
 An Introduction–) MaSE(Engineering sMultiagent System
written by Arnon Sturm

The Multiagent Systems Engineering (MaSE) is a general purpose methodology for
developing multi-agent systems that is founded on the basis software engineering
principles. MaSE divides the development process into two major phases: the analysis
phase and the design phase. For each phase MaSE provides a set of stages need to be
performed. Figure 1 presents the development process proposed by MaSE. The
analysis phase consists of the following stages: capturing goals, applying use cases,
and refining roles, and the design phase consists of the following stages: creating
agent classes, constructing conversations, assembling agent classes, and system
design. In the following we elaborate on the various stages.

Figure 1. MaSE development stages

The Analysis Phase
The purpose of the analysis phase is to provide a set of roles whose tasks meet the
system requirements, i.e., specifying what the system should do. According to MaSE,
the analysis phase consists of the following stages: capturing goals, applying use
cases, and refining roles.
• Capturing Goals

Creating
Agent
Classes

Requirements

Use Cases

Sequence
Diagrams

Deployment
Diagrams

Agent
Architecture

Capturing
Goals

Refining
Roles

Assembling
Agent
Classes

System
Design

Applying
Use Cases

Goal
Hierarchy

RolesConcurrent
Tasks

Conver-
sations

Agent
Classes

Constructing
Conversations

A
nalysis

D
esign

In this stage the system goals are being elaborated specified from the system point
of view and not from the user point of view. In MaSE, a goal is an abstraction of a
set of functional requirements. The stage of capturing goals comprises two sub-
stages: identifying the goals and structuring them in a hierarchy, in terms of goal
and their sub-goals is being constructed.

• Applying Use Cases
In this stage the system use cases are being specified. It is divided into two sub
stages: the creation of use cases and the creation of the sequence diagrams. A use
case is a set of interactions. It describes the general system behavior, i.e., what the
system should do. The transformation from the use cases specification to sequence
diagrams is straightforward; each entity becomes a role and information passing
becomes an event (or a message).

• Refining Roles
In this stage the system functional decomposition is determined. It is done by
producing a set of roles and their associated tasks. This stage consists of two sub-
stages: building the role diagram and specifying the tasks' behavior. The sources
for that stage are the goals determined in the first stage and the sequence diagrams
created in the second stage. A role can be derived from the roles determined
during the sequence diagram creation or can be formed directly from the goals
hierarchy. At any rate, each role should be associated with at least one goal
indicating that the role is responsible to achieve it (or them). In addition, each role
should have tasks that realize its goals. When building the role model the
interactions between the roles are specified by connecting their tasks. These links,
which are derived form the sequence diagrams created in the previous stage,
depict the protocols among the role. Upon completion of the role model each task
should be specified. The semantics of the tasks within MaSE is that each task runs
concurrently and independently of the other tasks within the model. The task
model in MaSE are specified using a finite state automaton and is called
concurrent task diagram.

The Design Phase
The purpose of the design phase is to specify the way the system-to-be should behave
and be constructed. That means, specifying how the system will achieve its goals. The
design phase consists of the following stages: creating agent classes, constructing
conversations, assembling agent classes, and system design.
• Creating Agent Classes

In this stage, the overall multi-agent system architecture in terms of agent and the
conversations among them is determined. Agent classes are created from the roles
define in analysis phase by assigning roles to agents. Each agent is associated with
at least one role. In addition to the agent classes, the conversations among them
are also specified utilizing the protocols defined in the analysis phase (the links
among tasks within the role model).

• Constructing conversations
In this stage, the designer defines the coordination protocols (i.e., conversations)
between agent couples. In particular, two communication class diagrams are
defined for each conversation. One diagram specifies the initiator behavior during
that conversation and the second one specifies the responder behavior during that
conversation. The communication class diagram is designed using a finite state
automaton. The detailed design of each conversion is derived from the relevant
concurrent task diagrams.

• Assembling Agent
In this stage the internal architecture of the agents is being specified. One can use
its own architecture to build an agent (e.g., BDI) or convert the tasks from the
previous stage into components. The agent architecture consists of the
components and the relationships among them. These components can be
specified recursively, i.e., a component may have sub-components, and may have
a finite state automaton which defines its behavior.

• System Design
This stage is aim at depicting the physical system architecture and the distribution
of the various agent classes' instances within that architecture.

Development Process
• Implementation Issues

MaSE also provides a class library called agentMOM that can be utilized for code
generation. Each of the MaSE design artifacts may be a specialization of the
relevant class from the agentMOM library.

• Development Process
MaSE follows the iterative development process principles. It means that any
stage can be repeated many times till the final design is achieved and at any stage
a designer may go back to a pervious stage.

• CASE Tool
MaSE is supported by a CASE tool called agent Tool. This tool has the capability
of performing the analysis and design activities determined by the MaSE process,
perform the validation of the various models, generate automatic transformation
of models, and generate skeleton code.

• Extensions
MaSE also supports the specification of mobility aspects and the definition of
ontology.

