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Abstract Complexity is one of the main challenges of the Agent Ori-
ented Software Engineering (AOSE) field. In this request for comments,
we have selected a set of guidelines, techniques and modelling artifacts
which we think should be appropriate for improving the ability of cur-
rent approaches to deal with complex systems. Some of these features
are present in some methodologies, has been only identified or even have
not been identified.
With this request for comments, we intend to establish some consensus in
the elements that AOSE community see appropriate. With this purpose
we have developed an on–line form to weigh each feature up available
at http://www.tdg-seville.info/AOSE-RFC. The purpose of this docu-
ment is to detail and motivate each of these elements in an abstract and
methodology–independent way.

1 Introduction and Motivation

Structuring models into different abstraction layers and developing them in a
top–down and/or bottom up approach are well established techniques in tradi-
tional software engineering (hereafter SE) when facing complex systems.

Agent Oriented Software Engineering (hereafter AOSE) is a youth field where
researches have focus on properly modelling the features of agents. Unfortu-
nately, most approaches provide plain models not documenting how layered mod-
els can be performed. Although this research is rather valuable, more complex
systems could be faced if these techniques are introduced in this field.

⋆ The work reported in this article was partially supported by the Spanish Ministry of
Science and Technology under grant TIC2003- 02737-C02-01. Copyright (c) MMIV
The Distributed Group. www.tdg-seville.info
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Performing models using abstraction layers helps to deal with complexity by
facing it incrementally, iteratively and systematically. Top layers can focus on
most relevant aspects of the system, while bottom layers represent detailed views
of its sub–parts. Layers can be developed incrementally and iteratively limiting
the designer scope to certain parts of the system or certain aspects by means
of top–down and bottom–up approaches. Top–down approaches start with top
layers and refine them iteratively until reaching the level of detail to implement
the system. Bottom–up approaches start analysing in detail most important
parts of the system developing bottom layers. Later, models are abstracted in
order to get an overview of the system, that is to say, top layers. Usually, both
approaches are performing in parallel zooming in an out in the system model.

However, although this process is well defined in SE, these techniques cannot
be directly applied in the AOSE context. The main problem is that the features
of applications that SE currently produce are rather different from the agent’s
ones. The main difference is that most SE approaches focus the modelling process
on data while interactions present a predominant role in the AOSE arena, e.g.
[18,26]. This fact forces to perform the development process of MASs from a
completely different point of view than in SE.

Interactions are being deeply studied in AOSE, but unfortunately, by the best
of our knowledge, the AOSE community has not faced modelling them in a top–
down or bottom–up approach or performing layered–models yet. Fortunately,
there exist a small set of approaches in SE that focus the modelling process on
interactions whose main ideas, adapted to agents, could result quite valuable in
this field.

2 Structure of the RFC

We have carefully study current AOSE methodologies and SE methodologies that
focus on interactions. As a result of this study, we have selected the set features
we see appropriate to develop agent–based applications with a higher level of
complexity than current approaches enable. We have also identified several new
features. These features are classified into the following categories:

Modelling artifacts: Icons with a concise semantic which are used to graphi-
cally represent the system.

Techniques: Procedures that allows to transform models, prove properties of
models, analyse them, etcetera.

Guidelines: Show the way in where modelling artifacts and techniques should
be used, that is to say, best practices to deal with complexity. They can be
used as the main rules to establish the software process needed to develop a
complete methodology.

When studying related work, we have focused on selecting the features that
allow:

1. focusing the modelling process on interactions without taking into account
structural constraints
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2. modelling a system using different abstraction layers by means of top–down
and bottom–up approaches

3. to provide modular descriptions
4. to improve reuse
5. maintaining traceability between requirement and analysis, and between

analysis and design
6. modelling open systems

Current methodologies present rather different modelling languages and soft-
ware processes. Thus, to ease their extension, we do not intend to present a
methodology but a set of abstract and methodology–independent features which
can be integrated with current methodologies. Hence, we do not base on a certain
modelling language and we do not propose any software process.

The final purpose of this document is to establish which of these features are
relevant to deal with complexity and which is their relevance degree is. Later,
we are going to study current methodologies along with the results of this RFC
to establish quantitatively the degree of complexity coverage that they provide.
From this study, we intend also to determine quantitatively which is the impact
of extending a certain methodology to deal with more complex applications.
With this purpose, we have developed an on–line form to obtain feedback from
other researches about the features we propose (it can be found at www.tdg-
seville.info/AOSE-RFC).

This paper is structured as follows: Section 3 shows the features of systems
where this work can be applied. Section 4 summarises the way in where complex-
ity can be conquered. Section 5 shows the modelling artifacts we have selected;
Section 6 shows the techniques we propose; Section 7 shows the guidelines to use
modelling artifacts and techniques. Section 8 show our main conclusions. And
finally, Section 10 is a glossary of terms used in this document. We encourage
readers to refer to it since some terms have a different meaning in this document
due to the context in where this work is framed, e.g. behaviour, interaction, etc.

3 Applicability Context

The applicability context of this work can be analysed from different perspec-
tives: (i) regarding complexity and predictability, (ii) the features of agents, (iii)
the stages of modelling in where it is applicable.

3.1 Context Regarding Complexity and Predictability

In the field of complex organisational knowledge exchange, decision–making,
strategy, and policy–making, Snowden and Kurtz proposed the Cynefin Frame-
work [35]. This framework clarifies the complexity term providing a taxonomy
of knowledge–based organisations regarding complexity and predictability. This
taxonomy divides an organisation into the following domains whose main fea-
tures are summarised in Figure 1:
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Figure 1. time-cause-efect-complexity

1) Ordered Domain: Stable cause and effect relationship exist. In this domain
the sequence of doings of the organisation can be established as a cause/effect
chain. It represents the predictable part of the system. This domain is further
divided into:

1.2) Known Domain: As can be observed in Figure 1, every relationship
between cause and effect are known. The part of a MAS in this domain
is clearly predictable and can be easily modelled.

1.1) Knowable Domain: While stable cause and effect relationships exist
in this domain, they may not be fully known. In general, relationships
are separated over time and space in chains that are difficult to fully un-
derstand. The only issue is whether we can afford the time and resources
to move from the knowable to the known domain. As can be observed
in Figure 1 this is represented by some future states represented using
dashed lines that are not known but could be discovered.

2) Un–ordered: Un–Stable cause and effect relationship exist between inter-
actions in the system. It represents the unpredictable part of the system.
This domain is also further divided into:

2.1) Complex Domain: There are cause and effect relationships between
the agents, but both the number of agents and the number of relation-
ships defy categorization or analytic techniques. Unfortunately, relation-
ships between cause and effect exist but they cannot be predicted. This
domain presents retrospective coherence. That is to say, coherence can
be only established by analysing past history of the system. Unfortu-
nately, future directions, although coherent, cannot be predicted. As can
be observed in Figure 1, past can be understood as a single chain of
cause/effects, but when we try to predict future changes, the solution
space is too wide to analyse it and we can not establish the order of
apparition of future states.

2.2) Chaos Domain: There are no perceivable relationships between cause
and effect, and the system is turbulent; we do not have the response time
to investigate change.
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Figure 2. Domain of a problem depending on the abstraction level of models

In addition to this framework, we must introduce another dimension in the
categorization of complexity: the level of abstraction of models. As we have
depicted in Figure 2, depending on our purpose when studying a certain problem,
we can need more or less details of it. That is to say, there exists a certain level of
abstraction that provides us only the level of detail we need, and no more. In our
categorization, this fact is important since depending on the level of abstraction
which we observe a MAS, it can be categorized in the known domain, using the
highest level of abstraction, or even in the chaos domain, using the lowest level
of abstraction.

As we justify later, we must focus on the analysis phase to conquering com-
plexity. At analysis, the level of abstraction needed is determined by our purpose
in this phase: understanding the system. The abstraction capability that current
approaches provide is limited and most of them produce models in a single ab-
straction layer or do not study deeply how these layers can be obtained and
maintained. In consequence, systems that fall at the complex or chaos domain
can not be modelled by current approaches at the point of view needed for
analysis.

Systems that falls in the complex or knowable domain at abstraction level
required for analysis can be brought to the knowable domain and even to the
known domain using the elements we have selected. This is done by performing
a layered model of the system where models are developed systematically and
incrementally using different abstraction levels until reaching the level of detail
needed for analysis. While current approaches do not provide any modelling
artifacts, technique or guideline to do so, but they provide these elements only
for performing a complete plain model of the system managing it complexity
basing on the analyst experience. Thus, in best cases, we help to bring complex
problems from the point of view of current approaches to the known or knowable
domains.
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3.2 Context Regarding Features of the System

Parunak et al. emphasises the importance of Congruence in the AOSE field
[29]. Congruence is the property that a MAS presents when its system goals are
fulfilled and related someway with agents goals. The importance of this property
relapses on the fact that a system must cover the purposes with which it has
been built. As a result, the congruence of a system measures the utility of the
system. Authors claim the importance of this feature in the field and suggest that
future research on AOSE must integrate this concept in all phases of developing
a MAS. Therefore, we take it into account adapting and extending the related
work.

In [29], authors provide an extensive framework of MASs which also contem-
plate other properties. In addition to congruence, we take into account the follow-
ing features: we focus on multi–agent systems where exist Correlation between
agents (exists joint information) and whose agents acts Coordinately (implies
a causal process where communication between agents exists either directly or
indirectly through the environment). We take into account agent’s and system’s
goals, thus covering system that coordinates by Contention (agents that coordi-
nate with contradictory goals) or by Cooperation (agents with non–contradictory
goals). System must also present a certain degree of Congruence (agents goals
fulfil system goals even when a Contention mechanisms exits). Hence, agents
must relate Coherently (the relation among the agents that yields Congruence
is Coherence).

The features we have selected are also applicable to open systems where we
know interaction patterns at modelling time but not the concrete agents who
participate on them.

3.3 Context Regarding Modelling Stage

Finally, notice that a MAS organisation can be observed from two different points
of views [6,39]:

The interaction point of view: it shows us the organisation as the set of
interaction relationships between agents.

The structural point of view: it shows us agents belonging to sub–organi-
sations, groups, teams. In this view agents are also structured into hierar-
chical structures showing the social structure of the system.

The former is called Acquaintance Organisation, and the later is called Struc-
tural Organisation. Both views are intimately related, but they show the organ-
isation from radically different point of views: a relationship between several
agents in one of them does not necessarily implies a relationship in the other.

The relationship amongst both resides in that interactions between agents
must take place in whichever structural organisation. We can say that the ac-
quaintance organisation is always contained in the structural organisation. If
we determine first the acquaintance organisation and we start from the con-
straints required for the structural organisation, the acquaintance organisation
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Figure 3. Acquaintance vs. Structural Organisation: Manufacturing Pipeline Example

can be mapped onto a certain structural organisation: assigning roles to agents
[39]. Thus, any acquaintance organisation can be modelled independently from
structural organisation [21].

In Figure 3, we present a simple version of the manufacturing pipeline exam-
ple presented in [39, pag. 10]. In this example, each stage is performed by agents
and we need to coordinated speed of all stages. At the acquaintance organisation,
it implies to have a set of roles and interactions between them. At the structural
organisation, these roles can be structured to form several organisational struc-
tures. For example, as it is shown in Figure 3, we can map the acquaintance
organisation over a plain structure, a hierarchical structure, etcetera. This shows
that the structural organisation of the manufacturing pipeline is different from
its structural organisation.

As other authors, we think that the modelling process should be focused
on interactions without taking into account structural constraints, which may
further complicate our task. Focusing on interactions and avoiding structural
details is an approach ratified by the research done in other more mature fields: i)
in the component world, Syzpersky and D’Souza also emphasises the importance
of focusing on interaction in stead of architecture (structure in MAS) in complex
systems [36, pag. 124][11]; ii) in traditional software engineering there exist also
approaches that focus on interactions improving reuse and the ability to manage
complexity [33,37]; iii) and finally, the last version of UML provide modelling
artifacts to perform interaction–centered modelling [27] although they do not
provide guidelines on how using them.

As most complexity is located in the acquaintance organisation, since it fo-
cuses on the main source of complexity, interactions, this document only focus
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on modelling it. As it is shown in Sections 6.5 and 7.4, some of the techniques
and guidelines we present can be also used to map the acquaintance organisation
over the structural organisation.

4 Dealing with complexity

Complexity is one of the main challenges of AOSE. Many authors agree on
that the complexity of MASs is consequence of interactions [18,26]: Complexity
is caused by the collective behaviour of many basic interacting agents. James
Odell [26]. Thus, as we have presented in Section 3, we focus only on them.

In addition to previous fact, we have to determine how complexity can be
managed. In this sense, in [18], Jennings et al. adapt the three main principles
to manage complexity proposed by Booch in [4] in traditional SE: Abstraction,
Decomposition and Organisation/Hierarchy1 [18]:

Abstraction: It is based on defining simplified models of the systems that
emphasises some details avoiding others. It is interesting since it limits the
designer scope of interest and the attention can be focused on the most
important details at a given time.

Decomposition: It is based on the principle “divide and conquer”. It helps to
limit the designer scope to a portion of the problem.

Composition: It consists on identifying and managing the inter–relationships
between the various subsystems in the problem. It makes possible to group
together various basic components and treat them as higher-level units of
analysis, and, provides means of describing the high–level relationships be-
tween several units.

Unfortunately, we think that current AOSE solutions do not put the proper
emphasis on these principles. We have carefully studied previous work in the
component world, traditional software engineering and other fields such as dis-
tributed systems regarding the previous principles. As a result, we summarise
following the strategy we have selected, improved and adapted to the agent field
for each principle. We also show their main advantages.

4.1 Abstraction

Abstraction is a powerful tool in software engineering. In traditional SE, classes
are the main abstraction since modelling focused on data and processes to trans-
form it. However, as we have shown before, this abstraction does not fit with the
features of agents.

In agency, interactions are the main source of complexity; therefore, they
must be seen as the main abstraction. The modelling artifact we should provide
for them must allow to model interactions of whichever complexity as a single

1 Notice that hereafter we call it Composition in order to differentiate it from the
organisation term
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Table 1. Abstraction Summary

element. That is to say, as complexity of models depends on the level of abstrac-
tion, it must be able to model interactions at whichever level of abstraction.
Later, the level of abstraction can be decreased thanks to decomposition and
composition.

The purpose of the analysis stage is to understand the system without taking
into account implementations details. At the beginning of design the system has
to have been properly understood to add implementation details2. Therefore,
complexity should be managed from the beginning of analysis until conquering
it as much as possible.

A plain model of the system, as many current methodologies provide, may
contain a huge number of modelling elements and interactions relationships.
These models could become unmanageable when the model traverses the frontier
between known and knowable domains or even worst if it falls into the complex
domain. In these cases, interaction abstractions are not enough powerful since
interaction abstraction may allow us to perform a model of the system in the
known domain, but its level of abstraction usually will be not enough for our
purpose.

This problem has been solved in traditional SE by maintaining a set of models
of the system structured in several abstraction layers. In AOSE, we must also
provide tools to maintain models consistent and techniques to abstract, divide
and conquer, refine and modularise them.

2 Notice that for complex system analysis and design are usually performed iteratively,
thus no real sequential process has to exist
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In a layered model of a system, top layers show us abstract models which
provide an overview of the system. Bottom layers give us means for detailing
top layers nearing our model to a code model. In SE, the completion of layers
is usually done in an iterative way where abstract layers are refined to produce
bottom layers and bottom layers are abstracted to produce top layers. That is
to say, modelling following a top–down approach or a bottom–up approach. It
follows that we must provide modelling artifacts, techniques and guidelines to
produce layered descriptions. Next two sections summarise how decomposition
and composition can help to perform a top–down approach and a bottom-up
approach.

In addition, in Table 1, we show a summary of all the features identified for
the abstraction principle which are presented in detail in Sections 5, 6, and 7.
Notice that each feature in this table, and the followings, are the subject of the
on–line poll.

4.2 Decomposition

Abstraction mechanisms may result insufficient to deal with complexity when we
model large MASs. In these cases, we can decompose too large models to obtain a
set of simpler ones which can be managed easily. Using decomposition in this way
we can maintain several layers of abstraction where higher level layers represent
abstractedly complex problems and bottom layers store detailed descriptions of
sub–part of top layers models obtained by decomposition. Thus, trying to reach
the level of abstraction needed for our purpose. That is to say, modelling in a
top–down approach.

This separation requires for a set of modelling artifacts, techniques and guide-
lines to: (i) maintain several separated models and (ii) to determine feasible
separations.

The “Role” abstraction is the most important modelling artifact to support
decomposition. When a complex structural organisation, formed by agents, is
decomposed from the acquaintance point of view, some of their agents have to
be also decomposed seeing them from different points of view. Each of these
points of view is materialised as the role that the agent play in each decomposed
model. We use roles in all models since this concept allows decomposition and
abstract us from the concrete agents that we will have in the structural organisa-
tion. Consequently, the agent concept is relegated to design where the structural
organisation is built by assigning roles to agents (see Composition). Notice that
some methodologies mix both concepts since in stead of providing a sequential
software process where both stages are performed iteratively (roles and agents
are defined iteratively), they provide a sequential process where both stages are
mixed explicitly, e.g. [5,6]. In addition, roles also allows us to model the ac-
quaintance organisation orthogonally to the structure emphasising interaction
[21].

Finally, reuse and modularity are indispensable features of whichever method-
ology. Isolated models can be easily reused than complex and large models. Fur-
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thermore, isolated models allow us to modularise the system description and
assigning each sub–part to different teams of analysts.

The techniques to decompose models can be classified into two levels of de-
composition depending on their relationship with the interaction abstraction
discussed on Section 4.1:

Model decomposition: A decomposition where a complex problem is divided
into several separate models without decomposing interactions. For example,
a model where we represent a MAS for an e–book store where the agents
has to search books and to sell the books that the client select. It can be
divided into two models: one containing the problem of searching books and
another for modelling how books are purchased. Notice that adding details
to decomposed models, where we limit the designer scope, is easier than in
complete models. Hereafter, we refer it as Role model decomposition (see
glossary for role model definition).

Interaction decomposition: A decomposition where abstract interactions are
broken into finer grain interactions (see glossary for interaction definition).
For example, we can divide the interaction search books into several refined
interactions: for example, establish preferences, selection of dealers, get results
and eliminate duplicate results.

In addition, in Table 2, we show a summary of all the features identified for
the decomposition principle which are presented in detail in Sections 5, 6, and
7.

4.3 Composition

A set of models obtained by decomposition of sub–part of the system offers
a tour by the system specification but do not offers the big picture of it. De-
signers/implementers not involved in the analysis phase must be able to get an
overview of it. We can compose detailed models to abstract them and repre-
sent most relevant features in a single abstract model. Therefore, composition
represents the tools needed to perform a bottom–up approach.

Another important fact is that a complete decomposition of a complex prob-
lem into a set of orthogonal sub–problems is not usually possible. When several
problems have been isolated in order to study them separately, we are ignor-
ing the interdependencies between them. That it is to say, the whole is greater
than the sum of its parts. The lost elements may contain crucial features of
the system. Hence, composition of models is an important tool to discover such
elements when isolated problems have been properly studied. This reduce the
complexity we are concerned since only interrelationships has to be managed
since problems to be composed have been previously studied.

Finally, as by composition several roles can be merged and an agent is an
aggregation of roles, we can use composition to help building the structural
organisation. That is to say, models created at analysis can be mapped onto the
real world organisation structure as we have shown in the pipeline example.
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Table 3. Composition Summary

In addition, in Table 3, we show a summary of all the features identified for
the composition principle which are presented in detail in Sections 5, 6, and 7.

5 Modelling Artifacts

Complex systems require for tailored modelling artifacts that allows us to build
abstract models, decompose and compose them. We also need modelling artifacts
to document the relations amongst the set of models we produce and to struc-
ture them into a set of abstraction layers. Following, we present the modelling
artifacts we have selected to cover these requirements.

5.1 Interactions

– A.1 Multiparty Interactions Relationships: Interaction relationships
must be multiparty since it allows us to model high–level social relationships
and performs a layered model of the system

The acquaintance organisation of a large MAS may contain a huge number of
relationships between roles. Furthermore, these knowledge level relationships
usually relate more than two roles. If we model relationships between roles
by means of biparty links, we are forced to decompose mentally n–party
relationships where n > 2. Thus, decreasing the level of abstraction from the
beginning.
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For example, a relationship relating three roles can be modelled as a sin-
gle modelling artifact using multiparty interactions. However, if we limit to
binary, we have to use at least two links associations, thus, decomposing
mentally it. This forces us to enter into the relationship details.
This motivates the need for relationships that allows relating an arbitrary
number of roles. This kind of relationships are provided by many modelling
languages. Different terms are used to refer to them: Collaborations in UML
2.0 [27], object diagrams and use cases [4], process models [7], message con-
nections [8], data-flow diagrams [34], collaboration graphs [38], scenario di-
agrams [33], collaborations [11]. In MAS many authors have also proposed
abstraction to model coordinated actions such as, protocols [39], nested pro-
tocols [3], interactions [6] or micro-protocols [23]. Hereafter, we refer “mul-
tiparty interactions relationships” as interactions.
We must also provide multiparty interactions relationships with the capabil-
ity of being described internally by means of other interactions in order to
provide the possibility of using an arbitrary number of abstraction layers.

– A.2 Structure of an Interaction: In order to fully describe a multiparty
interaction a set of elements must be attached to them.
We have selected the following elements to decorate multiparty interactions
as a result of carefully studying the bibliography.

system goal it fulfils: A system goal results on an interaction between
several agents when it is enough complex to require more than one agent
to be achieved. This argues for linking interactions with goals providing
a direct transition between requirements and analysis. Goals that are
enough simple to be achieved by a single agent, represented as the role
it plays, can be linked to them (see D.4).
It allows us to model coherent systems since system goals are directly
related with the goal of roles that participates on it [29]. It also allows
us to have an artifact that directly represents the functionality required
by the system and that provides a direct traceability with goal–based
requirement documents.

knowledge consumed and produced in the interaction: It shows the
knowledge required by the interaction to fulfil its goal and to generate
some new knowledge [6,39]

ontologies of an interaction: They describes the knowledge that is pro-
cessed in the interaction. It allows to provide a precise specification [5,11]

coordination type its participants follows: It allows to include in mod-
els the Parunak’s taxonomy of interactions [29]

instantiation rule of the interaction: it shows the constraints over the
agents that may play the roles in the interaction (see D.1) [39]

Finally, notice that an interaction relates the set of roles that participate on
it; notice that we do not include the agent concept since we leave it for the
structural organisation. However, it could be also used in structural models.

– A.3 Role Models: Acquaintance sub–organisation must be described ab-
stractedly and provide the capability of being detailed in several abstraction
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layers. If we represent acquaintance relationships using multiparty interac-
tions, role models can be used with this purpose
Multiparty interactions, in stead of binary associations, must be used to
represent all the relationships between roles in a certain sub–organisation.
This allows modelling whichever acquaintance organisation as abstract as
we need. Later, we can apply decomposition to refine models describing its
interactions by means of binary associations (see Sections 6.2 and 6.3). We
can also use composition to abstract models and identify interrelationships
between sub–organisations (see Section 6.5).
Several agents form a certain sub–organisation in order to fulfil a certain
system goal that it is complex enough to require several agents. As a result,
role models represent how a certain system goal is fulfilled, and its interac-
tions represents the sub–goals of the role model goal. This allows modelling
congruence at several levels of abstraction.

– A.4 Behaviour descriptions based on multiparty interactions: Be-
haviour description must be able to express the order of execution of multi-
party interactions [14]
Using messages at the dynamic aspect, although they can be abstract, limit
descriptions to relationships among two participants. This hinders the rela-
tion between the multiparty interaction–based role models and its behaviour
model. It also forces analyst to decompose mentally multiparty relations in
role models to a set of binary messages. Therefore, messages–based descrip-
tions decrease the level of abstraction we are able to represent and hinder
the traceability between models in both aspects.
Notice that using multi–party interactions, behaviours descriptions can be
abstract. Using them we represent the social behaviour, that is to say, which
joint tasks (notice that uni–party interactions can be also used) has to be
performed to achieve system goals.
We call these behaviour descriptions abstract joint behaviours. Hereafter, we
refer them as behaviours for shortening.

– A.5 (i) Behaviour model of Roles and (ii) Behaviour model of
Role Models: Behaviour descriptions must be modelled from a single role
point of view and from a whole role model point of view
Modelling artifact to represent a complete description of the behaviour of an
acquaintance sub–organisation and the portion of behaviour belonging to a
single role may be also appropriate. Both views allow to focus the modelling
process on single roles or the MAS/sub–organisation itself. Thus, applying
decomposition and improving our capability for dealing with complexity.
The behaviour model of a role model helps us to understand its behaviour
abstractedly (they are based on multiparty interactions). A model represent-
ing the behaviour of a single role helps us to understand its behaviour in the
acquaintance organisation without taking into account details on other roles
that do not interact with it.
The behaviour model of a role can be also useful when assigning several
roles to the same agent since it help us to group such roles which presents a
similar behaviour in the same agent.
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– D.1 Instantiation rules of role models: Role models must be decorated
with instantiation rules: constraints on the identity of agents who play roles
[39]
It must be emphasized that constraints on the identity of agents who play
each role are lost in role models. For example, using an agent model (a
model that represents the structural organisation) is easy to show that a
paper’s author agent cannot review its own paper, but when the reviewing
process is modelled separated from the submission process using roles, this
constraint is lost. Instantiation rules help us to model the constraints on how
a certain role model can be instantiated over a certain group of agents. They
also guide the mapping of the acquaintance organisation over the structural
organisation.
The identification of instantiation rules can be helped by composition. When
we assign several role models to a set of agents or when we compose several
roles, new instantiation rules can be identified (see Section 7.4 for further
details).
Notice that GAIA also proposes to express dynamic restrictions using in-
stantiation rules. That is to say, restrictions on the order in where roles
must be played. These restrictions limit us to a certain structural organisa-
tion. We leave them for the last steps of analysis when the mapping over the
structural organisation is performed. We think that these restriction can be
represented easily in the behaviour model of a composite role.

– D.2 Parameterised Role Models: Roles, knowledge and services of in-
teractions can be set as parameters to ease the reuse of interactions. Instanti-
ation rules are also crucial elements which must be attached to parameterised
role models to properly reuse them [27,2]
We can parameterise roles, knowledge and services of a role model to de-
scribe a parameterised pattern of interaction which is suitable to be reused.
Instantiation rules must be attached to parameterised role models in order
to show the restrictions on their use.

5.2 Roles

– D.3 Roles: We must use roles to be able to decompose the system at static
and dynamic aspects. Roles are linked with one or more multiparty interac-
tions and describe the knowledge and services offered on these interactions
A MAS can be decomposed into several isolated models, each representing
how a certain problem is solved, that it is to say, how each system goal
is fulfilled. As a result, the same agent may be involved in several mod-
els. Therefore, the activity of an agent may be seen from several points of
views, one for each problem resolution it participates in. These views are
represented by means of the role that the agent plays in each problem.
In [21], Kendall enumerates the main advantages roles in AOSE. We think
that these advantages also help us to deal with complexity:
1. Roles emphasise how agents interact. Thus, they allow focusing on the

main source of complexity.
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2. Roles are orthogonal to agents, that is to say, they allow modeling the
acquaintance organisation orthogonally from the structural organisation.

3. Models based on the role concept can be instantiated, generalised, aggre-
gated and specialised into compound models. This improves reuse and
enables the use of composition and decomposition to deal with complex-
ity.

– D.4 Structure of a Role
As a result of studying related work, we have selected the following structure
of a role:

role interfaces: knowledge and services provided by each role
goals of roles: It improves the traceability between system goals and the

sub–goals that each role fulfil to achieve the system goal
cardinality of roles: number of agents that may play it
initiator/s and responder/s role/s: See D.5
guard per pair interaction/role: it shows if the agent playing a role

wants to participate in the interaction or not. It also allows us to model
proactive agents.

– D.5 Initiator and Responder Roles: The agents playing the roles in
a role model can be responsible of jointly initiating an interaction or simply
participating on it when they are required to do so.
The agents which play an initiator role are which initiate the interaction.
The agents playing the responder roles are required to participate in the
interaction. An agent can decide whether participating in an interaction or
not by means of guards.

– D.6 Environmental Roles: Environment must be also modelled by means
of roles using ”environmental roles” allowing see environment from different
isolated points of view.
This distinction has been proposed in traditional software engineering [33].
We think it is also appropriate in the agent field since all the elements present
in models have not to be agents and they should be also decomposed in
separated views.
In a MAS there may exist entities with a low degree of proactivity or even
totally passive. These entities can be seen as environmental resources or pas-
sive objects. As such environmental entities may be also used to solve several
problems; we should also provide different views of them. For example, in
a conference management system, a paper database can be used for several
purposes: in the reviewing problem we are only interested on the topic of
papers, and in the notification process we are interested on authors’ e–mails
and in the score of the papers. Thus, this database can be represented as
two different environmental roles, one for each sub–problem.
This separation can be done using environmental roles. This also helps us to
perform a uniform model where few modelling artifacts have to be managed.

– A.6 Abstract roles and services: Abstraction mechanisms must be pro-
vided for roles and their services
Defining an interaction involves the definition of the set of roles that partici-
pate on it. We have also to show the services they must provide to the rest of
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participant, the knowledge that each participant manage and the common
ontologies. Therefore, we must also provide abstract modelling artifacts for
these elements in order to model interaction abstractedly:

Role abstractions: It consists on a role played by an agent which repre-
sents an entire organisations, other system, a legacy systems, and so on.
For example, a role banker may represent a complex organisation which
when refined may involve several agents. Recursive agents or holonic
agents are good example of this kind of abstraction mechanism [17,28].

Services Abstractions: It consists on abstracting the definition of ser-
vices provided by roles by means of pre and post–conditions (Notice
that services can be viewed as interactions with a unique performer).
For example, banks agents may provide an update funds service to man-
age the modification of funds which when refined may require several
queries and updates.

5.3 Knowledge and Ontologies

– A.7 Model of knowledge consumed/produced by interactions. Mul-
tiparty interactions must be decorated with the knowledge consumed/produced
by each role [6,39].
Since interactions amongst agents take place at the knowledge level, we
should describe the knowledge and resources consumed/produced by each
role in the interaction. Notice that it provides some information about the
interactions internals, but without detailing how the process is carried out.

– A.8 Ontologies of an interaction: The model of knowledge consumed
and produced by each role in the interaction must be precise, that is to say,
every knowledge entity used in an interface must be defined in the corre-
sponding ontologies
These knowledge entities or resources can be modelled abstractedly until we
have enough understanding of the system to refine them; however models
must be precise at any abstraction layer. Representing the knowledge con-
sumed/produced without the ontologies that define this knowledge is mean-
ingless, thus we must attach a set of ontologies per interaction. The ontologies
of an interaction describe the common knowledge that agents must manage
to be able to engage in the problem resolution represented by it.
We have selected ontologies as an important element of models as a result
of studying PASSI [5], and [11] in the component arena.

– A.9 Abstract knowledge and ontologies: Abstraction mechanisms must
be provided for knowledge and ontologies
Defining an interaction involve the definition of the set of elements. In or-
der to model interaction abstractedly we must provide abstract modelling
artifacts for knowledge and ontologies:

Knowledge Abstractions: It consists of representing the knowledge owned
by each agent in an abstract way at stages where details are not known.
For example, banks’ agents may own the knowledge about their account
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which we can represent abstractly as knowledge entity called account. ac-
count represents abstractly all the knowledge that agents must manage
about accounts which refined my contain knowledge about the account
number, the funds, the credit availability, etc.

Ontologies: Ontologies must be also abstracted.

5.4 Traceability

– D.7 Traceability models: A complex system modelled in several abstrac-
tion layers produces a high amount of models. We must provide traceability
models in order to maintain them ordered and to provide traceability between
requirement, analysis, and design [11].
The main source of complexity is the interaction. As we have shown pre-
viously, interactions can be related with system goals, thus with functional
requirements of the system. In a complex system, we can have a huge number
of interactions and role models using them. Furthermore, each role model
is detailed in subsequent layers by means of other finer–grain interactions.
Such amount of models has to be managed carefully. A traceability model is
the solution we have selected and adapted to solve this problem. They are
based on refinement documents of Catalysis [11].
Each node in a traceability model represents an interaction and it is related
with finer and coarse–grain interactions by means of the associations in next
points. As interactions are linked with system goals and they are used in role
models, this model provides us a direct traceability with goal–based require-
ment documents and it shows us which models details how each functional
requirement is achieved. Notice that each model is related with the model
in subsequent layers since they are obtained by composition or decomposi-
tion of other models (see Section 6). Traceability models are used to show
these relations and also show us which interactions we have used in each
abstraction layer.
In addition, in a top–down or bottom–up approach, we must transit from
requirements to analysis and from analysis to design iteratively. We can use
traceability diagrams in order to clarify this transition documenting and jus-
tifying analysis and design decisions clearly. That is to say, we can decide be-
tween several available decompositions or compositions basing on functional
and non–functional requirements and document such decisions in traceability
diagrams.
Finally, as this model can provide us functional traceability, it also helps
to identify clearly which roles or sub–organisations are affected by future
extensions/modifications of the system.

– A.10 “Classification” association for parameterised role models
and structural models
Parameterised role models can be instantiated to obtain a concrete role
model. The relation between them is characterised by “classification” as-
sociation. We must document instantiations of parameterised role models in
traceability models.
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Notice that another level of instantiation arises when we instantiate a role
model over a certain set of agents, that it is to say, a certain structural
organisation. These relationships can be also represented using classification.
Both kinds of classification associations can be distinguished by a stereotype
or a different graphical representation.

– D.8 “Aggregation” associations for interactions: Multiparty interac-
tions can be decomposed, thus we must relate bottom layer interactions with
top–layer interactions by the “aggregation” association
If we decompose interactions into several finer grain interactions we obtain a
new layer. Relating high–level interactions with the interactions resultant of
decomposition provides us traceability from requirements to design. Abstract
interactions must be related with the set of interactions that refine it. The
association we propose is “aggregation” to be used in traceability diagrams.
For example, we can decompose the interaction search books to obtain the
finer grain interactions: establish preferences, selection of dealers, get results
and eliminate duplicate results. All of these finer–grain interactions can be
related with the interaction search books by “aggregation”.

– D.9 “Aggregation” association for interaction elements: As a result
of decomposing an interaction, its elements can be also decomposed. Hence we
must relate these modelling artifacts by means of a “aggregation” association
Notice that when an interaction is decomposed it also implies to decompose
it roles, thus roles must be also related by means of an ”aggregation” asso-
ciation. Services, knowledge, instantiation rules and ontologies can be also
decomposed into finer–grain elements. They could be also related by this
association.

– D.10 “Redefinition” association for interactions: As a result of de-
composing or composing interactions, we may have to redefine them. Hence
we must relate interactions that are redefined by means of a “redefinition”
association
As a result of decomposing or composing models, we may discover new re-
quirements that force us to redefine some interactions. In consequence, we
must relate original interactions with redefined ones in traceability diagrams.

– D.11 “Redefinition” association for interaction elements: As a
result of decomposing or composing interactions (see Sections 6.2 and 6.3),
its elements can be also redefined. Hence we must relate these modelling
artifacts by means of a “redefinition” association
As a result of a decomposition or composition, we can easily focus on its
sub–parts and find inaccuracies in the elements of initial interactions. In
consequence, these elements must be redefined and we must be able to rep-
resent their relation in traceability diagrams.

– A.11 “Generalisation” association for interactions: Generalised role
models can be defined in abstract layers. Later these role models can be ex-
tended by inheritance to fit certain situations. The relation between these
models can be documented by generalisation association.
Notice that this association implies inheritance at static and dynamic as-
pects. Regarding static aspect, OO inheritance concept can be applied (in-
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terface inheritance). But at dynamic aspect, we must work with behaviour
inheritance [24]. We say that a behaviour specification B specialises A, if the
traces B produces are contained in the traces A produces. In this context,
a trace is defined as the sequence of interactions that role model behaviour
may produce.

6 Techniques

Modelling using abstraction layers should be helped by a set of techniques that
help us to systematically obtain top layers from bottom layers (a bottom–up ap-
proach) or bottom layers from top layers (a top–down approach). Furthermore,
inaccuracies and mistakes may appear even more in complex systems. Discover-
ing them is a tedious and time–expensive task, thus, if possible, we should also
provide techniques to help this task.

6.1 General Techniques

– C.1 Techniques to obtain the behaviour of a role model from its
behaviours of roles.
Notice that when using multiparty descriptions both behaviour models are
equivalent [32]: one is distributed over roles and the other is centralised as
the role model behaviour. Maintaining both descriptions consistent manually
may be a difficult task. Thus, mechanisms to transform automatically all the
behaviours of roles in a role model to the behaviour of the role model is rather
valuable to conquer complexity by automating this transformation.

– D.12 Techniques to obtain the behaviour of a role from the be-
haviour of a role model.
We have to work with the behaviour model of roles or with the behaviour
model of the whole role model depending on the technique we are applying.
The mechanism to transform automatically the behaviour of a role model
into a set of behaviours of roles is also rather valuable to conquer complexity.

– C.2 Techniques to test behaviours In complex system behavioural de-
scriptions may result on difficult to understand models. We can palliate this
problem using the modelling artifact shown in previous sections. But, we can
also provide automatic algorithms that help us to ensure their correctness
Behaviour descriptions may contain mistakes, for example, situations not
taken into account, and deadlocks. Detecting this kind of mistakes is expen-
sive. Thus, we could provide automatic techniques to test behaviour descrip-
tions.

6.2 Techniques to Determine Feasible Decompositions

Decomposing a problem into a set of sub–problems, may result a hard task if we
do not provide techniques for identifying such divisions.
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Following, we discuss on two techniques for determining feasible decomposi-
tions. The former, goal decomposition, can be used for performing interaction
and role model decomposition, and the latter, dependency decomposition, can
be used to perform interaction decomposition.

– D.13 Decomposition by Requirement Goals: We can decompose the
system by means of system goals or use cases (functional decomposition). It
improves system congruence
Since agents are limited to some environment and have limited abilities,
complex problems are usually solved by a set of agents. For example, in a
conference management system where a system goal is to select papers, a
blind reviewer agent is only concerned with revision of its papers and it is
not able to send the results of the review to the authors or decide if the
paper is accepted or not. Hence, other agents are needed to fulfil the system
goal.
If a complex system goal has to be fulfilled, we need several agents to achieve
it and hence, at least one interaction between them. That is to say, a system
goal results on an interaction between several agents when it is enough com-
plex to require more than one agent to be achieved. This argues for linking
interactions with goals providing a direct transition between requirements
and analysis. Simpler goals can be also linked with roles.
Identifying system goals and decomposing them into finer–grain goals pro-
vide us means for an initial functional division of the system where inter-
actions and their roles can be identified. This argue for goal–oriented re-
quirements techniques that provides us hierarchical system goal diagrams
[9,10,20,39]. By them, we can perform a functional decomposition of the
system which may be also performed by analysing requirements document
based on use cases, but with a higher effort.
We can perform the following types of decompositions using goal–based re-
quirement documents:

Interaction Goal Decomposition: When a requirement goal is refined
by several goals it implies that several sub–goals must be fulfilled to
achieve it (by “and” decomposition of goals). This shows us how to de-
compose an interaction which represents a high–level goal into a set of
finer–grain interactions, one per sub–goals to be fulfilled. In “or” decom-
position we must fulfil whichever of them.
Without techniques to perform and guide this kind of decomposition,
the refinement of multiparty interactions to biparty primitives, such as
those used at design and code level, may result on intuitive decisions
without any guidance.
By decomposing a complex interaction, we also divide and conquer com-
plex problems. Interaction decomposition decreases the number of partic-
ipants of interactions, which lead us to easier implementations (the pro-
tocol to coordinate n parties is more difficult than such for two parties)
as it is shown in [1,15,30]. Furthermore, the complexity of the knowledge
processed in each interaction decreases, thus easing their internal design.
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Role Model Goal Decomposition: We can also perform a decomposi-
tion where interactions are not divided. If we have a model where several
sub–goals are represented by means of interactions in a single model, and
they are related by ”and” of several high–level goals, each of the high–
level goals shows us a set of interactions that can be separated into a
decomposed model.
For example, if we have two system goals of the conference management
system: review papers and communicate results, each of them can be
refined by and decomposition by several sub–goals. If we deal with a
single role model which contains the interactions linked with the sub–
goals of both, our model can be decomposed into two role models, one to
show how the sub–goals review papers is achieved, and another for the
sub–goals communicate results.

– D.14 Decomposition by dependency analysis: When goal decomposi-
tion has been exploited, system can be decomposed by analysing the depen-
dencies between knowledge/services required/consumed by each role in a role
model [30]
It consists on grouping roles that highly depend inside in the context of an in-
teraction. Since roles relate in order to exchange knowledge and/or problem–
solving capabilities, we can analyse the dependencies regarding them. Each
group of dependent roles can be related by a new set of finer–grain interac-
tion, thus reducing the complexity of models and providing means for identi-
fying refined acquaintance sub–organisations. In [13,30,31] authors describe
several techniques to decompose multiparty interactions.
For example, in a purchase interaction, which is not further detailed at re-
quirement documents, several agents may be involved: a seller’s bank agent,
a buyer’s bank agent and a point of sales agent. Seller’s bank depends
on the knowledge provided by the point of sales, buyer’s bank also de-
pends on the point of sales, and buyer’s bank and seller’s bank do not
depend. Hence, we can decompose the purchase interaction into two inter-
actions: determine and pay goods between buyer’s bank and point of sales,
and store profits between point of sales and seller’s bank.

6.3 Techniques to Support Decomposition

– D.15 Technique to extract the static aspect of a role: When we
perform a decomposition, roles have to be also decomposed. Techniques to
extract static features are needed
The process of engineering a software application is done in an iterative way.
In consequence, we have to deal with descriptions where a set of roles may
be involved in the resolution of a certain problem which can be further de-
composed. Techniques that allow us isolating the static and dynamic aspect
of a role regarding a certain problem are also quite appropriate.
At the static aspect, we need techniques to extract those acquaintance rela-
tions (interactions) which are used to solve the sub–problem we are isolating.

23



The Distributed Group Seville Technical Report Oct–22th–04

In addition, if a role participates in several interactions, we need to separate
the part of the interface used by the isolated interactions.

– D.16 Technique to automatically decompose dynamic aspect of
a role: Techniques to automatically decompose the dynamic aspect of roles
from a complex model given a certain decomposition are needed. This is a
hard task if we perform it manually. Automating it helps us easing decom-
position and conquering complexity
At the dynamic aspect, we need techniques to decompose the behaviour of
a role regarding the sub–problem we are isolating. That it is to say, extract
the order of execution of such interactions in where the role is involved in
the problem we are isolating.

– D.17 Technique to sequence decomposed interactions obtained by
goal decomposition: We must provide techniques to sequence a set of de-
composed interactions automatically if possible
By requirement–goal decomposition we can break an interaction into several
finer–grain interactions. We need techniques to determine how decomposed
interactions sequence. In this case, requirement document may help us in
this task.

– D.18 Technique to sequence decomposed interactions obtained by
dependency decomposition: We must provide techniques to sequence a
set of decomposed interactions automatically if possible
In dependency decompositions we know how knowledge and/or services re-
late. When an interaction works with the result of other interactions (it
exists dependencies between their knowledge and/or services) it must be ex-
ecuted after their inputs have been calculated in the other interactions. As
a result, we can automatically sequence them analysing their dependency
graphs. Therefore, we can establish automatically how interactions sequence
in most cases.

6.4 Techniques to Support Open Systems

– D.19 Technique to test inheritance conformance at behavioural
aspect.
We must provide techniques to ensure that the behaviour of an inherited
model conforms to the behaviour of its ancestor. It allows us to support
open systems since new roles can be added to the system if their behaviour
inherit from a generalized one.

– D.20 Technique to check instantiation rule at runtime.
We must provide techniques that allow checking if instantiation rules are
fulfilled when a certain role model is instantiated by a set of agents.
At runtime we can also add new interactions, but we have to check if they
fulfil constraints imposed by instantiation rules.

6.5 Techniques to Support Composition

– C.3 Techniques to merge interactions and their elements

24



The Distributed Group Seville Technical Report Oct–22th–04

We must provide techniques to perform composition at the static aspect
since roles and interactions can be merged in composite role models. For
example, when we merge several interactions, we have to determine the new
initiator, the participants (may be the sum of all of them or not) and so on.
When merging several roles, their interfaces must be also merged and their
links with interactions.

– C.4 Techniques to compose the behaviour models of several role
models: Several behaviour models of several role models must be merged to
obtain the behaviour model of the composite role model
Techniques to compose the behaviour models of several role models have to
be provided in order to determine the behaviour model of the composite role
model. It can be used to obtain the big picture of several problems modelled
isolated or to map several role models to a certain structural organisation.

– C.5 Techniques to compose several behaviour models of roles: Sev-
eral roles that are seen as the same role in a composite role model must be
merged
When several roles are composed, their behaviour description (the sequences
of interactions they execute) must be also merged. As a matter of fact,
techniques to compose the behaviour of several roles that are seen as the
same role in a composite role model are quite valuable.
Furthermore, in a structural organisation several roles are mapped onto the
same agent, thus we need a way of merging the behaviour of several roles
into single agent behaviour.

– C.6 Behaviour composition can be done by: sequential composi-
tion, parallel composition and composition by interleaving
We need techniques to compose behaviour descriptions (behaviour models
of role models and behaviour models of roles). Several techniques can be
identified:
Sequential: The behaviour of each model is executed atomically in se-

quence with others.
Parallel: The behaviour of each model is executed in parallel. It is the less

common in acquaintance organisation since models that can be executed
in parallel are independent and thus, we do not usually compose them.

Interleaving: It is the most common since the composition of several role
models that are highly related implies to highly interleave them. Notice
that the proper interaction granularity must be used for this kind of
composition (see C.11).

7 Guidelines

In previous sections, we have presented modelling artifact and techniques to deal
with complexity. However, we have not coped with another important dimension
that a methodology must provide, its software process. As we intend to provide
general solution not coupled with any methodology, this section presents a set of
guidelines that a methodology should follow in its software process to deal with
complexity:
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7.1 General Guidelines

– D.21 Acquaintance organisation must be modelled before struc-
tural organisation.
Separating agents and roles allows us to be able to distinguish between two
architectural levels:

Acquaintance Organisation it is described by means of role models. It
specifies the acquaintance relationships in the system by means of inter-
actions and roles.

Structural organisation it represents a concrete instantiation of a set of
role models over a set of agents (this process is guided by instantiation
rules). It specifies the organisation structure based on the real organi-
sation where the system has to be deployed. That it is to say, it is the
mapping of the acquaintance relationships identified at analysis onto a
concrete organisational structure.

Since interactions are the main source of complexity, we should not bother
about organisation structure at analysis. This eases the process of under-
standing the complex behaviour of a MAS. Furthermore, we should not take
into account organisation structure at the beginning of analysis.
Notice that if we start analysis with a certain organisational structure (by
means of agents) based on the real organisation where the MAS is going to be
deployed, the initial subdivision in interactions and roles may not be optimal.
The main reason is that real organisation is not always modelled from the
interaction point of view. For example, teachers in the group of teachers of
a certain subject are grouped because they teach the same subject, but it
does not imply any acquaintance relation between them.
Another risk of starting analysis with the real structural organisation in mind
is that we mimic its mistakes. The mistakes of organisations has been well
studied in economics [25]: agents coordinated by more than one agent, agents
introduced to cover the relations between several sub-organisations, agents
with same profile placed in different sub–organisations when only one agent
and a proper structure can be used, etcetera . Thus, when real organisations
impose constraints on the system architecture, abstract organisations may be
modelled by means of role models at analysis to later map them onto concrete
agents structured as the real organisation by the composition principle.

7.2 Abstraction Guidelines

– A.12 Multiparty interactions must be first class modelling ele-
ments
Interactions must be seen as first class modelling elements since they are the
main source of complexity and one of the most important features of agents.

– A.13 Details on how interactions are carried out must be optional
at first stages of modelling
Details on the relationships between roles are not accurately known at first
modelling phases. For example, we do not accurately know how is going to
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be carried out a purchase relationship at the first approach to the problem.
If we have to model how it is carried out, we need a deep knowledge of the
agents involved what is not possible at analysis stage and counterproductive
to maintain an abstract description. This argues for descriptions techniques
that do not force us to describe how they are carried.

– A.14 The modelling artifacts presented omitting behaviour de-
scriptions allow us to model abstractedly and graphically following
a BDI approach and, in conjunction with techniques and guide-
lines, it enables the construction of a methodology for complex
BDI systems
Modelling artifacts we present can be used to model BDI and BDJI (Belief-
Desire-Joint-Intention Architecture) [16,19]. In addition techniques and guide-
lines can help us in the modelling process [22].
Believes can be modelled as knowledge entities in interfaces of roles and data
of interactions.
Desires can be modelled as goals of roles, or even using goals of interactions
if we follow the Belief-Desire-Joint-Intention approach.
And intentions, can be modelled as instantiation rules and guards showing
the situations where each interaction is part of the plan to achieve the agent’s
desires. In addition, we can use behavioural models when following a BDJI
approach.
Notice that using the modelling artifacts, techniques, and guidelines in this
document we are able to model BDI systems abstractedly and following
a layered approach. For example, coarse grain interactions can be used to
describe intentions abstractedly, and finer–grain interactions can be used to
detail them producing several layered models of the system.
In this way, we can produce BDI models of the system in several abstraction
layers gaining all the advantages presented in this paper. Later these mod-
els can be refined by a traditional BDI formal approach. Abstract models
produced using the elements on this paper represent a good starting point
for system where performing a BDI model from the beginning falls in the
complex or chaos domain, thus helping us to deal with complexity.

– A.15 The modelling artifacts, techniques, and guidelines pre-
sented allow us to model abstractedly and graphically electronic
institutions, and it enables the construction of a methodology for
dealing with more complex institutions
The electronic institutions approach model a MAS basing on social concepts
[12]. The main concepts used in this approach present a direct correlation
with elements presented in this document. Following, we summarise how the
elements presented in this document can help the development of first phases
of electronic institutions:
Electronic institution separate roles and agents as we show in this document.
Dialogical frameworks defines the interaction framework for a set of agents.
With this purpose are defined the ontology that defines the common language
that agents use to interact, and the common language used for communi-
cation. It also defines illocution schemes. An illocution scheme represents
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an interaction among two roles which represents statically an acquaintance
relationship between roles in the institution. We argue for modelling interac-
tions in different layers of abstraction. Illocution schemas can be graphically
represented using role models with a single mRIs and its ontologies since it
represents the static relationships that may appear between roles. We can
also use role models with several mRIs and its corresponding ontologies,
where each mRI represents an illocution scheme. Notice that we are able to
model constraints on the use of illocution schemes using guards of mRIs and
that we can also use parameterised role models when a higher level of reuse
is needed.
A scene defines how a set of roles interact in an institution describing the
available order of use of illocutionary particles over time. That is to say,
scenes represents the dynamic aspect of acquaintance relationships. In our
approach, both behaviour descriptions, behaviour model of a role model and
of a role, can be used to describe scenes gaining all the advantages described
for them.
The performative structure represents the next–level–of–abstraction descrip-
tion of the behaviour of the institution regarding scenes. It represents how
the scenes defined in the institution appear over time. This represent a good
abstraction mechanisms that, as authors argue, is required for developing
large institutions. In our approach, we also base on this solution but ex-
tending it to an unlimited number of level of abstractions. We also provide
the techniques and guidelines to maintaining them and we use the same
semantics for all layers.
Normative rules specifies the obligations that an agent acquires in a certain
scene because of its participation in another scene. They can be modelled
by instantiation rules, guard and behaviour models that limit the available
set of interactions for a role in a certain execution time. Postconditions
of interactions can show how each role changes because of executing the
interaction.
Finally, it must be emphasised that our approach does not replace electronic
institutions, but it helps to perform the first stages of modelling of complex
institutions where a low knowledge of its intricacies is available. Later, when
a initial layered model is developed following the recommendations in this
document, more formal models can be produced following the electronic
institution approach.

7.3 Decomposition Guidelines

– D.22 decomposition of problems allows us to assign isolated sub–
problems to different teams of analysts.
It help us to deal with complexity since each team can focus on a simpli-
fied problem without taking into account restrictions of related parts of the
system.

– D.23 to perform a decomposition maintaining the level of abstrac-
tion we must use role model decomposition.
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The former technique helps us to perform a functional decomposition of the
system where we maintain the level of abstraction.

– D.24 When we need to refine models we must use interaction
decomposition.
The later helps us to refine models defining abstract interactions internally
(by means of finer–grain interactions) thus obtaining a new layer with a
refined model.

– D.25 Interactions must be linked with requirement system goals
to provide traceability between requirements and analysis and to
improve system congruence.
This process also improves the system Congruence since system goals are
taken into account and agents goals can be determined by a decomposition
of a system goal into a set of sub–goals assigned to agents (notice that such
decomposition may have been identified at requirement stage).
Using system goal diagrams, we can determine interactions in the system. A
goal results on an interaction between several agents when it is enough com-
plex to require more than one agent to be achieved. This argues for linking
interactions with goals providing a direct transition between requirements
and analysis. Goals that are enough simple can be linked with agents.

– D.26 Hierarchical goal diagrams guide the decomposition. We can
apply “role model decomposition” or “interaction decomposition”.
Hierarchical goal diagrams provide a description of system goals where we
can see which sub–goals are needed to fulfill a higher level system goal. This
information can be used to perform both kinds of decomposition as it is
described in D.13.

– D.27 Dependency Decomposition must be applied when we are not
able to perform more goal decompositions.
Finer system goals identified at requirement stage may result insufficient to
reach a level of detail enough to step to design easily. Notice that in complex
system, we should minimize the complexity of interactions at analysis as
most as possible. If interactions are too much complex at design it will be
harder to design them internally. Dependency decomposition can be applied
at the interaction level, thus, performing interaction decomposition.

7.4 Composition guidelines

– C.7 Composition help us to discover how sub–parts of the system
modelled by different teams of analysts relates.
It help us to deal with complexity since modelling composing several sub–
parts of the system studied separately only implies to model the relationships
between models that have been studied and understood properly. Thus, we
do not have to deal with the whole problem at once.

– C.8 To identify instantiation rules that involves several models
we must compose them
Furthermore, building a new role model from several isolated ones allows us
to identify new constraints on the agents who may play each of them. Thus,
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composition of role models is a crucial tool to identify instantiation rules
that traverse the frontier of one role model as we show in previous section:
a paper’s reviewer must be different from the paper’s author but this in-
stantiation rule does not belong to the reviewing process nor the submission
process, but to both.

– C.9 To identify coordinator agents we must use composition
When several role models are merged we can obtain a complex organisa-
tion. In these situations, coordinators can be added to control the sub–
organisation.

– C.10 Composition and Decomposition must be documented in
traceability models by associations recommended.
Since interactions and their elements can be composed, we must use “aggre-
gation” association to document it in traceability models. If redefinitions are
performed, we must use “redefinition” association.

– C.11 Behaviours composition must be based on multiparty inter-
actions of a certain granularity when role interleaving is needed
Notice that if we have to interleave several behaviour descriptions (be-
haviours of a role model or behaviours of a role), we have to do it at the
proper interaction granularity. For example, in a computer science depart-
ment a role professor has to be interleaved with a role head of department.
In this situation high level interactions could not be useful. For example, if
we model the behaviour of each role by a loop executing a single abstract in-
teraction, manage department for head and teach for professor, we are only
able to produce a behaviour description where both roles are alternated.
However, we are able to perform a higher interleaved behaviour if we refine
both behaviour models of roles using finer–grain interactions.
As a matter of fact, when specifying behaviours, we have to determine the
granularity of interactions to be used in the model.

– C.12 Behaviour composition must be done over behaviour model
of a role model if most roles have to be composed.
When most behaviour of roles has to be composed or their behaviour is af-
fected by new interactions we recommend merging the behaviour model of
role models. If most roles in the system change, it is easier to understand
these changes in a centralised description than in a distributed description.
For example, consider a role model to airline booking and another to calcu-
late expenses which have to be merged to provide information on the prices
and where every behaviour model of role changes. We can compose the be-
haviour model of each role model to obtain the composite behaviour model
of both (see C.1 and D.12).
Later, if we are interested on the behaviour of one of the composed roles, we
can extract it by techniques in point D.12.

– C.13 Behaviour composition must be done over behaviour of roles
if few roles have to be composed and most remain unchanged.
When most roles remain unchanged, it is easier to compose only affected
roles since they represent a partial model of the system. Thus, we have to
consider only such interactions where affected roles are involved (not all).
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For example, if we have to compose a search book role model with a pur-
chase books role model, we have only to compose the role searcher in the
former with the role shopper in the later. Merging the behaviour of these
roles will be easier than building a new behaviour model of the role model
since these roles are involved in a sub–group of the interactions that we
should manage when dealing with the behaviour of the role model.
Later we can transform the affected roles behaviour along with the roles
unchanged to obtain the behaviour model of the composite role model by
techniques in point C.1 and D.12.

7.5 Guidelines for Improving Reuse at Analysis and Runtime:
Open Systems

– D.28 To improve reusability and decrease complexity of decom-
posed models they must be modelled without taking into account
details on other problems
It is important to point out that some features are lost when problems are
studied isolated. Some interactions may be lost. For example, if a MAS to
search and purchase items is decomposed into a search model and a purchase
model, the way in how the search is restricted to such dealers that admit the
credit card of the user do not belong to the scope of any problem, but both.
Notice that problems can be modelled keeping in mind constraints with other
problems or interactions. However, if we want to reuse a certain acquaintance
model it should be as general as possible. If we decompose models isolating
them from other models constraints, we produce more general models. This
promotes reuse since descriptions do no model dependencies with other prob-
lems in the system and can be reused in the same system or others adding
specific dependencies. Furthermore, ignoring interdependencies with other
models eases the modelling of the problem, thus, decreasing complexity.

– D.29 Instantiation rules allows to model open system where in-
teraction pattern are known at analysis but not concrete agents
who participate on them
Instantiation rules of role models can be used as we do in Object Oriented
paradigm when instantiating an object through a parameterized constructor.
This shows a correlation between Classes and Role Models and between Ob-
ject and Agent Models. Therefore, the parameterisation of role models easy
the reuse of them and even the instantiation at runtime. It allows to model
open systems where role models are instantiated dynamically at runtime as
we do when creating a new object at runtime in the OO paradigm.

– D.30 Instantiation rules plus guards allows to model complex non
predictable systems where interaction patterns are known at design
time.
Instantiations rules can be used to model the organisation rules, and guards
can be used to represent when agents are interested on performing a certain
action with other agents. In this way, we can model rules and guards basing
on BDI, ecosystems or electronic institutions.
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This allows us to model BDI (Joint intention framework), electronic insti-
tutions, and so on, using the same elements proposed previously. This also
allows applying the rest of techniques and guidelines in this document, but
not behaviour descriptions based on interactions (see Section 8).

– D.31 “Generalisation” association and behaviour inheritance tech-
nique provide means for modelling open system in a very flexible
way
We can define generalised roles in the system which can be extended by
inheritance (interface inheritance and behaviour inheritance). This allows
that unknown agents enter in the system if they play a role that extends
some of the roles defined in the system.

8 Conclusions

In this RFC, we have attempted to present the modelling artifacts, techniques,
and guidelines needed to deal with complexity in the AOSE field. We hope to
have provided enough insight so that readers can decide which of them they see
appropriate so that the comments provided by readers can be studied later to
determine how current methodologies can be improved in the interaction plane
to deal with more complex systems than currently.
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10 Glossary

We define here the main concepts used in this document:

Abstract joint behaviour: Describes the order of execution of joint actions
(multiparty interactions) that a role performs over time

Acquaintance organisation: Organisation from the interaction point of view.
It is formed as a set of role models

Behaviour Model of a Role: Model that represents how the set of multiparty
interactions in where a role is involved can be ordered over time.

Behaviour model of a role model: A model that represents how the set of
interactions in a role model sequence

Behaviour: this term is used with a different meaning than in most methodolo-
gies. Most approaches see behaviour as a design term where implementation
details are involved. In this paper, behaviour is a synonym of abstract joint
behaviour
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Dynamic aspect: involve models that show time–dependent features. For ex-
ample, the order of apparition of multiparty interaction relationships over
time

Interaction granularity Abstraction level of an interaction. Finer grain in-
teractions represent simple joint processes, while coarse–grain interactions
represent abstractly complex joint process

Interaction: This term is used as a synonym of multiparty interaction relation-
ship and has a entirely different meaning than in current research.

Modelling Artifact: Graphical representation of a certain artifact of the sys-
tem in a model

Multiparty interaction relationship: Relationship between an arbitrary num-
ber of roles established to fulfil some system goal defined abstractly. It com-
prises all interactions3 and tasks performed to fulfil the system goal it pur-
sues. In this paper, we refer them as interactions for shortening

Role Goal: A goal that is pursues by a single agent playing a role in the context
of a certain multiparty interaction

Role Model: A set of roles related by means of multiparty interactions that
jointly fulfill a system goal by contention or cooperation4

Role: A role is partial view of an agents which represent its features regarding a
certain multiparty interaction/interactions. A role defines also the interface
that the agent offers to the rest of participant by means of services and
knowledge and pursues a role goals, one per multiparty interaction in where
it is involved

Static aspect: Set of models that show time–independent features. For exam-
ple, the acquaintance relationships between roles in a role model or their
interfaces.

Structural organisation: it represents structural relations between agents group-
ing them in departments, teams, relating them by subordination relation-
ships, etcetera

System Goal: A goal enough complex for requiring several agents to be achieved
at a certain level of abstraction

Technique: Systematic procedure that is used to transform, calculate a piece of
a model or a complete new model, or to proof or check properties of models
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