steps.

– Requirements, a model of the system requirements that is composed of
two activities (Planning and Sub-Domain Requirements Description).

– Agent Society, a view of the agents involved in the solution, their interac-
tions and their knowledge about the world. It is composed of two activities
(Domain Ontology Description and Agent Identification).

– Test Plan, the phase of tests planning according to the eXtreme Program-
ming rules [14].

– Code, a solution domain model at code level.
– Testing, the performing of the previous planned tests.

3 PASSI MAS Meta-Model

The description of the PASSI meta-model addresses three logical areas: (i) the
problem domain, (ii) the solution domain and (iii) the agency domain; they are
introduced in an order that reflects our choice of an agent approach for solution
refinement and modeling.
In the problem domain we include components coming from the world where
the software is going to operate: these are directly related to the requirements
analysis phase of the PASSI process. Then we introduce the agency domain com-
ponents; they are used to define an agent solution for the problem. Following this
approach, we implicitly say that we see the agent paradigm as a problem decom-
position and analysis instrument rather than a technological infrastructure for



systems implementation. This is motivated by the fact that most diffused agent-
platforms [15][16] are just object-oriented development frameworks allowing the
implementation of some agent-related concepts with a sufficient approximation.
Obviously a pure agent-oriented solution would include an agent-oriented imple-
mentation language but despite of some existing experiences (like Jack [17], that
is however still Java-based) we think technology is not mature for that. Just
to provide an example of the features to be expected from a complete agent-
oriented development language, we can consider inheritance that in a pure agent
perspective should be interpreted in a way that is substantially different from the
object-oriented one; it should focus on agent specific characteristics (like roles,
communications, knowledge) rather than on methods and attributes.
Finally, in the PASSI MMM solution domain, agency-level components are mapped
to the adopted FIPA-compliant implementation platform elements (we suppose
the platform supports at least the concepts of agent and task); this represents
the code-level part of the solution and it is the last refinement step.

Going into the details of the model, we can see that (Figure 1), the Prob-
lem Domain deals with the user’s problem in terms of scenarios, requirements,
ontology and resources. Scenarios describe a sequence of interactions among ac-
tors and the system (see section 5 for a complete definition of all MMM terms);
they are used to identify the requirements that the system should fulfill. Re-
quirements are represented with conventional UML use case diagrams. There
is a strong point behind these choices: a lot of designers already skilled with
such an approach are already present in different companies and can be more
easily converted to the use of an agent-oriented methodology if they are already
confident with some of the key concepts (and particularly the initial ones) used
within it. The ontological description of the domain is composed of concepts
(categories of the domain), actions (performed in the domain and effecting the
status of concepts) and predicates (asserting something about a portion of the
domain, i.e. the status of concepts). This represents the domain in a way that
is near to the classic structural representations produced in the object-oriented
analysis phase but it proves substantially richer than those. Resources are the
last element of the problem domain. They can be accessed/shared/manipulated
by agents. A resource could be a repository of data (like a relational database),
an image/video or also a good to be sold/bought.

The Agency Domain contains the components of the agent-based solution.
None of these is directly implemented; they are converted to the correspon-
dent object-oriented entity that constitutes the real code-level implementation.
In PASSI an agent is responsible for realizing some functionalities descending
from one or more functional requirements and respecting some non functional
requirement constraint (like for instance performance prescriptions). It lives in
an environment from which it receives perceptions (the related knowledge is
structured according to the designed domain ontology). Sometimes an agent has
also access to available resources and it is capable of actions in order to pursue
its own objectives or to offer services to the community.



Each agent during its life plays some roles. A role is a peculiarity of the social
behavior of an agent. When playing a role, an agent may provide a functional-
ity/service to other agents. The role concept is tightly related to the agent com-
munication capability (interactions among agents are uniquely based on com-
munications composed of messages seen as speech acts).
In PASSI, a task specifies the computation that generates the effects of a spe-
cific agent behavioral feature. It is used with the significance of atomic part for
composing the overall agent’s behaviour. This means that an agent’s behaviour
can be composed by assembling its tasks but the list of actions that are exe-
cuted within each task cannot be influenced by the behaviour planning. Tasks
are structural internal components of an agent and they contribute to define
the agent’s abilities; these cannot be directly accessed by other agents (auton-
omy) unless the agent offers them as a set of services. A communication is an
interaction among two agents and it is composed of one or more messages. The
information exchanged during a communication is composed of concepts, predi-
cates or actions defined in the ontology. The flow of messages and the semantic
of each message are ruled by an agent interaction protocol (AIP).
The last Agency Domain element (Service) describes a set of coherent function-
alities exported by the agent for the community.

The Solution Domain describes the structure of the code solution in the cho-
sen FIPA-compliant implementation platform (like FIPA-OS or JADE) and it is
essentially composed of two elements: (i) the FIPA-Platform Agent that repre-
sents the base class catching the implementation of the Agent entity represented
in the Agency domain; (ii) the FIPA-Platform Task that is the implementation
of the agent’s Task.

4 Agile PASSI MAS Meta-Model

Like the previous one, the Agile PASSI MMM (MAS meta-model) is partitioned
in three logical areas: (i) problem domain, (ii) agency domain and (iii) solution
domain. Agile PASSI was assembled starting from fragments extracted from
PASSI, so the selection of MAS components was based on these fragments fol-
lowing a particular design process [7] also considering the particular applications
the agile process was adopted to solve.

The Agile PASSI MAS meta-model is reported in Figure 2. An agile process
principally addresses code production, so in this case MAS meta-model compo-
nents are mainly centered on the agent and its related implementation parts.
Using Agile PASSI a multi-agent system is conceived following four principal
phases: planning, design, coding and testing; during the first two phases the
Problem Domain MAS meta-model elements are defined, they are: functional
and non functional requirements (they are used to describe the user point of
view on the problem solution), and domain ontology (composed of concepts,
predicates and actions). In this case requirements are not necessarily represented
through use cases diagrams because the planning phase can also be carried out



Fig. 2. Agile PASSI Meta-Model

informally (for instance orally), while ontology is necessary to model the agent’s
knowledge on the world and should be described as formally as in conventional
PASSI.

As regards the Agency Domain, obviously the agent is its central component
and it is conceived in the same way as it is in conventional PASSI; it is composed
of tasks representing significant (but not divisible) parts of its behavior and its
capability of pursuing an objective realizing system functionalities, besides it uses
communications to interact (communicate or request collaboration) with other
agents, each communication being composed of messages ruled by an interaction
protocol (like it is in PASSI).

The Solution domain is exactly the same of conventional PASSI since it is
composed of the Agent and Task implementation elements.

5 Glossary

In the following table a list of the elements used to compose the previous de-
scribed MAS meta-models is presented with a description of their specific mean-
ing.



Requirement A requirement represents a feature that the system to be
must exhibit, it can be a functional requirement such as
service or a non-functional requirement such as a constraint
on the system (or a specific part of it) performance.

Scenario A concrete, informal description of a single feature of the
system.

Service A service is a single, coherent block of activity in which an
agent will engage. A set of services can be associated with
each agent role.

Resource A concrete, tangible entity that can be acquired (also using
sensors), shared, or produced by agents.

Agent We consider two different aspects of the agent: during the
initial steps of the design, it is seen (this is the Agency Do-
main Agent) as an autonomous entity capable of pursuing
an objective through its autonomous decisions, actions and
social relationships. This helps in preparing a solution that
is later implemented referring to the agent as a significant
software unit (this is the Solution Domain FIPA-Platform
Agent).

More in details, an Agent is an entity which:
- is capable of action in an environment;
- can communicate directly with other agents typically us-
ing an Agent Communication Language;
- is driven by a set of functionalities it has to accomplish;
- possesses resources of its own;
- is capable of perceiving its environment;
- has only a partial representation of this environment in
form of an instantiation of the domain ontology (knowl-
edge);
- can offer services;
- can play several different (and sometimes concurrent or
mutually exclusive) roles.

Role A portion of the social behaviour of an agent that is charac-
terized by a goal (accomplishing some specific functionality)
and/or provides a service.

Task A task specifies the computation that generates the effects
of the behavioural feature. Its granularity addresses the sig-
nificance of a non decomposable group of atomic actions
that cannot be directly addressed without referring to their
belonging task.

Communication An interaction among two agents, referring an Agent Inter-
action Protocol and a piece of the domain ontology (knowl-
edge exchanged during the interaction). Usually it is com-
posed of several messages, each one associated with one
Performative.

Message An individual unit of communication between two or more
agents. A message corresponds to a communicative act, in
the sense that a message encodes the communicative act
for reliable transmission between agents. Each message It
is related to a Performative.



Agent Interac-
tion Protocol

A common pattern of conversations used to perform some
generally useful task. The protocol is often used to facilitate
a simplification of the computational machinery needed to
support a given dialogue task between two agents.

Performative It represents a verb that describes the action associated to
a content sent to recipients. It carries the meaning of the
message and what is the intention of the sender.

Ontology, con-
cept, action,
predicate

An ontology is an explicit specification of the structure of a
certain domain Ontologies therefore provide a vocabulary
for representing and communicating knowledge about some
topic and a set of relationships and properties that hold for
the entities denoted by that vocabulary.

FIPA-Platform
Agent

The software implementation of the Agent in the selected
(FIPA) platform

FIPA-Platform
Task

The software implementation of the Task in the selected
(FIPA) platform

References

1. Castro, J., Kolp, M., Mylopoulos, J.: Towards requirements-driven information
systems engineering: The tropos project. In: To appear in Information Systems,
Elsevier, Amsterdam, The Netherlands (2002)

2. Wooldridge, M., Jennings, N.R., Kinny, D.: The gaia methodology for agent-
oriented analysis and design. Journal of Autonomous Agents and Multi-Agent
Systems 3 (2000) 285–315

3. Cossentino, M., Potts, C.: A case tool supported methodology for the design of
multi-agent systems, Las Vegas (NV), USA, The 2002 International Conference on
Software Engineering Research and Practice, SERP’02 (2002)

4. DeLoach, S.A., Wood, M.F., Sparkman, C.H.: Multiagent systems engineering.
International Journal on Software Engineering and Knowledge Engineering (11)
231–258

5. Capera, D., Georg, J.P., Gleizes, M.P., Glize, P.: The amas theory for complex
problem solving based on self-organizing cooperative agents. In: Proc. of the 1st
International Workshop on Theory And Practice of Open Computational Systems
(TAPOCS03@WETICE 2003), Linz (Austria) (2003)

6. Cossentino, M.: From requirements to code with the passi methodology. In
Henderson-Sellers, B., Giorgini, P., eds.: Agent-Oriented Methodologies, Idea
Group Inc. (2005 (in printing))

7. Cossentino, M., Seidita, V.: Composition of a new process to meet agile needs
using method engineering. In Ed., E., ed.: LNCS Series. (2004) 36–51

8. Chella, A., Cossentino, M., Sabatucci, L., Seidita, V.: From passi to agile passi :
tailoring a design process to meet new needs. In: 2004 IEEE/WIC/ACM Interna-
tional Joint Conference on Intelligent Agent Technology (IAT-04), Beijing, China
(2004)

9. Beck, K., al.M. Beedle, van Bennekum, A., Cockburn, A., Cunningham, W.,
Fowler, M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Mar-
ick, B., Martin, R., Mellor, S., Schwaber, K., Sutherland, J., Thomas, D.: (Agile
manifesto) http://www.agilemanifesto.org.



10. Brinkkemper, S.: Method engineering: engineering the information systems devel-
opment methods and tools. Information and Software Technology 37 (1995)

11. Kumar, K., Welke, R.: Methodology engineering: a proposal for situation-specific
methodology construction. Challenges and Strategies for Research in Systems
Development (1992) 257–269

12. Saeki, M.: Software specification & design methods and method engineering. In-
ternational Journal of Software Engineering and Knowledge Engineering (1994)

13. Alliance, A.: (http://www.agilealliance.org)
14. Wells, D.: (Extreme programming - a gentle introduction) http://www. extreme-

programming.org.
15. Bellifemine, F., Poggi, A., Rimassa, G.: Jade - a fipa2000 compliant agent devel-

opment environment. In: Agents Fifth International Conference on Autonomous
Agents (Agents 2001), Montreal, Canada (2001)

16. Poslad, S., Buckle, P., Hadingham, R.: The fipa-os agent platform: Open source for
open standards. In: 5th International Conference and Exhibition on the Practical
Application of Intelligent Agents and Multi-Agents, Manchester, UK (2000)

17. Howden, N., Rnnquist, R., Hodgson, A., Lucas, A.: Jack summary of an agent in-
frastructure. In: Proc. of the 5th International Conference on Autonomous Agents.
(2001)


