
DRAFT v.2.2

REQUEST FOR COMMENTS
Guidelines, Techniques and Modelling Artifacts

at the Analysis Stage of AOSE Methodologies to
Deal With Complexity�

Joaqúın Peña and Rafael Corchuelo

The Distributed Group Seville
University of Seville
ETSI Informática

Avda. de la Reina Mercedes, s/n. Sevilla 41.012 (Spain)
Phone: +34 954 55 38 65, Fax: +34 954 55 71 39

E–mail: joaquinp@lsi.us.es, web page: www.tdg-seville.info

Abstract Complexity is one of the main challenges of the Agent tech-
nology. In the Agent Oriented Software Engineering (AOSE) field many
authors has developed techniques to palliate this problem. In this request
for comments, we propose a a set of guidelines, techniques and modelling
artifacts which we think should be used at the analysis stage to conquer
complexity. Some of these features are present in some methodologies,
has been only identified or even have not been identified.

With this request for comments, we intend to establish some consen-
sus in the elements that AOSE community see as appropriate. With
this purpose we have developed an online form to weigh each feature
up available at http://www.tdg-seville.info/AOSE-RFC. The purpose of
this document is to detail and motivate each of these elements in an
abstract and methodology–independent way.

1 Introduction and Motivation

The organisational metaphor has been proved one of the most appropriate tools
to engineer predictable Information Multi-Agent Systems (hereafter MAS). This
metaphor is used by many researches to guide the analysis and design of MASs,
e.g. [9,11,20].

In Agent Oriented Software Engineering (hereafter AOSE) ”organisation” is
a polysemous term that must be treated carefully. A MAS organisation can be
observed from two different point of views:

� The work reported in this article was partially supported by the Spanish Ministry
of Science and Technology under grant TIC2003- 02737-C02-01, and Castilla–La
Mancha Local Government under grant PCB-02-001.

the acquaintance point of view it shows us the organisation as the set of
interaction relationships between agents.

structural point of view The later shows us agents as artifacts that belong
to sub-organisations, groups, teams. In this view agents are also structured
into hierarchical structures showing the social structure of the system.

In order to clearly distinguish between both views, the former is called Ac-
quaintance Organisation, and the later is called Structural Organisation [2]. No-
tice that both views may relate, but they show the organisation from radically
different point of views: a relationship between several agents in one of them,
do not necessarily implies a relationship in the other. For example, the group of
teachers of a subject are grouped in a team because they teach the same subject,
but it does not necessarily implies any acquaintance relationship between them
regarding the subject.

Complexity1 is one of the main problems of AOSE. Many authors agree on
that the main source of complexity of MASs is consequence their interacting
nature of agents, e.g. [6,8]:

Complexity is caused by the collective behaviour of many basic inter-
acting agents. James Odell [8]

As a matter of fact, to properly conquering complexity, modelling process
should be focused on interactions with out taking into account structural con-
straints that may further complicate our task. If acquaintance organisation is
modelled independently from structural organisation the set of acquaintance re-
lationships can be mapped over the structural organisation (see Section 6).

In [6] Jennings identify the three main principles to manage complexity:
abstraction, decomposition and organisation/hierarchy2 [6]:

Abstraction: It is based on defining simplified models of the systems that
emphasises some details avoiding others. It is interesting since it limits the
designer scope of interest and the attention can be focused on the most
important details at a given time.

Decomposition: is based on the principle “divide and conquer”. It helps to
limit the designer scope to a portion of the problem.

Composition: It consists on identifying and managing the inter-relationships
between the various subsystems in the problem. It makes possible to group
together various basic components and treat them as higher-level units of
analysis, and, provides means of describing the the high–level relationships
between several units.

Unfortunately, current AOSE solutions do not cover all these perspectives
but subgroups of them.
1 Complexity is a vague term that must be further described. See Section 2, Applica-

bility Context, for a detailed discussion.
2 Notice that hereafter we call it Composition in order to differentiate it from the

organisation term in AOSE

We think that the modelling process should base on previous principles to
properly conquer complexity. As a result of focusing on interactions and princi-
ples bellow, we propose a set of features that AOSE methodologies must provide
in the analysis stage to conquer complexity. These features are divided into:

Guidelines: Indicate the way in where modelling artifacts and techniques should
be used, that is to say, best practices to deal with complexity.

Techniques: Procedures that allows to transform models.
Modelling artifacts: Icons used to graphically represent the system.

The set of features we present in the rest of this document intend to deal
with complexity emphasising:

1. Modelling process is focused on interactions and thus on acquaintance or-
ganisation without taking into account structural constraints to later, map
the former onto the later.

2. The three principles to deal with complexity
3. Guidelines, techniques, and modelling artifact to support a layered specifi-

cation of the system by means of top-down and bottom–up approaches to
obtain layers.

4. Modularity of description
5. Reuse
6. Traceability between requirement and analysis, and between analysis and

design.

The final purpose of this document is to establish which of the features
identified are relevant to deal with complexity and which are their relevance
degree. Later, we are going to study current methodologies along with the results
of this request for comments in order to establish quantitatively the degree of
complexity coverage current methodologies provide.

This paper is structured as follows: Section 2 shows the features of systems
where this work can be applied. Section 3 summarises the structure of the RFC.
Section 4 shows features needed regarding the abstraction principle; Section 5
shows features needed regarding the decomposition principle; Section 6 shows
features needed regarding the composition principle. And finally, Section 7 is a
glossary of terms used in this document.

2 Applicability Context

In the field of complex organisational knowledge exchange, decision-making,
strategy, and policy-making, Snowden et al. proposed the Cynefin Framework
which clarifies complexity term providing a taxonomy of a knowledge–based or-
ganisation regarding complexity and predictability [19]. This taxonomy divide
an organisation into the following domains:

1) Ordered Domain: Stable cause and effect relationship exist. In this domain
the behaviour of the organization can be established as a cause/effect chain.
It represents the predictable part of the system. This domain is further
divided into:
1.2) Known Domain: Every relationship between cause and effect are

known. The part of a MAS in this domain is clearly predictable and
can be easily modelled.

1.1) Knowable Domain: While stable cause and effect relationships exist
in this domain, they may not be fully known. In general, relationships
are separated over time and space in chains that are difficult to fully un-
derstand. The only issue is whether we can afford the time and resources
to move from the knowable to the known domain.

2) Un-ordered: Un–Stable cause and effect relationship exist between interac-
tions in the system. It represents the unpredictable part of the system. This
domain is also further divided into:
2.1) Complex Domain: There are cause and effect relationships between

the agents, but both the number of agents and the number of relation-
ships defy categorization or analytic techniques. Unfortunately, relation-
ships between cause and effect exist but they can not be predicted. This
domain presents retrospective coherence. That is to say, coherence can be
only established by analysing past history of the system. Unfortunately,
future directions, although coherent, can not be predicted.

2.2) Chaos Domain: There are no perceivable relationships between cause
and effect, and the system is turbulent; we do not have the response time
to investigate change.

Our approach is specially tailored to deal with complicated organisations at
the ”Ordered Knowable Domain” bringing it to the Known Domain. Regarding
Complex domain, some of the mechanisms we propose could be also useful to
model past patterns with their preconditions and retrospective history in order to
infer the rules that will induce to emerge future desirable interactions patterns.

For these domains, we focus only on the analysis stage of multi–agent sys-
tems where exist Correlation between agents (exists joint information) and whose
agents acts Coordinately (implies a causal process where communication between
agents exists either directly or indirectly through the environment). We take
into account agent’s and system’s goals thus covering system that coordinates
by Contention (agents that coordinate with contradictory goals) or by Cooper-
ation (agents with non–contradictory goals). The kind of system we focus also
must present a certain degree of Congruence (agents goals fulfill system goals
even when a Contention mechanisms exits). Hence, in the kind of system we
focus agents must relates Coherently (the relation among the agents that yields
Congruence is Coherence). All the Co–X terms we use can be found [12]). The
guidelines, techniques and modelling artifacts we propose are also applicable to
open system where we know interactions patterns at modelling time but not the
concrete agents who participate on them.

3 Structure of the RFC

The request for comments is structured into three sections, one for each principle
to deal with complexity. Each of them are also divided into two sub–sections
covering the static and the dynamic aspects of modelling:

The acquaintance aspect: which models the relationships between agents in
the system from the interaction point of view, e.g. a seller’s bank agent is
linked with a buyer’s bank agent by means of a relationship that represents
that they must interact to perform a money transfer. Notice that this differs
from the structural organisation models where we represent teams, depart-
ments, relations indicating than an agent is subordinate of other, and so
on. Hereafter, when we use the term organisation, we refer acquaintance
organisation, and not structural organisation.

The behaviour aspect: which models the order of apparition of these rela-
tionships over time, e.g. in a online store, first the items to be purchased are
chosen (order items relationship) to later purchase these items (order money
transfer relationship), etcetera.

In Table 1, we show a summary of the features identified. Next sections detail
each of the features that will be asked in the online–form. Each feature is marked
as sentences in italic–bold font with an icon that show if it is a guideline (), a
technique (), or a modelling artifact ().

The online request for comments can be found at www.tdg-seville.info/AOSE-
RFC. Each feature have only to be weighted up with two criteria:

– The agreement level : it ranges from 0 to 100, where 0 implies that you are
totally disagree with the feature, and 100 implies that you are totally agree.

– The ability to conquering complexity: it ranges from 0 to 100, where 0 implies
that the feature makes no sense to conquer complexity, and 100 implies that
it is an essential element to conquer complexity.

4 Abstraction

– A.0.1 Interactions must be abstracted since: agents interact
by means of abstract knowledge level relations and they are the
main source of complexity. Furthermore, the analysis stage must
be focused on interactions
Agents interact with others by means of knowledge level relationships. Mod-
elling an implementing such interactions must be done at a high level of ab-
straction focusing on knowledge exchange [10]. Hence, techniques to model
and implements them are needed at the acquaintance and behaviour aspects.

– A.0.2 Maintaining several abstraction layers allows us con-
quering complexity iteratively. This process should be done by de-
composition and composition

A.1.1 Multiparty Interactions

A.1.2 Internal details of interaction optional

A.1.3 Abstraction of roles, services, and knowledge of

interactions

A.1.4 Interactions first class modelling element

A.1.5 Interaction attributes: interaction goal, roles goals, and

interaction patterns

A.1.6 View of knowledge consumed/produced by interactions

Structural

Aspect

A.1.7 Ontology of an interaction

A.2.1 Behaviour descriptions based on multiparty interactions

A.2.2 (i) Role behaviour model and (ii) acquaintance

organisation behaviour model

Abstraction

Behavioural

Aspect
A.2.3 Technique to transform the whole behaviour model to a

single role behaviour model and vice versa

D.1.1 Two levels of decomposition: (i) interaction model

decomposition, and (ii) interaction decomposition

D.1.2 Decomposition by Requirement Goals

D.1.3 Interactions must be linked with requirement goals to

provide traceability between requirements and analysis

D.1.4 Hierarchical goal diagrams guide the decomposition

Techniques

to

Decompose

D.1.5 Decomposition by dependencies analysis

D.2.1 Roles

D.2.2 Environmental Roles and Passive Roles

D.2.3 Technique to extract acquaintance aspect of a role

D.2.4 Technique to extract behaviour aspect of a role

D.2.5 Technique to sequence decomposed interactions

D.2.6 Traceability models

D.2.7 “Refine” and “composition” associations for interactions

D.2.8 Roles, services and knowledge “refine” and “composed”

associations

D.2.9 Decomposed models must be modelled without taking

into account details on other problems

D.2.10 Parameterised Interactions

D.2.11 Instantiation rules of interaction models

D.2.12 Agents dynamic role playing diagrams

D.2.13 Instantiation rules allows to model open system

Decomposition

Techniques

to Support

D.2.14 Distinguish between: analysis organisation and design

organisation

C.1.1 Technique to merge interactions and roles

C.1.2 To step to design, analysis organisation must be mapped

onto the design organisation using composition
Structural

Aspect
C.1.3 To identify interaction models instantiation rules we

must compose them

C.2.1 Behaviour composition must be done over: (i) behaviour

of roles, or (ii) over whole behaviour model

C.2.2 Techniques to compose the whole behaviour of several

interaction models

C.2.3 Techniques to compose several role behaviour models

C.2.4 Techniques to compose behaviours: sequential

composition, parallel composition and composition by

interleaving

C.2.5 Behaviours composition must be based on multiparty

interactions of a certain granularity when role interleaving is

needed

Composition

Behavioural

Aspect

C.2.6 We must provide techniques to isolate the behaviour of a

role: (i) to compose it, (ii) to obtain it from a whole behaviour

model obtained by whole behaviour composition

 Modelling Artifacts Guideline Technique

Figure 1. Summary of RFC

Furthermore, maintain several abstraction levels with consistent descriptions
and techniques to abstract, refine and modularise them are crucial tools
to deal with complexity. Top layers show us abstract models providing an
overview of the whole system focusing on more important aspects. Bottom
layers give us means for detailing top layers in order to have enough detail to
reach a code models of the system. The completion of layers is usually done
in an iterative way where abstract layers are refined to produce bottom layers
and bottom layers are abstracted to produce top layers. Hence, techniques
to perform a top–down and bottom–up approaches are needed to maintain
these abstraction layers.
Abstraction mechanisms presented above provide means for maintaining
top–layers. Furthermore, techniques to abstract or refine models must be
provided which are presented in Sections 5 and 6.

Following, we motivate modelling artifacts, techniques and guidelines to ap-
ply abstractions to acquaintance and behavioural aspects.

4.1 Acquaintance Aspect

– A.1.1 Multiparty Interactions: Interactions must be multiparty since
it allows us to model high–level social relationships
At the acquaintance aspect, the acquaintance organisation of a large MAS
may contain a huge number of relationships between agents. Furthermore,
these knowledge level relationships usually relates more than two agents.
If we model relationships between agents by means of biparty links we are
forced to decompose mentally n-party relations where n > 2 thus decreasing
the level of abstraction from the beginning. For example, a relationship that
relates three agents using multiparty interactions can be modelled as a single
element, but if we limit it cardinality to biparty, we have to use at least two
links decomposing mentally it and entering into the relationships details.
This motivates the need for relationships between an arbitrary number of
agents in order to provide an abstraction mechanism to deal with complexity.

– A.1.2 Details on how interactions are carried out must be op-
tional
Furthermore, these relationships are not accurately known at first modelling
stages. For example, at a first approach to a purchase relationship we do not
accurately known how is is going to be carried out. If we have to model how
it is carried out, we need a deep knowledge of the agents involved what is
not possible at analysis stage and counterproductive to maintain an abstract
descriptions. This argue for descriptions techniques that do not force us to
describe how they are carried.

– A.1.3 Abstract roles, knowledge and services: Abstraction mech-
anisms must be provided for roles, services and knowledge of interactions
Besides, these relationships are one of the main features of agents since a
single agent make no sense isolated. Hence, such relationships must be seen

as first class modelling elements that, without detailing how they are car-
ried out, must provide us some information describing their most important
abstract features. Defining an interaction involve the definition of a set of
agents represented as the role they play on the interaction3, the services they
must provide to the rest of participant to carried it out, and the knowledge
that each participant manage. In order to model interaction abstractedly all
of these elements must be described from a high level of abstraction:
Role abstractions It consists on a role played by an agent which repre-

sents an entire organisations, other system, a legacy systems, and so on.
For example, a role banker may represent a complex organisation which
when refined may involve several agents. Several role abstraction may be
applied, see [11] for a summary of these techniques.

Services Abstractions It consists on abstracting the definition of services
provided by agents roles to the group by using pre and post–conditions
(Notice that services can be viewed as interactions with an unique per-
former). For example, banks agents may provide an update funds service
to manage the modification of funds which when refined may require a
database access database with several queries and updates. It allows to
not detail interactions internally.

Knowledge Abstractions: It consists of representing the knowledge owned
by each agent in an abstract way at stages where details are not known.
For example, banks’ agents may own the knowledge about their account
which we can represent abstractly as knowledge entity called account. ac-
count represents abstractly all the knowledge that agents must manage
about accounts which refined my contain knowledge about the account
number, the funds, the credit availability, etc.

– A.1.4 Multiparty interactions must be first class modelling el-
ements
Interactions must be seen as first class modelling elements since they are the
main source of complexity and one of the most important features of agents.

– A.1.5 Interaction attributes: interaction goal, roles goals, and
interaction pattern. As first class modelling elements, interaction must
own attributes such as the goal of the interaction, the goal of its roles, its
participants and the interaction pattern
As first class modelling elements, interactions must also own attributes: goal
of the interaction which model a high level system goal. Participants must be
also decorated with the goal they follow in the interaction. Thus, interactions
relates system and agents goals (an agent has many goals as roles they play)
clarifying the Congruence of the system. Interactions must be also attached
with the interaction pattern using Co–X terms defined on [12] (cooperation
or contention, coordination by conversation, construction, command, con-
straint,etcetera).

3 we refer agents of an interaction as the role they play on it since it promotes decom-
position. See Section 5 for a detailed discussion

– A.1.6 View of knowledge consumed/produced by interactions
Multiparty interactions must be decorated with the knowledge consumed/produced
by each role.
Since agents interactions take place at the knowledge level, we should de-
scribe the knowledge and resources consumed/produced by each role in the
interaction. Notice that it provides some information about the interactions
internals, but without detailing how the process is carried out.

– A.1.7 Ontology of an interaction: The model of knowledge con-
sumed/produced in interactions must be sound, thus ontologies must be at-
tached to interactions
These knowledge entities or resources can be modelled abstractedly until we
have enough understanding of the system to refine them, however models
must be complete at any abstraction layer. Representing the knowledge con-
sumed/produced without any ontology that defines this knowledge is mean-
ingless, thus techniques to do it are needed. The ontology of an interaction
although describes the common knowledge that agents must manage to be
able to engage in the problem resolution represented by it.

4.2 Behaviour Aspect

– A.2.1 Behaviour descriptions based on multiparty interactions:
Behaviour description must be able to express how multiparty interactions
sequence
At the behaviour aspect, we also need mechanisms to represent the way in
where abstract interactions (multiparty) evolve over time. That it is to say,
their sequence of execution.
Notice that using messages at this aspect, although they can be abstract, are
limited to two participant. This hinder the relation between the acquaintance
models of a certain problem and its behaviour model. It also forces analyst
to decompose mentally multiparty relations at acquaintance models to a set
of binary messages what decrease the level of abstraction and hinders the
traceability between models in both aspects.

– A.2.2 (i) Role behaviour model and (ii) acquaintance organi-
sation behaviour model: Behaviour descriptions must be modelled from a
single role point of view and from the whole organisation point of view
Mechanisms to maintain a complete description of the behaviour of a MAS
or a sub–organisation and the portion of behaviour belonging to a single role
may be also appropriate since it allows us to focus the modelling process on
single roles or the MAS/sub–organisation itself.
Organisation model helps us to understand the behaviour of a group of agents
abstractedly (they are based on multiparty interactions). A role behaviour
helps us to understand its behaviour in the acquaintance organisation it is
engaged.

The role behaviour model can be used when assigning several roles to the
same agent since it help us to group such roles which presents a similar
behaviour in the same agent.

– A.2.3 Technique to transform the whole behaviour model to a
single role behaviour model and viceversa: We must provide mecha-
nisms to transform the whole behaviour model of an acquaintance organisa-
tion into a single role model and viceversa
Notice that when using multiparty descriptions both behaviour models are
equivalent [14]: one is distributed over roles and the other is centralised as
the MAS/organisation behaviour. Maintaining both descriptions consistent
manually may be a difficult task. Thus, mechanisms to transform automat-
ically one model into another and viceversa may be valuable to conquer
complexity by automatisation of this transformation.

5 Decomposition

– D.0.1 Decomposition deals with complexity dividing and con-
quering problems. It improves reuse and it also help us to obtain
bottom layers (less abstract).
Abstraction mechanisms may result insufficient when we model a large MAS
which faces a complex problem. We can use decomposition to divide com-
plex problems into a set of simpler ones which can be managed easily. This
separation requires for a set of techniques to: (i) maintain several separated
models and (ii) to determine feasible separations.
Both techniques provides means for maintaining several layers of abstrac-
tion where higher level layers represent abstractedly complex problems and
bottom layers store detailed descriptions of sub–part of top layers models
obtained by the decomposition techniques above.

Following, we motivate the need for separation and techniques to support
and determine it. We also justify how decomposition allows to maintain a layered
approach. We discuss first on techniques to determine decomposable parts since
depending on the decomposition technique used different techniques must be
used to support them.

5.1 Techniques to determine decomposable parts

– D.1.1 There exists two levels of decomposition: (i) interaction
model decomposition, and (ii) interaction decomposition. The for-
mer can be used to separate models, and the later can be used to
refine models in a top–down approach
Decomposing a problem into a set of subproblems, may result a hard task
if we do not provide techniques for identifying such divisions. Two levels of
decomposition exists:

Interaction model decomposition: A decomposition where a complex
problem is divided into several separate models without decomposing
interactions. For example, a model where several roles interact by means
of two interactions: search books and purchase books can be divided into
two models: one with the search books interaction and other for the
purchase books interaction. Notice that adding details to decomposed
problems, where we limit the designer scope, may be more easy than in
complete models.

Interaction decomposition: A decomposition where interactions are bro-
ken into finer grain interactions. For example, in the previous example
we can divide the interaction search books into several refined interac-
tions. For example, establish preferences, selection of dealers, get results
and eliminate duplicate results.
Without these mechanisms, refinement of multiparty interactions to bi-
party primitives such as those used at design and code level, e.g, mes-
sages, AUML interaction protocols, ACL primitives, and thus, the pro-
cess to transit from analysis to implementation, may result on intuitive
decisions without any guidance.
By decomposing a complex interaction we also divide and conquer com-
plex problems. Decomposition decreases the number of participants of
interactions patterns, which lead us to easier implementations (the pro-
tocol to coordinate n parties is more difficult than such for two parties)
as it is shown in [1,5,13]. Furthermore, the complexity of the knowledge
processed in each interaction decreases, thus easing their internal design.
Furthermore, multiparty descriptions can be directly executed thus avoid-
ing to describe the synchronization protocol or the communication pro-
tocol. There exists implementations languages that provide multiparty
interactions primitives that requires the same attributes and elements de-
scribed for abstracting interactions in in previous section [3,15,17,18,16].
Notice that these are object–oriented implementations which are not
specially design for support agent features, but that could be useful to
produce prototypes of the system.

The former technique helps us to perform a functional decomposition of the
system where we maintain the level of abstraction, and the later helps us
to refine models defining abstract interactions internally (by means of finer–
grain interactions) thus obtaining a new layer with a refined model.

Following, we discuss on two techniques for determining feasible decomposi-
tions:

1. D.1.2 Decomposition by Requirement Goals: We can decompose
the system by means of system goals or use cases (functional decomposition).
It improves system congruence
Since agents are limited to some environment and have limited abilities,
complex problems are usually solved by a set of agents. For example, a
banker agent is only concerned with its bank environment and it is only able

to solve problems related with account movements or queries. If a complex
goal has to be fulfilled we need several agents to achieve it and hence, at
least one interaction between them.
As a matter of fact, a complex goal implies the formation of groups of agents
to fulfill it. Identifying complex goals provides means for an initial division
where acquaintance sub-organisations in the system are identified. This argue
for goal–oriented requirements techniques which guides the initial decompo-
sition of the problem [4,7]. This provides a functional decomposition of the
system which may be also performed by analysing requirements document
based on use cases.
This process also improves the system Congruence since system goals are
taken into account and agents goals can be determined by a decomposition
of a system goal into a set of sub–goals assigned to agents (notice that such
decomposition may have been identified at requirement stage).

D.1.3 Interactions must be linked with requirement goals to
provide traceability between requirements and analysis.

Using goal diagrams, we can determine interactions in the system. A goal
results on an interaction between several agents when it is enough complex
to require more than one agent to be achieved. This argue for linking inter-
actions with goals providing a direct transition between requirements and
analysis. Goals that are enough simple can be linked with agents.

D.1.4 Hierarchical goal diagrams guide the decomposition

When a requirement goal is refined by several goals it implies that several
subgoals must be fulfilled to fulfill it (by “and” decomposition of goals). This
shows us how to decompose an interaction which represent a high–level goal
into a set of finer–grain interactions, one per sub–goals to be fulfilled. In
“or” decomposition we must fulfill whichever of them.
It can be also used to perform a decomposition where interactions are not
decomposed. If we have a model where several sub–goals are represented
by means of interactions in a single model, and they are related by ”and”
of several high–level goals, each of the high–level goals shows us a set of
interactions that can be separated into a decomposed model.
For example, if we have two goals: search books and purchase books, each
of them can be refined by and decomposition by several sub–goals. If we
deal with a single model which represent the sub–goals of both by means of
multiparty interactions, our model can be decomposed into two models, one
for the interactions that represent the sub–goals of search books, and another
for the sub–goals of purchase books.

2. D.1.5 Decomposition by dependencies analysis: When goal de-
composition has been exploited, system can be decomposed by analysing the
dependencies between knowedge/services required/consumed by each agent
[13]

Furthermore, finer goals identified at requirement stage may result insuffi-
cient to reach a level of detail enough to step to design easily. Notice that
in complex system, we should minimize the complexity of interactions at
analysis as most as possible. If interactions are too much complex at design
it will be harder to design them internally.
Thus, techniques to analyse and decompose finer requirement–goals (when
they are still too much complex) into simpler unrelated enough ones are
needed. This decomposition must group such agents which are highly related.
This can be done analysing agents dependencies in a finer–grain interaction
which model a sub–goal which is still too complex.
It consists on grouping agents that highly depend in a certain interaction.
Since agents relate in order to exchange knowledge and/or problem-solved
capabilities, the analysis of interdependencies can be based on analysing
services and knowledge dependencies. Each group of dependent agents can
be related by a new finer–grain interaction, thus reducing the complexity
of models and providing means for identifying refined acquaintance sub–
organisations.
For example, in a purchase interaction, which is not further detailed at re-
quirement documents, several agents may be involved: a seller’s bank agent,
a buyer’s bank agent and a point of sales agent . Seller’s bank depends
on the knowledge provided by the point of sales, buyer’s bank also de-
pends on the point of sales, and buyer’s bank and seller’s bank do not
depend. Hence, we can decompose the purchase interaction into two inter-
actions: determine and pay goods between buyer’s bank and point of sales,
and store profits between point of sales and seller’s bank.

5.2 Techniques to support decomposition

– D.2.1 Roles: We must use roles to be able to decompose the system
at acquaintance and behaviour aspects. Roles are linked with one or more
multiparty interactions and describe the knowledge and services offered on
these interactions
A MAS can be separated into several separate models, each representing
how a certain problem is solved, that it is to say, how systems goals are
fulfilled. As a result, an agent may be involved in several models. In order to
decompose, the activity of an agent may be seen from several points of views,
one for each problem resolution it participates. These views are represented
by means of the role that the agent plays in each problem.
An agent has certain behaviour and acquaintance features. All of the features
can be grouped by the roles played by it. Notice that a role can be linked
with one or more multiparty interactions and must define the knowledge
and services that the agent offers to the rest of roles in the interactions it
participate.
Using interaction models (a collection of roles which solve a certain complex
problem) every agent participating in the problem resolution is represented

as the role it plays. A group of roles that get together in order to solve a prob-
lem (perform a system goal) represents an acquaintance sub–organisation.
Notice that an organisation derived from the relations of agents in a real
organisations does not to be equivalent to organisations formed as a result
of acquaintance. For example, the group of teachers of a certain subject are
grouped because they teach the same subject, but it does not implies any
acquaintance relation between them. See D.2.14 for further details.

– D.2.2 Environmental Roles and Passive Roles: Environment
must be also modelled by means of roles using ”environmental roles” allowing
see environment from different isolated points of view. Passive objects can
be also modelled as ”passive roles” with same advantages
All the elements presents in models have not to be agents. There may exists
entities with a low degree of proactivity or even totally passive. These entities
can be seen as environment resources or passive objects. As such environmen-
tal entities may be also used to solve several problems we should also provide
different views of them. For example, in a conference management system a
paper database can be used for several purposes: in the reviewing problem
we are only interested on papers topics, and in the notification process we
are interested on authors address and in papers score. Thus, this database
can be represented as two different views, one for each sub–problem.
This separation can be also done by using environmental or passive roles.
This also help us to perform an uniform model where a few modelling arti-
facts has to be managed.

– D.2.3 Technique to extract acquaintance aspect of a role: We
must provide techniques to extract acquaintance aspect from a given complex
model
Since the process of engineer a software application is done in an iterative
way, we have to deal with descriptions where a set of roles may be involved in
the resolution of a certain problem which can be further decomposed. Thus,
techniques that allows us to isolate the acquaintance and behaviour aspect
of a role regarding a certain problem from a composed model are also quite
appropriate.
At the acquaintance aspect, we need techniques to extract such acquaintance
relations (interactions) which are used to solve the sub–problem we are iso-
lating. In addition, if a role is linked with several interactions, we need to
separate the part of the interface used by the interactions isolated.

– D.2.4 Technique to extract behaviour aspect of a role: We must
provide techniques to extract the behaviour aspect of roles from a complex
model given a certain decomposition
At the behaviour aspect, we need techniques to extract the behaviour of a
role regarding the sub–problem we are isolating. That it is to say, extract
the order of execution of such interactions in where the role is involved in
the problem we are isolating.

– D.2.5 Technique to sequence decomposed interactions: We must
provide techniques to sequence a set of decomposed interactions automatically
if possible

By requirement–goal decomposition we break an abstract interaction into
several finer grain interaction. We need techniques to determine how decom-
posed interactions sequence. In this case, requirement document may help
us in this tasks.

By dependency decomposition, since we know how knowledge and/or ser-
vices relates, in most cases we can establish automatically how interactions
sequence. When an interaction work with the result of other interactions (ex-
ists dependencies between their knowledge/services) we can sequence them
by analysing their dependency graphs.

– D.2.6 Traceability models: We must provide traceability models in
order to justify design decisions and in order to relate layers for both tech-
niques

In a top–down approach for the analysis stage, we must transit from re-
quirements to design using decomposition. We can use traceability diagrams
in order to clarify this transition. They allow us to justify design decisions
more clearly since we can decide between several available decompositions
basing the decision on non–functional requirements or the decomposition
techniques above and document them in traceability diagrams.

– D.2.7 “Aggregation” associations for interactions: Multiparty in-
teractions can be decomposed, thus we must relate bottom layers interactions
with top–layer interactions, that it is to say, top–layers interactions relate
with bottom–layers interactions with “aggregation” association

If we decompose interactions into several finer grain interactions we obtain
a new layer. Relating high-level interactions with interactions resultant of a
decomposition provides us traceability from requirements to design. Abstract
interactions must be related with the set of interactions that refine it. The
association we propose is standard “aggregation”.

For example, we can decompose the interaction search books we can ob-
tain the finer grain interactions :establish preferences, selection of dealers,
get results and eliminate duplicate results. All of these interactions must be
aggregated to form the interaction search books.

– D.2.8 Roles, services and knowledge “aggregation” association:
As a result of decomposing an interaction, it roles, services and knowledge
must be also decomposed. Hence we must relate these modelling artifacts by
means of a “aggregation” relation

Notice that when an interaction is decomposed it also implies to decompose it
roles, thus roles must be also related by means of a ”aggregation” association.
Services and knowledge can be also decomposed in finer–grain elements.
They should also be related by this association.

– D.2.9 To improve reusability and decrease complexity of de-
composed models they must be modelled without taking into ac-
count details on other problems

It is important to point out that some features are lost when problems are
studied isolated. Some interactions may be lost. For example, if a MAS to
search and purchase items is decomposed into a search model and a purchase
model, the way in how the search is restricted to such dealers that admit the
credit card of the user do not belong to the scope of any problem, but both.
Notice that problems can be modelled keeping in mind constraints with other
problems or interactions. However, if we want to reuse a certain acquaintance
model it should be as general as possible. If we decompose models isolating
them from other models constraint, we produce more general models. This
promotes reuse since descriptions do no model dependencies with other prob-
lems in the system and can be reused in the same system or others adding
specific dependencies. Furthermore, ignoring interdependencies with other
models in the system easy the modelling of the problem, thus, decreasing
complexity.

– D.2.10 Parameterised Interactions: Agents and knowledge of inter-
actions can be set as parameters to reuse it. Instantiation rules and Dynamic
role playing are also crucial elements which must be attached to parame-
terised interactions to properly reuse them
We can parameterised agents and knowledge of interactions to describe a
parameterised pattern of interaction which is suitable to be reused.
As we show bellow, some important features can be lost when we decompose
a model such as: (i) instantiation rules (constraint on the identity of agents
which can play roles in the parameterised interaction) and constraints on
the order in which agents play roles. Both features must be also attached to
parameterised pattern of interactions.

– D.2.11 Instantiation rules of interaction models: Interaction
models must be decorated with instantiation rules: constraints on the identity
of agents who play roles
It must be emphasized that constraint on the identity of agents who play
each role in a interaction model are also lost in decomposition. For example,
using a single model is easy to show that a paper’s author can not review its
own paper, but when the reviewing process is modelled separated from the
submission process this constraint is lost. Instantiation rules help us to model
these constraints on how a certain interaction model can be instantiated over
a certain group of agents.
This constraints can be identified and modelled by composition when assign-
ing several interaction models to a set of agents (see Section 6 for further
details). Notice that constraints on the identity of agents and their dynamics
(see next feature) may apear in the context of a single interaction model or
in the context of several interaction models. When several interaction models
are involved, composition principle may be used to provide an overall model

of both problem where these constraint can be meaningfully described (see
Section 6).

– D.2.12 Agents dynamic role playing diagrams: We must provide
dynamic role playing diagrams in where we show how roles are played by an
agent.
Dynamics of role playing are also lost in decomposition. For example, con-
sidering an agent who plays roles book shooper and book reader, we can de-
termine that it should play the role book shooper before the role book reader,
or even it can play both roles concurrently or interleaved. We need models
to show how roles are played. This is further detailed in Section 6.

– D.2.13 Instantiation rules allows to model open system where
interaction pattern are known at analysis but not concrete agents
who participate on them
Instantiation rules for interaction models can be used as we do in Object
Oriented paradigm when instantiating an object through a parameterized
constructor. This shows a correlation of Classes to Interaction Models and
Object to Agent Models. Therefore, this parametrization of interaction mod-
els easy the reuse of them and even the instantiation at runtime. It allows
to model open systems where interaction models are instantiated dynami-
cally at runtime as we do when creating a new object at runtime in the OO
paradigm.
Besides, constraint on the order of instantiation may appear. For example,
the submission process in a conference must be instantiated before the re-
viewing process. This argue for techniques to show the dynamics of role
playing and interaction models instantiation.

– D.2.14 We must distinguish between to architectural levels:
analysis organisation and design organisation. Analysis models
must be based on roles while design models must be based on agents
Separating agents and roles allows us to be able to distinguish between two
architectural levels:
Analysis organisation it is described by means of interaction models. It

specify the acquaintance relationships in the system clarifying it func-
tionality by means of interactions.

Design organisation it represents a concrete instantiation of a set of in-
teraction models over a set of agents (this process is guided by instantia-
tion rules and dynamic role playing models). It specifies the organisation
structure based on the real organisation where the system has to be de-
ployed. That it is to say, the design organisation is the mapping of the
acquaintance relationships identified at analysis onto a concrete organi-
sational structure.

Since the main source of complexity are interactions, at analysis we should
not bother about organisation structure. This easy the process of under-
standing the complex behaviour of a MAS. Furthermore, we should not take
into account organisation structure at analysis since it may imply to work
with implementation issues.

Notice that if we start analysis with a certain organisational structure (by
means of agents) based on the real organisation where the MAS is going to be
deployed, the initial subdivision in interactions and roles may not be optimal.
The main reason is that real organisation are not always modelled from the
interaction point of view. For example, the group of teachers of a certain
subject are grouped because they teach the same subject, but it does not
implies any acquaintance relation between them. Thus, in these situations
where the real organisation is not focused on interactions we should start
from scratch.
Another risk of starting analysis with the real organisation in mind is that
we mimic its mistakes. Thus, when real organisations impose constraints on
the system architecture, abstract organisations may be modelled by means
of interaction models at analysis to later map them onto concrete agents
structured as the real organisation by the composition principle.

6 Composition

– C.0.1 To get a big picture of the system or a sub–part of it
we must provide techniques to compose models. That it is to say,
composition helps us to maintain top layers. It is also a crucial
tool since we can identify instantiation rules, interactions, roles,
knowledge, services, etcetera not in the scope of isolated models.
Finally, it can be used to map the analysis organisation into the
design organisation
A complete decomposition of a complex problem into a set of orthogonal sub–
problems is not usually possible. When several problems have been isolated
in order to study them separately, we are ignoring the interdependencies
between them which may contain crucial features of the system. That it is
to say, the whole is greater than the sum of its parts. As a matter of fact, new
interactions not foreseen when studying problems separately or clearly out
of the scope of all the merged problems may appear. New roles, knowledge
and services may also appear to support these interactions.
Furthermore, a set of interaction models which decompose a complex prob-
lem do not offers the big picture of it but a tour by the system specification.
But designers/implementor must see the most relevant of each subpart of
the system. As a matter of fact, we can compose detailed models to abstract
them and represent most relevant features in a single more abstract model.
It represents the tools needed to perform a bottom–up approach.
Composing several interaction models (there not exists constraints on the
number of interaction models we can merge) implies: (i) to identify new
elements, (ii) to merge some of their parts, and (iii), to keep intact others:
Roles In the composite model two roles of different interaction models may

result in a single composite role. For example, composing the paper sub-
mission model and the paper reviewing process models the role paper’s
receiver in the former must be composed with the role paper’s dispatcher

role in the later. Notice that new roles can be also identified in the com-
position process.

Interactions Several interactions from different interaction models may re-
sult in a composite interaction in the composite interaction model. For
example, if we want to get a big picture of a MAS where two interaction
models are presented to describe how items are searched and to describe
how they are purchased, we can build a composite model where all in-
teractions are merged in a general one for abstraction purposes. Notice
that new interactions can be also identified in the composition process.

As a matter of fact, both have to be analysed from the acquaintance and
behaviour points of view:

6.1 Acquaintance Aspect

– C.1.1 We need techniques to merge interactions and roles (in-
terface of the roles, links with interactions, goals, etcetera
As roles and interactions can be merged in composite interaction models, we
must provide techniques to perform this composition at the acquaintance as-
pect. For example, when we merge several interactions we have to determine
the new initiator, the participants (may be the sum of all of them or not)
and so on. When merging several roles, their interfaces must be also merged
and their links with interactions.

– C.1.2 To step to design, analysis organisation must be mapped
onto the design organisation using composition
Interaction models created at analysis must be mapped onto the real world
organisation structure to create the initial design organisation. Commonly,
as an agent may play several roles, analysis sub–organisations are superposed
at design. For example, in the a conference management system, the roles in
the organisation for reviewing and the organisation for assigning papers must
be mapped onto a set of not disjunct agents. An agent may play the reviewer
role, the author role and the assigner role which result in a superposition of
several analysis interaction models.
Hence, in order to step to design the composition operation allows us to
create an initial design organisation.

– C.1.3 To identify interaction models instantiation rules we
must compose them
Furthermore, building a new interaction model from several isolated ones
allows us to identify new constraints on the agents who may play each of
them. Thus, composition of interaction models is a crucial tool to identify
instantiation rules that traverse the frontier of one interaction model as
we show in previous section: a paper’s reviewer must be different from the
paper’s author but this instantiation rule does not belong to the reviewing
process nor the the submission process, but to both.

6.2 Behavior Aspect

– C.2.1 Behaviour composition must be done over: (i) behaviour
of roles, or (ii) over whole behaviour model. If most roles are
composed, composition of whole behaviour is recommended. If few
roles are composed and most remain unchanged, role behaviour
composition is recommended
When the behaviour of several interaction models has to be merged we have
two alternatives:
Whole view composition: When most behaviour of roles has to be com-

posed or their behaviour is affected by new interactions we recommend
to merge the whole behaviour model. If most roles in the system change,
it is easier to understand these changes in a centralised description that
in a distributed description over all the roles. For example, if we have an
interaction model to airline booking and another to calculate expenses,
both models has to be merged to provide information on the prices.
Them, we can compose the whole behaviour model of each interaction
model to obtain the composite whole behaviour model (see C.2.6).
Later, if we are interested on the behaviour of one of the composed roles,
we can use techniques in point C.2.6 to obtain it.

Role composition When most roles remain unchanged, it is easier to com-
pose only affected roles since they represent a partial model of the system
where we manage only such interactions where affected roles are involved
(not all). For example, if we have to compose the search book interac-
tion model with the purchase books interaction model, we have only to
compose the role searcher in the former with the role shopper in the
later. This will be easier than building a new whole behaviour model
since these roles are involved in a sub–group of the interactions that we
should manage when dealing with whole behaviour composition.
Later we can transform the affected roles behaviour along with the roles
unchanged to obtain the whole behaviour model of the composite model
by techniques in point C.2.6.

– C.2.2 Techniques to compose the whole behaviour of several
interaction models: Several interaction models behaviours must be merged
to obtain the behaviour of the composite model
Techniques to compose the whole behaviour of several interaction models
have to be provided in order to determine the behaviour of the composite
model. It can be used to obtain the big picture of several problems modelled
isolated or to map several interaction models to a certain design structural
organisation.

– C.2.3 Techniques to compose several role behaviour models:
Several roles that are seen as the same role in a composite interaction model
or design organisations must be merged
When several roles are composed, their behaviour description (the sequences
of interactions they execute) must be also merged. As a matter of fact,

techniques to compose the behaviour of several roles that are seen as the
same role in a composite interaction model are quite valuable.
Furthermore in design organisations several roles are mapped to the same
agent, thus we need a way of merging the behaviour of several roles into a
single agent behaviour.

– C.2.4 Techniques to compose behaviours: sequential composi-
tion, parallel composition and composition by interleaving
We need techniques to compose behaviour descriptions (whole behaviour
models or role behaviour models). Several techniques can be identified:

Sequential The behaviour of each model is executed atomically in sequence
which others.

Parallel The behaviourial of each model is executed in parallel. It is the less
common since models that can be executed in parallel are independent
and thus, we do not usually compose them.

Interleaving It is the most common since the composition of several models
that are highly related implies to highly interleave them. Notice that the
proper interaction granularity must be used for this kind of composition.

– C.2.5 Behaviours composition must be based on multiparty in-
teractions of a certain granularity when role interleaving is needed
Notice that if we have to interleave several behaviour descriptions (whole
behaviours or role behaviours), we have to do it at the proper interaction
granularity. For example, in a computer science department a role profes-
sor has to be interleaved with a role head of department. In this situation
high level interactions could not be useful. For example, if we model the
behaviour of each role by a loop executing a single abstract interaction,
manage department for head and teach for professor, we are only able to
produce a behaviour description where both roles are alternated. However,
if we model both behaviour of roles with finer–grain interactions, we are able
to perform a higher interleaved behaviour.
As a matter of fact, when specifying behaviours, we have to determine the
granularity of interactions to be used in the model.

– C.2.6 We must provide techniques to isolate the behaviour of
a role: (i) to compose it, (ii) to obtain it from a whole behaviour
model obtained by whole behaviour composition
As we state in the abstraction section, we must maintain two equivalent
behaviour descriptions: a whole description and another composed of a set
of single role behaviours.
If we compose behaviours at the role level, we have to work with the be-
haviour of affected roles. Thus techniques to obtain them from a whole be-
haviour description are needed.
If we perform a composition based on the whole behaviour description of
each interaction model, we need techniques to obtain the behaviour of a role
before composition. This help us to understand how composition has affected
each role behaviour.

7 Glossary

Notice that this is a preliminary glossary. We are currently studying FIPA
Methodology TC glossary to re-use its definitions when appropriate.

Acquaintance organisation Organisation from the interaction point of view
Complexity Property of MASs intimately related with the number of interac-

tions in the system
Interaction Model A set of roles related by means of multiparty interactions

that jointly fulfill a system goal by contention or cooperation
Interaction granularity Abstraction level of an interaction. Finer grain inter-

actions represent simple interactions, while coarse–grain interactions repre-
sent abstractly complex acquaintance relationships

Modelling Artifact Graphical representation of a certain artifact of the sys-
tem in a model

Modelling Technique Systematic procedure that transform or calculate a piece
of a model or a complete new model.

Multiparty interaction Relationship between an arbitrary number of roles
established to fulfill some system goal defined abstractly

Role Behaviour Model A model that represents how the set of interactions
in where the role is involved are sequenced.

Role Goal A goal that can be fulfilled by a single agent
Role A role is partial view of an agents which represent its features regarding

a certain interaction/interactions. A role defines also the interface that the
agent offer to the rest of participant by means of services and knowledge

Structural organisation it represents structural relations between agents group-
ing them in departments, teams, relating them by subordination relation-
ships, and so on

System Goal A goal that requires several agents (more than two) to be achieved
Whole Behaviour Model A model that represents how the set of interactions

in an interaction model sequence

References

1. R. Bagrodia. Synchronization of asynchronous processes in CSP. Transactions on
Programming Languages and Systems, 11(4):585–597, October 1989.

2. G. Caire, F. Leal, P. Chainho, R. Evans, F. Garijo, J. Gomez, J. Pavon, P. Kearney,
J. Stark, and P. Massonet. Agent oriented analysis using MESSAGE/UML. In
Proceedings of Agent-Oriented Software Engineering (AOSE’01), pages 101–108,
Montreal, 2001.

3. R. Corchuelo, J.A. Pérez, and M. Toro. A multiparty coordination aspect language.
ACM Sigplan, 2000. (To appear in this Journal).

4. A. Dardenne, A. van Lamsweerde, and S.Fickas. Goal-directed requirements ac-
quisition. Science of Computer Programming, 20:3–50, 1993.

5. N. Francez and I. R. Forman. Interacting Processes. Addison–Wesley, 1996.
6. N. Jennings. An agent-based approach for building complex software systems.

Communications of the ACM, 44(4):35–41, 2001.

7. E. Kendall, U. Palanivelan, and S. Kalikivayi. Capturing and structuring goals:
Analysis patterns. In Proceedings of the 3rd European Conference on Pattern Lan-
guages of Programming and Computing, Germany, July 1998.

8. J. Odell. Agents and complex systems. Journal of Object Technology, 1(2):35–45,
July-August 2002.

9. J. Odell, H. Parunak, and M. Fleischer. The role of roles in designing effective agent
organisations. In A. Garcia and C. Lucenaand F. Zambonelliand A. Omiciniand J.
Castro, editors, Software Engineering for Large-Scale Multi-Agent Systems, number
2603 in LNCS, pages 27–28, Berlin, 2003. Springer–Verlag.

10. A. Omicini and A. Ricci. Integrating organisation within a mas coordination in-
frastructure. In Andrea Omicini, Paolo Petta, and Jeremy Pitt, editors, Fourth
International Workshop Engineering Societies in the Agents World, number to be
publisshed in LNCS, UK, 2003. Springer–Verlag.

11. H. Van Dyke Parunak and James Odell. Representing social structures in UML.
In Jörg P. Müller, Elisabeth Andre, Sandip Sen, and Claude Frasson, editors,
Proceedings of the Fifth International Conference on Autonomous Agents, pages
100–101, Montreal, Canada, 2001. ACM Press.

12. H. V.n D. Parunak, S. Brueckner, M. Fleischer, and J. Odell. A design taxon-
omy of multi-agent interactions. In Paolo Giorgini, Jörg P. Müller, and James
Odell, editors, IV International Workshop on Agent-Oriented Software Engineer-
ing (AOSE’03), volume 2935 of LNCS, pages 123–137. Springer–Verlag, 2003.

13. J. Peña, R. Corchuelo, and J. L. Arjona. A top down approach for mas protocol
descriptions. In ACM Symposium on Applied Computing SAC’03, pages 45–49,
Melbourne, Florida, USA, 2003. ACM Press.

14. J. Peña, R. Corchuelo, and J. L. Arjona. Towards Interaction Protocol Operations
for Large Multi-agent Systems. In M. Hinchey, J. Rash, W. Truszkowski, C. Rouff,
and D. Gordon-Spears, editors, Proceedings of the Second International Workshop
on Formal Approaches to Agent-Based Systems (FAABS 2002), volume 2699 of
LNAI, pages 79–91, NASA-Goddard Space Flight Center, Greenbelt, MD, USA,
2002. Springer–Verlag.

15. J. A. Pérez, R. Corchuelo, D. Ruiz, and M. Toro. An order–based, distributed algo-
rithm for implementing multiparty interactions. In Coordination Models and Lan-
guages. Proceedings of the 5th International Conference COORDINATION 2002.,
Lecture Notes in Computer Science, pages 250–257, York, United Kingdom, 2002.
Springer.

16. J A. Pérez, R. Corchuelo, and M. Toro. An order-based algorithm for imple-
menting multiparty synchronisation. Concurrency and Computation: Practice &
Experience, to be published, 2004.

17. JA Pérez, R Corchuelo, D Ruiz, and M Toro. A framework for aspect–oriented
multiparty coordination. In DAIS, volume 198 of IFIP Conference Proceedings,
pages 161–173. Kluwer, 2001.

18. J.A. Pérez, R. Corchuelo, D. Ruiz, and M. Toro. An enablement detection algo-
rithm for open multiparty interactions. In Applied Computing 2002. Proceedings of
the 2002 ACM Symposium on Applied Computing, pages 378–384, Madrid, Spain,
March 2002. ACM Press.

19. D. Snowden and C. Kurtz. The new dynamics of strategy: Sense-making in a
complex and complicated world. IBM Systems Journal, 42(3):35–45, 2003.

20. F. Zambonelli, N. Jennings, and M. Wooldridge. Developing multiagent systems:
the GAIA methodology. ACM Transactions on Software Engineering and Method-
ology, to be published 2003/2004.

