
Contribution to AL3 AOSE TFG:

INGENIAS methodology and meta-models
Jorge J. Gómez-Sanz, Juan Pavón

{jjgomez,jpavon}@sip.ucm.es

Grasia! research group

Facultad de Informática

Universidad Complutense de Madrid

http://grasia.fdi.ucm.es

Introduction to INGENIAS

The purpose of INGENIAS is the definition of a methodology for the development of MAS, by
integrating results from research in the area of agent technology with a well-established
software development process, which in this case is the Rational Unified Process (RUP). This
methodology is based on the definition of a set of meta-models that describe the elements that
form a MAS from several viewpoints, and that allow to define a specification language for MAS.
The viewpoints are five: agent (definition, control and management of agent mental state),
interactions, organization, environment, and goals/tasks.

The integration of the INGENIAS MAS specification language with software engineering
practices is achieved by defining a set of activities that guide the analysis and design phases,
with the statement of the results that have to be produced by each activity. This process is
supported by a set of tools, which are generated from the meta-models specification. MAS
modelling is facilitated by a graphical editor, automatic code generation and validation tools.
The usability of this language and associated tools and its integration with software engineering
practices has been validated with several examples from different domains, such as PC
management, e-business, personal assistants, and collaborative filtering.

META-MODELLING

Though there may be previous interpretations of what meta-modeling is, in this document we
attend to the definition provided in the Meta Object Facilities (MOF) [OMG 2000] specification of
UML. This definition states that there are several levels in the definition of a language. In fact, it
defines four levels where different language grammars are defined and each level defines the
grammar to be used in the next level. This process could be understood as a backwards
stepwise abstraction from the information level. The process ends at the M1 level, which so far
has proven to be enough to UML.

Meta-Meta-model (built in)

MetaClass(“Register”,[MetaAttribute(“name”,String
), MetaAttribute (“Fields”,List<”Field”>)]
MetaClase(“Field”,...)

Register
(“Action”,[Field(“Company”,String),Field(“Price”,Real)])

Action(“Telefonica”,114.29)

Meta-meta-model
(M1)

Meta-model
(M2)

Model
(M3)

Information
(M4)

Figure 1. Meta-modelling levels according to [OMG 2000]

In INGENIAS we use the schema of Figure 1 to structure de definition of the diagrams.
However, we change the base M1 meta-meta-model and use a different one from MOF,

GOPRR [Lyytinen 1999], as we consider its concepts simpler than MOF and initially because
the availability of tool support. In INGENIAS, after different experiences with MOF, we realized
that most of the diagrams that we needed did not use most of the primitives of MOF, mainly
because we were not defining an object oriented language, but an agent modelling language. In
this sense, we have experienced that using entity-relationship diagrams is enough for defining
INGENIAS diagrams. And a suitable language to define this kind of diagrams is GOPRR.
GOPRR stands for Graph Object Property Relationship and Role, since these are the elements
used to define any entity-relationship diagram. GOPRR seems to be enough to define UML
diagrams. As a proof of that, METAEDIT+, a meta-case tool distributed by METACASE,
implements all UML diagrams, except UML sequence diagrams (however, INGENIAS supports
AUML sequence diagrams).

INGENIAS meta-models are defined in the M2 level. IDK implements M2 meta-models and is
used to generate M3 models. Therefore, instances of these meta-models are the concrete
diagrams that the developer defines (level M3) with the IDK. There is an extra level, the M4, that
is supposed to hold instances of M3 models. In INGENIAS we leave this instantiation to the
developer, but provides a partial support for it.

Figure 2 shows an example of a meta-model M2 which is part of the agent meta-model. It is
represented using a UML class diagrams and stereotypes. GOPRR primitives appear as
stereotypes of the different elements of the diagram. Basically, the diagram says that an agent
is an autonomous entity that pursues goals. Goals are mental entities that form part of the
mental state of the agent. An agent plays roles and, in this way, assume responsibilities. An
agent uses tasks to modify its mental state and the environment. These tasks are assigned to
agents directly or through roles played. Changes in the Mental state are controlled using the
mental state manager. This entity takes care of the consistency of the mental state and provides
the primitives to change it. Decision procedures of the agent are built in the mental state
processor.

INGENIAS Meta-models

INGENIAS meta-models define five kinds of elements in order to define a MAS. So INGENIAS
uses five meta-models that describes the corresponding types of diagrams. Entities of these
meta-models, i.e. meta-entities, are not unique in the sense that anyone could be used in any of
them. As a result, an entity, instance of a meta-entity, could appear in different diagrams.

• Organization meta-model. It defines organization diagrams. The organization is the
equivalent of the MAS architecture. An organization has structure and functionality. The
structure is similar to the one stated in AALAADIN framework [Ferber 1998]. As a
developer, the organization is defined taking into account how agents should be
grouped. Functionality is determined when defining the goals of the organization and
the workflows it should execute.

• Environment meta-model. It defines environment diagrams. The environment is what
surrounds the MAS and what originates agent perception and action, mainly. As a
developer, one of the first tasks is to identify system resources, applications, and
agents. System resources are represented using TAEMS [Wagner 2001] notation.
Applications are wrappers of whatever is not an agent or a resource, and could be
understood as the equivalent of objects in INGENIAS. Using these elements, a
developer should be able to define how the MAS interact with the system.

• Tasks/Goals meta-model. It describes how the mental state of agents change over the
time, what is the consequence of executing a task with respect the mental state of an
agent, how to achieve goals, and what happens when a goal cannot be achieved. It
also gathers dependencies among different system or agent goals.

• Agent meta-model. It defines primitives to describe a single agent. It can be used to
define the capabilities of an agent or its mental state. The mental state is an aggregate
of mental entities that satisfy certain conditions. The initial or intermediate mental state
is expressed in terms of mental entities such as those of AOP [Shoham 1993] and BDI
[Kinny 1997].

• Interaction meta-model. It describes two or more agents interacting. The interaction
behavior is described using different languages, such as UML collaboration diagrams,

GRASIA interaction diagrams, or AUML protocol diagrams. An interaction has a
purpose that has to be shared or partially pursued by interaction participants. Usually it
is related with some organizational goal.

An extensive detailed list of the INGEINAS diagrams and entities, as well as relationships, can
be found in the ingenias web site: http://grasia.fdi.ucm.es/ingenias/metamodel/.

Meta-model example: agent meta-model

The agent meta-model defines an isolated agent. The agent concept underlying this meta-
model is the one defined by Newell [Newell 1982]. An agent is a program that exists at the
knowledge level. It has a physical body with which it can act in the environment, a knowledge
body which contains whatever the agent knows at some time, and a set of goals. Also, an agent
behaves according to the principle of rationality which says if an agent has a knowledge that
one of its actions will lead to one of its goals, then the agent will select that action. Following this
definition, an agent has goals and there should be some association type between agent tasks
and goals.

<<Object>>
Agent

<<Object>>
Goal

<<Property>>
Identity

<<Object>>
Autonomous Entity

<<Relationship>>
GTPursues

<<Object>>
Agent

<<Object>>
Goal

<<Property>>
Identity

<<Object>>
Autonomous Entity

<<Relationship>>
GTPursues

<<Object>>
Agent

<<Object>>
Goal

<<Property>>
Identity

<<Object>>
Autonomous Entity

<<Relationship>>
GTPursues

<<Relationship>>
AHasMS

<<Object>>
Mental State

<<Relationship>>
AHasMS

<<Object>>
Mental State

<<Object>>
Mental State Processor

<<Relationship>>
AHasMSManager

<<Object>>
Mental State Manager

<<Relationship>>
AHasMSProcessor

<<Object>>
Mental State Processor

<<Relationship>>
AHasMSManager

<<Object>>
Mental State Manager

<<Relationship>>
AHasMSProcessor

<<Relationship>>
AHasMSManager

<<Object>>
Mental State Manager

<<Relationship>>
AHasMSProcessor

<<Relationship>>
WFPlays

<<Object>>
Role

<<Relationship>>
WFPlays

<<Object>>
Role

<<Role>>
WFResponsableO

<<Relationship>>
WFResponsible

<<Object>>
Task

<<Role>>
WFResponsableO

<<Relationship>>
WFResponsible

<<Object>>
Task

<<Object>>
Mental Entity

<<Relationship>>
GTAffects

<<Object>>
Mental Entity

<<Relationship>>
GTAffects

Figure 2. Meta-model for the agent. Stereotypes denote the GOPRR primitive

Figure 2 shows the meta-model for defining agents. In the definition is fundamental to identify
the tasks that the agent has to execute (relationship WFResponsible) and the result of these
tasks affects existing mental entities (relationship GTAffects). There is a taxonomy to
differentiate the ways in which the result of one task may affect to the agent’s mental state. The
relationship GTSatisfies means that the result of one task implies that a goal has been reached,
and the relationship GTFails means that the result of one task implies that a goal is considered
as unreachable. On the other side, the agent plays roles in several workflows in the system.
The association of an agent to a role (WFPlays) means that the agent acquires all the
properties and responsibilities assigned to the role (goals and interactions in which the role
participates).

The agent has a mental state which is used to decide what to do next (MentalStateProcessor).
This mental state is managed by the MentalStateManager. This entity is in charge of
adding/removing knowledge as well as consistence maintenance. Agent’s mental state consists
of control entities and information entities. Control entities specify what is expected from the
agent, whilst information entities describe the state of the world as seen by the agent. From
these entities, the most fundamental is the objective, which represents a goal for the agent. The
objective is an entity with a state that specifies whether it has been satisfied, will never be
satisfied, or is in process of being satisfied (solving).

Meta-model example: organization meta-model

An organization in MAS characterizes a group of agents that work together towards a common
goal (purpose). The organization may consist of only one agent or several groups of co-
operating agents, which form part of organizational structures that establish relationships
among them.

The organization structure aspects of the organization meta-model, shown in Figure 3, intends
to structure agents in the system and reflect the goals of the system, the ways to achieve them
(resources and tasks), which agents have responsibilities and their role in the global process.

<<Object>>
Agent

<<Object>>
Role

<<Object>>
Resource

<<Object>>
Application

<<Object>>
Agent

<<Object>>
Role

<<Object>>
Resource

<<Object>>
Application

<<Object>>
Organization

<<Object>>
Group

<<Object>>
WorkFlow

<<Object>>
Autonomous Entity

<<Relationship>>
OContainsOrganization

<<Relationship>>
OContainsWorkFlow

<<Relationship>>
OContainsGroup

<<Role>>
ROContainsGroupD

<<Relationship>>
ODecomposesWorkflow

<<Relationship>>
ODecomposesGroup

Figure 3. Elements in the Organization meta-model that describes Organization Structure.
Stereotypes denote the GOPRR primitive

Organization structures support another level of structuring in the organization. The idea is
similar to departmental organization (department as organization structure) in enterprises
(organizations). In this description, an organization is an autonomous entity that has purposes
and is composed of groups and workflows. Workflows express the functionality of the
organization. On the other hand, Organization groups represent actors that participate in the
workflows structured in functional departments.

Development Process

INGENIAS also defines a development process, the INGENIAS Development Process (IDP). By
following IDP, a developer generates the full specification of a MAS. To specify the IDP we use
activity diagrams that describe the kind of results to obtain.

Building each meta-model can be achieved by performing a set of activities in the software
development process that leads to the final MAS specification. Initially, activities are organised
and represented with UML activity diagrams showing dependencies between them. Instead of
showing these activities here, Figure 4 summarises the results required in each phase of the
Unified Software Development Process. Meta-models are used as specification language of the
MAS the same way as UML does for object oriented applications.

PHASES
Inception Elaboration Construction

Analysis o Generate use cases and identify
actions of these use cases with
interaction models.
o Sketch a system architecture with an
organization model.
o Generate enviroment models to
represent results from requirement
gathering stage

o Refined use cases
o Agent models that detail elements of the
system architecture.
o Workflows and tasks in organization
models
o Models of tasks and goals to highlight
control constraints (main goals, goal
decomposition)
o Refinements of environment model to
include new environment elements

o Refinements on
existing models to cover
use cases

W
O

R
K

FL
O

W
S

Design o Generate prototypes perhaps with
rapid application development tool such
as ZEUS o Agent Tool.

o Refinements in workflows
o Interaction models that show how tasks
are executed.
o Models of tasks and goals that reflect
dependencies and needs identified in
workflows and how system goals are
achieved
o Agent models to show required mental
state patterns

o Generate new models

o Social relationships
that perfect organization
behaviour.

Figure 4. Results to be obtained in each phase of the development process

Tools and references

INGENIAS support tools, the INGENIAS Development Kit, is distributed from
http://ingenias.sourceforge.net

INGENIAS methodology can be reviewed in our official web site, http://grasia.fdi.ucm.es,
http://ingenias.sourceforge.net

INGENIAS meta-models are accesible in http://grasia.fdi.ucm.es/ingenias/metamodel

Published papers about INGENIAS are [Pavón 2003], where the methodology is described,
[Fuentes 2003; Fuentes 2004] present validation and verification approaches based on social
theories, [Gomez-Sanz 2002] presented meta-models of INGENIAS, and [Gomez-Sanz 2002]
presented an example of modelling of INGENIAS and its development process.

Case studies

INGENIAS Development Kit comes with several case studies that show how to use the
methodology:

• Juul Bookseller. It describes with agents a e-business real situation of a bookseller
that has special agreements with university students and professors.

• Quake. It models a prototype developed in the GRASIA group of bots coordinating
themselves using natural language in the QUAKE game. This specification was
contributed by Guillermo Jimenez as research work in our Ph.D. courses.

• Robocode. It models a robot in the robocode game from IBM. This example has two
files: robocode-inception.xml is the result obtained in the inception stage following the
INGENIAS Development Process (IDP); and robocode-elaboration.xml is the result
obtained in the inception stage of the IDP.

• Collaborative Filtering. This example is not fully documented, though it is the largest.
It models a community of agents that filter information for their users.

References

[Ferber 1998] Ferber, J. and O. Gutknecht (1998). A Meta-Model for the Analysis and Design of
Organizations in Multi-Agent Systems, Proceedings of the Third International Conference on
Multi-Agent Systems (ICMAS98), IEEE CS Press.

[Fuentes 2003] Fuentes, R., J. J. Gómez-Sanz and J. Pavón (2003). Activity Theory for the
Analysis and Design of Multi-Agent Systems. Proceedings of the Fourth International Workshop
on Agent Oriented Software Engineering (AOSE 2003), . Springer Verlag.

[Fuentes 2004] Fuentes, R., J. J. Gómez-Sanz and J. Pavón (2004). Towards Requirements
Elicitation in Multi-Agent Systems. In Proceedings of the 4th International Symposium From
Agent Theory to Agent Implementation.

[Gomez-Sanz 2002] Gomez-Sanz, J. J. and J. Pavon (2002). Meta-modelling in Agent Oriented
Software Engineering. LNAI 2527: 606-615.

[Gomez-Sanz 2002] Gomez-Sanz, J. J., J. Pavon and F. Garijo (2002). Meta-modelling of Multi-
Agent Systems, ACM.

[Kinny 1997] Kinny, D., M. Georgeff and A. Rao (1997). A Methodology and Modelling
Technique for Systems of BDI Agents. Australian Artificial Intelligence Institute.

[Lyytinen 1999] Lyytinen, K. S. and M. Rossi (1999). METAEDIT+ --- A Fully Configurable Multi-
User and Multi-Tool CASE and CAME Environment, Springer-Verlag.

[Newell 1982] Newell, A. (1982). "The knowledge level." Artificial Intelligence 18: 87-127.

[OMG 2000] OMG (2000). MOF. Meta Object Facility (specification).

[Pavón 2003] Pavón, J. and J. Gómez-Sanz (2003). Agent oriented software engineering with
INGENIAS. International Central and Eastern European Conference on Multi-Agent Systems,
Springer Verlag.

[Shoham 1993] Shoham, Y. (1993). "Agent Oriented Programming." Artificial Intelligence 60:
51-92.

[Wagner 2001] Wagner, T. and B. Horling (2001). The Struggle for Reuse and Domain
Independence: Research with TAEMS, DTC and JAF, Proceedings of the 2nd Workshop on
Infrastructure for Agents, MAS, and Scalable MAS.

