Consiglio Nazionale delle Ricerche
Istituto di Calcolo e Reti ad Alte Prestazioni

SPEM Description of
ADELFE Process

M. Cossentino, V. Seidita

Rapporto Tecnico N:
RT-ICAR-PA-05-07 Luglio 2005

Consiglio Nazionale did Ricerche, Istituto di Calcolo e Reti ad Alte Pre&tai (ICAR)
rj_l — Sede di Cosenza, Via P. Bucci 41C, 87036 Rende, Italy, WRl.icar.cnr.it
. — Sede di Napoli, Via P. Castellino 111, 80131 Napoli, URkw.na.icar.cnr.it
i |

— Sede di Palermo, Viale delle Scienze, 90128 Palermo, Wil pa.icar.cnr.it

Consiglio Nazionale delle Ricerche
Istituto di Calcolo e Reti ad Alte Prestazioni

SPEM Description of
ADELFE Process

M. Cossentinb Seiditd

Rapporto Tecnico N.: Data:
RT-ICAR-PA-05-07 Luglio 2005

1 Istituto di Calcolo e Reti ad Alte Prestazioni, ICAR-CN&ede di Palermo Viale delle
Scienze edificio 11 90128 Palermo

2 Universita degli Studi di Palermo Dipartimento di Ingegmelnformatica Viale delle
Scienze 90128 Palermo

| rapporti tecnici del'lCAR-CNR sono pubblicati dall'lstituto da{€olo e Reti ad Alte Prestazioni del
Consiglio Nazionale delle Ricerche. Tali rapporti, approntati sotto liesea responsabilita
scientifica degli autori, descrivono attivita di ricerca del persoralgei collaboratori dell'ICAR, in
alcuni casi in un formato preliminare prima della pubblicazione deéfimin altra sede.

Indice

1 ADELFE: AN OVERVIEW

THE ADELFE PROCESS

2
3 MAS MODEL IN ADELFE
4 PHASES OF THE ADELFE PROCESS

4.1 REQUIREMENTS PHASE
4.1.1 Process roles involved

4.1.2 Fragments extracted from Requirements Phase
4.2 ANALYSIS PHASE

4.2.1 Process roles involved
4.2.2 Fragments extracted from Analysis Phase

4.3 DESIGN PHASE

4.3.1 Process roles involved
4.3.2 Fragments extracted from Design Phase

5 GLOSSARY

6 ARTIFACTS DEPENDENCY DIAGRAM

REFERENCES

1 ADELFE: an overview

The adaptive multi-agent software systems can be devetopsugh different methodologies,
the purpose of this document is to explain the ADELRBEelfer de DEveloppement de
L ogiciels aFonctionnalitéEmergente) methodology.

A system designed through ADELFE has the following charetics[8][9][13]:

it is founded on the AMAS (Adaptive Multi-Agent Systerngory [7] and on object-
oriented methodologies;

» it follows the Rational Unified Process (RUP);

* it uses the UML and the AUML notations;

» the designed agents are only cooperative;

* every agent has a specific function that contributeshéo realization of the final

objective.

The ADELFE methodology is shown in Figure 1.

1. Define the studied systam

2, Datermine the system context
2. Detarmine the entities

4. Characterize the environment
5. Express the use cases

10. Express the detailed architscturs

and the agent modsl

11. Give each agent architsctirs
12. Express NCS

13. Give class diagrams

Analysis
Wiorkflow

Design
Workflow

Reqguiremeant
Worlkflow

9. Study interactions betwssn components
8. ldentify agents
7. Werify the AMAS adequacy

5. Analyse the domain and identify components

Figure 1 The ADELFE methodology

2 The ADELFE Process

&> | ADELFE

A B B

Requirements Analysis Design

Figure 2 The disciplines of the ADELFE Process

The design process is composed of three disciplinesHigeire2): requirements, analysis and
design [8].
In Figure 3 the ADELFE process in terms of the compophmases and their workproducts is

shown :

* Requirements phase produces the Environment Model;
* Analysis phase produces the Identification of the Agentléljo
» Design phase produces the Agent and the NCS Models.

The requirements phaseis fundamental in software engineering. During this ehass
necessary to give an Environment Model (see Figure 3)ithdte AMAS theory, will serve
as base for the process of adaptation. This processsbeith the interactions between the
system and the environment. The environment model includdslibing activities: actors
determination, context definition and environment charaetgon.

In the analysis phasethe previously defined entities are analyzed in ordepgxify which
will be agents. An agent is an entity having the capggliti evolve during an unexpected
situation, showing new behaviors and skills.

Two activities are added to the classical RUP: the adentification (see Figure 3) and the

adequacy at the AMAS theory.

Thedesign phaseaims to define the agents architecture describing theavia's; the result
of this activity adds two models to the RUP: the Agerdd®l and the Non Cooperative
Situations (NCS) Model (see Figure 3).

o ®

| T
» » M 4

_ - NCS
Requirements Analysis Desigr Model
R, e, R,
Environment Identification Agent Mode
Mode| of the Agents

Figure 3 The complete Adelfe process

The details of each phase and its related sub-phasdsewdiscussed in the following session.

3 MAS Model in ADELFE
The MAS meta-model of ADELFE [9][10][11](Figure 4) represethe cooperative agent

features. Its lifecycle is the classic perceive-decitte-a

The Non Cooperative Situations are cooperation failuvdsich can be solved through
cooperation rules. There are different kinds of NG8hsas Incomprehension (an agent does
not understand a perceived signal), Ambiguity (it hasre¢weentradictory interpretations for

a perceived signal), Incompetence (it cannot satisfy mtbguest of another one),
Unproductiveness (it receives an already known piecefofmation or some information
that leads to no reasoning for it), Concurrency (sdvagents want to access an exclusive
resource), Conflict (several agents want to realisesame activity) or Uselessness (an agent
may make an action that is not beneficial, accordintstbeliefs, to other agents).

When an agent detect a NCS, it does all it is able tiw dolve it and to stay cooperative for
others.

Each agent has a world representation concerning atjemts and the environment that
surrounds it, by this representation the agent can specbghaviour.

The multi-agent system is used when the representaiigrevolve.

An agent possesses:

» the ability to communicate with other agents or withenvironment in two ways:
direct (through messages exchange), indirect (through etivironment), it can
interacts with the environment receiving information tigio the perception and
operating through the action;

» aptitudes, that are representations of agent reasoniitg lorowledge;

» skills, that are specific information that help therdgdge perform its function;

» characteristics, that are intrinsic or physical propsrti

Classifier

Environment Lot Element 1 Repreasentation
1 1
1 1 +perception 1.2
: ! . Incomprehension
+ action
sKill 1.0 Cooperative o
3 i Agent Ambiguity
-1
Aptitude I 1 1 1 Incompetence
+ observes
o g
Characteristic | * Unproductiveness
Cooperation
Rules
1 Concurrency
Communication
- i ¥ detecis
BT Conflict

NCS <I

AlP

Uselessness

Figure 4 The Multi-Agent System Meta-model Adopted in AELFE

4 Phases of the ADELFE Process

4.1 Requirements phase
The aims of this phase are [8][13]:

1. to define the system to be;
2. to transform this view in a use-case model;

3. to organize and to manage the requirements (functiomadtpand their priorities.

The designer has to define the function of the studistés and to model its environment.

This phase involves five process roles and seven work pro@geet$-igure 5).

% Requirements Phase

- Client i End User i

D Validate Requirements (;

Ul Designer

D Define User Requirements (| D Elaborate Ul Prototypes (
I validate Ul Prototypes (

SRS Environment Analys' =< Requirement Analysi

¥ Characterize Environment (¥ Define Consensual Requirements (

3 Establish Keyword Set (.
3 Extract Limits and Constraints (]

¥ Determine Use Cases (.

Requirements Sef Keywords Set Environment Definitior Ul Prototype
Functional Descriptior Scenarios Interface Models
Mode

Figure 5. The Requirements phase represented as a SPENécipline

The process to be performed in this phase is describedeirotlowing Figure 6. It is
composed of five sub-phases level work definitions (Requents Description, Keywords
Identification, Environment Description, Use Cases DOpson and Ul Prototypes

Identification) and several related work products (mainiyilLUmodels and text documents).

=

/(JI Prototype
J/ T doc
Interface
Models
Requirements Description Ul Prototypes Identification
| A
\
\
\%
.
Requirements i I
Set doc Use Cases Dunc lotna
S Scenarios Descriptior escriptior
h 4 Mode|
~N

\
\
N ‘ ~N N //\ /
A \% ~ | /
~ \x / N /
Keywords 2. = 2N _____ > E
Set doc
Environment Definitior
Keywords Identificatior =~ Environment doc

Descriptior

Figure 6. The Requirement phase described in terms @fork definitions and work products

The five sub-phases are composed of several actiasietescribed in Figure 7. This figure

also describes the actors (process roles) involved imptrigon of the process. The process
flow will be described in following sub-sections.

10

2)

Define Usel
Requirements

Requirements Descriptior

) 2

Validate
Requirements

Define Consensua
Requirements

),

Extract Limits and
Constraints

| \
<<perform=:
<<perform=:
<performs: <<perform=:
A X r I
Client End User Requirement Analyst
Ul Designer Environment Analyst
<<perform=3 <<perform>:
<<perform=:
Keywords Identification

2

Elaborate U
Prototypes

Ul Proto‘ypes Identiﬁcatic;\n

2

Validate Ul
Prototypes

Establish Keyworc

Set

Use Cases Descriptior

2D

Determine Use Cases

Environment Descriptior
2D
Characterize
Environment

Figure 7. The Requirement phase activities clustered isub-phase level work definitions

Here is a summary of this phase activities:

Work Definition Activity Activity Description Roles involved
Requirements Define User User Requirements Client
Description Requirements are used to define (perform)
system requirements
Requirements Validate Requirements are End User
Description Requirements checked and (perform)

approved

Requirements

Description

Requirements

Define Consensual

The consensual

requirements is adde

d

Requirement Analyst

(perform)

Requirements

Description

Extract Limits and

Constraints

Limits and
constraints that the
system must satisfy|

are defined

Requirement Analyst

(perform)

11

Keywords Establish Keyword | The main concepts| Requirement Analyst
Identification Set used to describe the (perform)
system are identified
Environment Characterize System environment Environment Analyst
Description Environment is described (perform)
Use Cases Determine Use Cases System Environment Analyst
Description functionalities are (perform)
identified
Ul Prototypes Elaborate Ul The interfaces Ul Designer
Identification Prototypes through which the (perform)
user will interact with
the system are
defined
Ul Prototypes Validate Ul The interfaces are End User
Identification Prototypes tested (perform)

4.1.1 Process roles involved
Five roles are involved in the Requirements phase [1&: Ghent, the End User, the

Requirement Analyst, the Environment Analyst and theDdsigner. They are described in

the following sub-sections.

4.1.1.1 Client
He defines user requirements during the Requirements Descripbrk definition. User

Requirements are used to define system requirements.

4.1.1.2 End User
He is responsible of :

1. Validate Requirements during the Requirements Descriptiank definition.
Requirements are checked and approved.
2. Validate Ul Prototypes during the Ul Prototypes work definitibhe interfaces are

tested.

12

4.1.1.3 Requirement Analyst
He is responsible of :

1. Define Consensual Requirements during the Requirements i&scr work
definition. The consensual requirements are added.

2. Extract limits and constraints during the Requiremergscibption work definition.
Limits and constraints that the system must satisfydefined.

3. Establish Keyword Set during the Keywords Identification waeknition. The main

concepts used to describe the system are identified.

4.1.1.4 Environment Analyst
He is responsible of:

1. Determine Use Case during the Use Case Description wotkitbef. System
functionalities are identified.
2. Characterize Environment during the Environment Descriptiomk waefinition.

System environment is described.

4.1.1.5 Ul Designer
He elaborates Ul Prototypes during the Ul Prototypes I|deatitic work definition. The

interfaces through which the user will interact with slgstem are defined.

4.1.2 Fragments extracted from Requirements Phase

4.1.2.1 Requirements Description fragment

4.1.2.1.1 Portion of process
This fragment concerns the description of the systechtha environment in which the
system will operate, therefore it consists in findihg appropriate system for the end-users.
In this fragment, you must define limits and constraaitthe system you want to build (your
application) [12][13].
The process that is to be performed in order to obt@imesult is represented in Figure 8 as a
SPEM diagram:

13

Client End User Requirement
Analysi

L) g

Define User ~
Requirements) S~
Requirements Set S A
[prelim|nary] D
[End User not OK

Validate
Requirements

~ {End User OK
[Requirement Analysi

not OK] A % N

Requirements Sei ——_

[validated] B D

Define Consensual
<> Requirements

[Requirement Analyst K~ — — __ N

Requirements Sei T~ _

consensual T~

Extract Limits and
Constraints

/
/
/
/

2

Requirements Sei
[final]

.

Figure 8. Requirements Description

4.1.2.1.2 Deliverables
This information must be written in the Requirements(fsgal) document.

14

4.1.2.1.3 Guideling(s)
End-users, clients, analysts and designers havet tihndigotential requirements. The context

in which the system will be deployed must be understobd.flinctional and non-functional
requirements must be established.

The Requirements Set document must be checked, approdedpdated with consensual
requirements.

Limits and constraints can be found in the expressfamo functional requirements and in

the definition of the context in which the systeml\wé deployed.

4.1.2.1.4 |nput/Output
Input, output and element to be designed in the fragarentetailed in the following table:

INPUT TO BE DESIGNED OUTPUT
User Requirements Requirements Description
(final)

4.1.2.2 Keywords ldentification fragment

4.1.2.2.1 Portion of process
This fragment aims to identify the main concepts used inddsxription of the system
[12][13].
The process that is to be performed in order to obt@imesult is represented in Figure 9 as a
SPEM diagram:

15

Requirement
Analyst

AN
E \
~N

Requirements Set ™ “\
[consensual

)

Establish Keyword
Sel

L

Keywords Sef
[final

.

Figure 9. Keywords Identification

4.1.2.2.2 Deliverables
For each keyword, a definition will be given in the Keyds Set (final) document

4.1.2.2.3 Preconditions
context Keywords Identification::Establish Keyword Swe:

existence of Requirements Set (consensual) document

4.1.2.2.4 Guideling(s)
You have to list the main concepts used to describe tHeagn and its domain (the system

and its environment).

4.1.2.2.5 Dependency relationships with other fragments
This fragment depend on the Requirements Descriptiom&agsince the keywords are

extracted from the Requirement Set document.

16

4.1.2.2.6 Input/Output
Input, output and element to be designed in the fragarentetailed in the following table:

INPUT TO BE DESIGNED OUTPUT
Requirements Description Keywords Keywords Set (final)
(consensual)

4.1.2.3 Environment Description fragment

4.1.2.3.1 Portion of process
The main objective of this fragment is to define the systavironment [12][13].

The process that is to be performed in order to obt&imesult is represented in Figure 10 as
a SPEM diagram:

Environment
Analysi

AN
~
~
~

—

Requirements Sef D

Characterize
Environment

- /
N // /
/

Environment V/
Definition

Scenarios

®

Figure 10. Environment Description

17

4.1.2.3.2 Deliverables
This information must be written in the Environment Deibn document and the potential

situations are represented (Scenarios) through UML diegram

4.1.2.3.3 Preconditions
context Environment Description::Characterize Environmenet

existence of Requirements Set (final) document

4.1.2.3.4 Relationships with the MAS Meta-model
This fragment refers to the MAS meta-model adopted in IAEEand contributes to define

and describe the concept of environment in relation iv({ffigure 11).
The following figure describes the relationship of the rfnagt with respect to the MAS
model:

Environment Environment
Descriptior

Figure 11. MAS Metamodel concept

4.1.2.3.5 Guideling(s)
This fragment is characterized by three phases: tordeierentities, to define context and to

characterize environment.

4.1.2.3.6 Dependency relationships with other fragments
This fragment depends of the Requirements Descriptagnfent since the environment is

described using the Requirements Set document.

4.1.2.3.7 Input/Output
Input, output and element to be designed in the fragarentetailed in the following table:

INPUT TO BE DESIGNED OUTPUT
Requirements Description Environment Environment Definjtion
Scenarios

18

4.1.2.4 Use Cases Description fragment

4.1.2.4.1 Portion of process
The purpose of this fragment is to identify the systemctionalities that it must provide

[12][13].

The process that is to be performed in order to obt&imesult is represented in Figure 12 as

a SPEM diagram:
Environment
Analyst

AN
~
~
~

Environmeni =
Definition

Determine Use Cases

e /
7
2 /!
v
Environment
Definition
[complete]
Functional
Description
Mode

.

Figure 12. Use Cases Description

4.1.2.4.2 Deliverables
The functionalities of the system are representealitiit use case diagrams in the Functional

Description Model. This information complete the Environtrigefinition document.
A use case is detailed using a textual description andfispg®guence diagrams. To manage

a possible exception can be inserted a special box unsthease.

4.1.2.4.3 Preconditions
context Use Cases Description::Determine Use Cases

existence of Environment Definition document

19

4.1.2.4.4 Guideling(s)
This fragment is characterized by three phases: to draanupventory of the use cases, to

identify cooperation failures, to elaborate sequence alagr

4.1.2.4.5 Aspects of Fragment
Use Cases are expressed using UML diagrams.

4.1.2.4.6 Dependency relationships with other fragments
This fragment depends of the Environment Description feagmeince the use cases represent

the system functionalities described using the Environmefihition document.

4.1.2.4.7 Input/Output
Input, output and element to be designed in the fragarentetailed in the following table:

INPUT TO BE DESIGNED OUTPUT

Environment Definition Use Cases Environment Definition

(complete), Functional

Description Model

4.1.2.5 Ul Prototypes Identification fragment

4.1.2.5.1 Portion of process
This fragment aims to define and to test the intesf§GJ1s) that allow at the user to interact

with the system verifying adequacy of it [12][13].
The process that is to be performed in order to obt&imesult is represented in Figure 13 as
a SPEM diagram:

20

* Ul Designer * End User

Functional
Description
Mode
\
\
N
Elaborate Ul = L
Prototypes D
— N
~N
N
Ul Protfotype >
[init{al] A\

[Validatior] not OK D
<> Validate Ul

| Prototypes
[Validatjlion OKIN

| \

| \

\
\/ ~
Ul Prototype Interface é
[final Models

Figure 13. Ul Prototypes Identification

4.1.2.5.2 Deliverables

The GUIs must be described in the Ul Prototype (final) dootiiseed on the Interface Models
represented through UML diagrams.

4.1.2.5.3 Preconditions
context Ul Prototypes Identification::Elaborate Ul Prototypes:

existence of Functional Description Model

21

context Ul Prototypes Identification::Validate Ul Prototype®:

existence of Ul Prototype (initial) document

4.1.2.5.4 Aspects of Fragment
A possible means to describe the GUIs is to use the toadiprovided by OpenTool.

4.1.2.5.5 Dependency relationships with other fragments
This fragment depends of the Use Cases Descriptiomé&agsince the Ul must be defined

knowing the system functionalities described in the FanetiDescription model.

4.1.2.5.6 Input/Output
Input, output and element to be designed in the fragarentetailed in the following table:

INPUT TO BE DESIGNED OUTPUT

Functional Description Ul Prototypes Ul Prototypes (final),

Interface Models

22

4.2 Analysis phase
The aims of this phase are [12][13]:

1. to identify the agents;
2. to verify the AMAS Adequacy

This phase involves two process roles and five work produatd-{garel4).

Analysis Phase

T Domain Analyst -~ Agent Analyst

Y Analyze the Domain () Y) Verify the AMAS Adequacy()

Y Study Interactions between Entities () Y Identify Agents (

Software Architecture Environment Definitior AMAS Adequacy Synthesis

Internal Interaction betweer

. Domain model
Domain Classes

Figure 14 The Analysis phase represented as a SPEM didaige

The process to be performed in this phase is describédeifollowing Figure 15. It is
composed of four sub-phases level work definitions (DomBescription, Adequacy
Verification, Agents ldentification and Interaction @mg entities Identification) and several

related work products (mainly UML models and text documents

23

Software S~ T
Architecture IEN

Dy T g

Domain model Interaction Betweer

Internal Interactior

Domain Description . Entities Identification
| between Domair A
\ Classes \
\ \
\% \
By s B By s
Software Software
Architecture Adequacy Verification AM';S 'i‘r? equacy Agents Identificatior A chitecture
[preliminary ynthesis lincluding
agents’

Figure 15.The Analysis phase described in terms of wortefinitions and work products

The four sub-phases are composed of several activéidescribed in Figurel6. This figure
also describes the actors (process roles) involved imptrigon of the process. The process

flow will be described in following sub-sections.

. I Interaction Between
Domain Descriptior Entities Identification

D \ <<perform>> <<perform>> = D
Analyze the Domain \ I / Study Interactions between Entities

Domain Analyst

Adequacy Verificatior «/pw@>* \Deffo{» Agent Identificatior
D e Agent Analyst g D

Verify the AMAS Adequacy Identify Agents

Figure 16.The Analysis phase activities clustered in sytihase level work definitions
Here is a summary of this phase activities:

24

Work Definition Activity Activity Description Roles involved

Domain Description| Analyze the Domain The domain analysis Domain Analyst

D

aims to determine the (perform)

-

entities of the systen

Adequacy Verify the AMAS The Adequacy Agent Analyst
Verification Adequacy Verification checks (perform)
if an AMAS is
necessary to build the
system
Agent Identification Identify Agents The Agent Agent Analyst
Identification (perform)

establishes what

between entities are

agents
Interaction Between| Study Interactions The interactions Domain Analyst
Entities Identification| Between Entities | between entities are (perform)
defined

4.2.1 Process roles involved
Two roles are involved in the Analysis phase [13]. them@in Analyst and the Agent

Analyst. They are described in the following sub-sections

4.2.1.1 Domain Analyst
He is responsible of :

1. Analyze the Domain during the Domain Description work defini The domain
analysis aims to determine the entities of the system
2. Study Interactions Between Entities during the InteractBetween Entities

Identification work definition. The interactions betwemntities are defined.

4.2.1.2 Agent Analyst
He is responsible of :

1. Verify the AMAS Adequacy during the Adequacy Verificatioomnk definition. The
Adequacy Verification checks if an AMAS is necessariudd the system.
2. Identify Agents during the Agent Identification work defioiti The Agent

Identification establishes which entities are agents.

25

4.2.2 Fragments extracted from Analysis Phase
4.2.2.1 Domain Description fragment

4.2.2.1.1 Portion of process
This fragment aims to individualize entities, searchingnt in the use cases by defining

scenarios. This activity is performed through tRequirements Set and Keywords Set
documents [12][13].

The process that is to be performed in order to obt&imesult is represented in Figure 17 as

a SPEM diagram:
Domair
Analyst

Requirements Set Keywords Sef

[final [final
\ /

N _
),

Analyze the Domain
/ L

/

/ |

v v
a

Software _
Architecture Domain

[preliminary mode \ /

Figure 17. Domain Description

4.2.2.1.2 Deliverables
The output will be a set of entities that will compa@sereliminary class diagram (Domain

Model) through UML notation and a Software Architectymee(iminary) document.

4.2.2.1.3 Preconditions

26

context Domain Description::Analyze the Domaine:
existence of Requirements Set (final) document
context Domain Description::Analyze the Domaine:

existence of Keywords Set (final) document

4.2.2.1.4 Guideling(s)
The realization of activity described in this fragmeappens through three phases:

1. to identify classes;
2. to study interclass relationships;

3. to construct the preliminary class diagram.

4.2.2.1.5 Dependency relationships with other fragments
This fragment depends of two fragments, Requirementcripéion and Keywords

Identification since the domain is described using the Ragames Set and the Keywords Set

documents.

4.2.2.1.6 Input/Output
Input, output and element to be designed in the fragarentetailed in the following table:

INPUT TO BE DESIGNED OUTPUT
Requirements Description Entities Software Architecture
(final), Keywords (final) (preliminary), Domain Mode

4.2.2.2 Adequacy Verification fragment

4.2.2.2.1 Portion of process
This fragment aims to verify that the system hasrtbeessity of one or more Adaptative
Multi-Agent System (AMAS) to build the wanted systel2][13].
The process that is to be performed in order to obt&imesult is represented in Figure 18 as
a SPEM diagram:

27

Agent
Analyst

N
E N
N

N
Software Architecture ™ .

[preliminary N\
Verify the AMAS
P Adequacy
L/
AMAS Adequacy
Synthesis
[final

.

Figure 18. Adequacy Verification

4.2.2.2.2 Deliverables
The document in which the conclusions will be writtenthis verification is the AMAS

Adequacy Synthesis (final) document.

4.2.2.2.3 Preconditions
context Adequacy Verification::Verify the AMAS Adequagye:

existence of Software Architecture (preliminary) documen

4.2.2.2.4 Guideling(s)
The verification happens both to local that to globatle

To global level means to answer to the question: isgtiired an AMAS to implement the
system?

To local level means to understand if there are agemtsgiement as AMAS or no.

4.2.2.2.5 Aspects of Fragment

28

The AMAS adequacy graphical tool can be used for the adequafiyaten since it helps to

answer to the questions on the global level and on thait loc

4.2.2.2.6 Dependency relationships with other fragments
This fragment depends of the Domain Description fragnsemde the AMAS Adequacy is

verified using the Software Architecture (preliminary) doeuin

4.2.2.2.7 Input/Output
Input, output and element to be designed in the fragarentietailed in the following table:

INPUT TO BE DESIGNED OUTPUT
Software Architecture AMAS Adequacy AMAS Adequacy Synthesis
(preliminary) (final)

4.2.2.3 Agent Identification fragment

4.2.2.3.1 Portion of process
The purpose of this fragment is the determination of genits recognized between entities

first defined. The considered agents are those that #flewonstruction of an AMAS system
[12][13].

The process that is to be performed in order to obt&imesult is represented in Figure 19 as
a SPEM diagram:

29

Agent
Analyst

Software AMAS Adequacy
Architecture Synthesis

[preliminary [final
N\ /
N\ /

\ /
N L
Identify Agents

/
]

Software Architecture
[including agents]

Figure 19. Agent Identification

4.2.2.3.2 Deliverables
This activity is included in the Software Architecture [ilming agents) document.

4.2.2.3.3 Preconditions
context Agent Identification::ldentify Agentpre:

existence of Software Architecture (preliminary) documen
context Agent Identification::ldentify Agentpre:

existence of AMAS Adequacy Synthesis (final) document

4.2.2.3.4 Relationships with the MAS Meta-model
This fragment refers to the MAS meta-model adopted in IAEEand contributes to define

and describe the concept of agent in relation witkigure 20).

30

The following figure describes the relationship of the rfnagt with respect to the MAS

model:

Agent Cooperative Agent
Identification

Figure 20. MAS Metamodel concept

4.2.2.3.5 Guideling(s)
This fragment is characterized by three phases: to snotiyes in the domain context, to

identify the potentially cooperative entities and to datee agents.

4.2.2.3.6 Dependency relationships with other fragments
This fragment depends of three fragments:

1. Environment Description, because the entities are figohin this fragment;

2. Domain Description, because the agent identificationtiiseSoftware Architecture
(preliminary) document;

3. Adequacy Verification, because the agent identificatiom the AMAS Adequacy

Synthesis document.

4.2.2.3.7 Input/Output
Input, output and element to be designed in the fragarentetailed in the following table:

INPUT TO BE DESIGNED OUTPUT
Software Architecture Agents Software Architecture
(preliminary), AMAS (including agents)

Adequacy Synthesis (final)

31

4.2.2.4 Interaction Between Entities Identification fragment

4.2.2.4.1 Portion of process
This fragment aims to establish the relationships betwihe entities previously defined

[12][13].

The process that is to be performed in order to obt&imesult is represented in Figure 21 as

a SPEM diagram:
Domair
Analyst

Software Architecture | Environment

[including agents Definition
[complete]
N\ /
\
\ /
\|

D\V/

Study Interactions between Entities

/ / N
S LN
A / A
N / o
|
/
Software \ Environmen
Architecture Definition
[complete] [final

Internal Interaction
between Domair
Classes

.

Figure 21. Interaction Between Entities Identification

4.2.2.4.2 Deliverables

32

The relationships found will be inserted in the Environni2efinition (final) document to
update it and in the Software Architecture document to temit. This information will be

inserted, also, in the Internal Interaction betweemBin Classes UML diagram.

4.2.2.4.3 Preconditions
context Interaction Between Entities Identification::Studyeractions between Entitigse:

existence of Software Architecture (including agents) desum
context Interaction Between Entities Identification::Studyeractions between Entitigse:

existence of Environment Definition (complete) document

4.2.2.4.4 Guideling(s)
The interactions to consider are of three typesvaqiassive entities relationships, active

entities relationships and agents relationships.

4.2.2.4.5 Aspects of Fragment
The interactions can be expressed using UML and AUMgrdias.

4.2.2.4.6 Dependency relationships with other fragments
This fragment depends of two fragments:

1. Environment Description, because the entities are figohin this fragment;
2. Agent ldentification, because the interactions betwerdgities are identified using the

Software Architecture (including agents) document.

4.2.2.4.7 Input/Output
Input, output and element to be designed in the fragarentetailed in the following table:

INPUT TO BE DESIGNED OUTPUT
Software Architecture Interactions Between Entitigs Software Architecture
(including agents), (complete), Environment
Environment Definition Definition (final), Internal
(complete) Interaction between Domain
Classes

33

4.3 Design phase
The aims of this phase are [12][13]:

1. to define the system architecture identifying the softwanepoments;

2. to define the interaction languages;

3. to design the agents.

This phase involves two process roles, four work productd-jgaee 22).

Design Phase

Protocol Diagrams

* Object Designer * Agent Designer
D Study the Detailed Architecture D Study Interaction Languages (
and MA Model ()]
Y) Design Agents ()
) Complete Design Diagrams () D Fast Prototyping (
Detailed Architecture Interaction Languages
Design Model|

Figure 22. The Design phase represented as a SPEM didicip

34

The process to be performed in this phase is describédeifollowing Figure 23. It is
composed of three sub-phases level work definitionschifgcture Definition, Agents

Specification and Architecture Refinement) and sevetata@ work products (mainly UML
models and text documents).

®
| I

/

Detailec o 7 Design Model
Architecture N /
DED e DaD
Architecture Definitior Architecture Refinement

| 0
| |
:
- E
77777777 ” DaD — Interaction L
Detailec - nteraction Languages
Architecture Agents Specificatior T -
[initial
Protocol Diagram

Figure 1. The Design phase described in terms of wodefinitions and work products

The three sub-phases are composed of several actastidsscribed in Figure 24. This figure

also describes the actors (process roles) involved imptrigon of the process. The process

flow will be described in following sub-sections.

35

Architecture Definition Agents Specification

» oo 1)

Study the Detailed Architec%\ <<perform>> Study Interaction Languages
and Multi-Agent Mode l I <<pelform>s D
. . . Design Agents
Architecture Refinement /O/bject Designer Agent Designer

D /<perform>: <<perf%>: D

Fast Prototyping

Complete Design Diagrams

Figure 24. The Design phase activities clustered in sydghase level work definitions

Here is a summary of this phase activities:

Work Definition Activity Activity Description Roles involved

Architecture Study the Detailed The software Object Designer

Definition Architecture and components are (perform)
Multi-Agent Model defined

Agent Specification Study Interaction The agents Agent Designer

Languages interaction languages (perform)
are defined

Agent Specification Design Agents The agents behaviorsAgent Designer
are defined (perform)

Agent Specification Fast Prototyping The agents behayiorsAgent Designer
are tested (perform)

Architecture Complete Design The system Object Designer
Refinement Diagrams architecture and the (perform)

project are completed

4.3.1 Process roles involved
Two roles are involved in the Design phase [13]: the @l)esigner and the Agent Designer.

They are described in the following sub-sections.

36

4.3.1.1 Object Designer
He is responsible of:

1. Study the Detailed Architecture and Multi-Agent Model durimg tArchitecture
Definition work definition. The software components defined.
2. Complete Design Diagrams during the Architecture Refinemenk definition. The

system architecture and the project are completed.

4.3.1.2 Agent Designer
He is responsible of:

1. To study Interaction Languages during the Agent Specificatiork definition. The
agents interaction languages are defined.

2. To design Agents during the Agent Specification work definiti The agents
behaviors are defined.

3. Fast Prototyping during the Agent Specification work definitibhe agents behaviors

are tested.

4.3.2 Fragments extracted from Design Phase
4.3.2.1 Architecture Definition fragment

4.3.2.1.1 Portion of process
The main objective of this fragment is to define theesyssoftware components: packages,

classes, objects and agents.

The Architecture is refined by using design patterns and tdeusamponents [12][13].

The process that is to be performed in order to obt&imesult is represented in Figure 25 as
a SPEM diagram:

37

* Object Designer

.
N
Software Architecture™ <

[complete’

Study the Detailed Architecture
and Multi-Agent Mode

/
/

v

Detailed Architecture
[initial]

Figure 25. Architecture Definition

4.3.2.1.2 Deliverables
This fragment produce the Detailed Architecture (initiawuoent.

4.3.2.1.3 Preconditions
context Architecture Definition::Study the Detailed Architectared Multi-Agent Modepre:

existence of Software Architecture (complete) document

4.3.2.1.4 Guideling(s)
This fragment is articulated in four phases: packages deiion, classes determination,

design patterns utilisation and component and class diageaboration.

4.3.2.1.5 Dependency relationships with other fragments
This fragment depends on the Interaction Between Estitientification fragment because it

uses the Software Architecture (complete) document.

4.3.2.1.6 Input/Output

38

Input, output and element to be designed in the fragarentetailed in the following table:

INPUT TO BE DESIGNED OUTPUT

Software Architecture System software componentPetailed Architecture (initial

(complete)

4.3.2.2 Agent Specification fragment

4.3.2.2.1 Portion of process
This fragment, for every agent previously identified, sabm define its behavior: the skill, the

aptitudes, an interaction language, a world represent#tiemon Cooperative Situations.
Then, the identified behaviors are tested [12][13].

The process that is to be performed in order to obt&imesult is represented in Figure 26 as
a SPEM diagram:

39

* Agent Designer

Detailed Architecture >
[initial]

Study Interaction Languages

\
\
! / \
} / \
/ \
| Vv .
|
\ @D
\ Interactior Protoco
\ Languages .
| finitial Diagrams
\
\
\
V \/
IR
Design Agents
/ N\
/ \
L N
Interactior Detailec
Languages Architecture
[draft [draft
\ /
\ /
N
Fast Prototyping
[Inadequate behayior

&

[adequate behav|or]

é%\w

Interactior Detailec
Languages Architecture
[final [including

agent model]

Figure 26. Agents Specification

40

4.3.2.2.2 Deliverables
The protocols that specify the interaction languagesegmeesented through AUML diagrams
and they are described in the Protocol Diagrams.
This step produces the Interaction Language (final) docuam@hthe Detailed Architecture

document (including agent model).

4.3.2.2.3 Preconditions
context Agent Specification::Study Interaction Languages

existence of Detailed Architecture (initial) document
context Agent Specification::Design Agentse:

existence of Detailed Architecture (initial) document
context Agent Specification::Design Agentse:

existence of Interaction Languages (initial) document
context Agent Specification::Fast Prototypipge:

existence of Detailed Architecture (draft) document
context Agent Specification:: Fast Prototypipge:

existence of Interaction Languages (draft) document

4.3.2.2.4 Relationships with the MAS Meta-model
This fragment refers to the MAS meta-model adopted in IMEEand contributes to define

and describe a set of concepts in relation with it: skilptitudes, characteristics,
communication, Agent Interaction Protocol (AIP), repraation, NCS.
The following figure 27 describes the relationship of ttagment with respect to the MAS

model:

41

Skil

Aptitude

N
N

1
¢ ‘ Characteristic

Agent <&
Specificatior 1
¢ ¢ Communicatior

1 1t n

AlF

NCS

Representatior

Figure 27. MAS Metamodel concept

4.3.2.2.5 Guideling(s)
This fragment is made up of two activities: to define badravidefine skills, aptitudes and

NCS, determine interaction languages and world represamgtio test the behaviors.

The interaction languages may be determined by a setsseslar by a design pattern.

4.3.2.2.6 Aspects of Fragment
The interaction languages may be implemented by a gpagént communication tools for

example ACL (implemented by FIPA).
To test the agents behaviors may be used the OpenTadaton functionality, it creates the
simulation environment (collaboration diagram), and tkdth OTScript, it implements some

methods to test.

4.3.2.2.7 Dependency relationships with other fragments

42

This fragment depend on two fragments:

1. Agent Identification, because the agents are definedsrfrdtgment;

2. Architecture Definition, because the agent specificatises the Detailed Architecture

(initial) document.

4.3.2.2.8 Input/Output

Input, output and element to be designed in the fragarentetailed in the following table:

INPUT

TO BE DESIGNED

OUTPUT

Detailed Architecture (initial

Interaction Languages

Interaction Languages

(initial), Protocol Diagram

Detailed Architecture
(initial), Interaction

Languages (initial)

Agents Behaviors

Interaction Languages (draft),

Detailed Architecture (draft

Interaction Languages (draft
Detailed Architecture (draft

), Tested Agents Behaviors

Interaction Languages (final),

Detailed Architecture

(including agent model)

4.3.2.3 Architecture Refinement fragment

4.3.2.3.1 Portion of process
This fragment aims to complete the system architecidethe design activities [12][13].

The process that is to be performed in order to olit@imesult is represented in Figure28 as a

SPEM diagram:

43

* Object Designer

N
AN
Detailed AN
Architecture ~

[including

N\
agent model D

Complete Design
_ 7 Diagrams

7
Vi /
/
S
Detailed
Architecture Desigr
[final Mode

®

Figure 28. Architecture Refinement

4.3.2.3.2 Deliverables
The Architecture Document is completed and is producedédsgn Model through UML

diagrams.

4.3.2.3.3 Preconditions
context Architecture Refinement::Complete Design Diagrames

existence of Detailed Architecture (including agent modedudwent

4.3.2.3.4 Guideling(s)
This activity is performed by two consecutive activities enhance design diagrams and to

design dynamic behaviors.

4.3.2.3.5 Dependency relationships with other fragments
This fragment depends on the Agent Specification fragniestause the architecture

refinement uses the Detailed Architecture (including agerdel) document.

44

4.3.2.3.6 Input/Output

Input, output and element to be designed in the fragarentetailed in the following table:

INPUT

TO BE DESIGNED

OUTPUT

Detailed Architecture

(including agent model)

Detailed Architecture

Detailed Architecture (fina

Design Model

45

5 Glossary

Action - An action is a mean through which an agent acts ietk@onment. Only the agent

can use one determined action since the actions aréepriva

Agent - Physical or virtual entity that it possesses the Valg abilities: to act in an
environment, to communicate with other agents, to pursudbijactive, to reproduce itself, to
possess resources, to perceive his environment, to haveritee (or absent) environment

representation.

Adaptive Multi-Agent System AMAS - The behavior is chosen while running to complete

the task. It aims to get the better result.
Aptitude - Agent characteristic to reason about its knowledge ahefft

AUML - The Agent Unified Modeling Language expresses the interacti@etween the

agents in a MAS, it is based on the UML notation.
Characteristics - Agent intrinsic or physical property.

Class Diagram -Static system structure, it is a set of classesyfates, collaborations and

their relationship.

Collaboration Diagram - It describe both the static structure and dynamic \neta of a
system. It takes information from the use case, dasssequence diagrams, and it gets the
interactions between the objects in terms of exchangesages.

Consensual requirements Condition in which end- user, designers and developeesagr

Cooperation - The cooperation is a social attitude of the agentalhas it to detect and to

resolve Non Cooperative Situation (NCS), as incompr&ibe, ambiguity, etc.

Cooperation failure — NCS detection, it can occur when the cooperation pobtsn't

respected or wrong interactions are occurred betweesygtem and its environment.

46

Cooperative agent -A cooperative agent is an agent with a social and competitude.

Its lifecycle is classical perceive-decide-action.

Design pattern - Problem solution occurred during the design phase. It hasnaatf that
indicates the objective, the motivation and the sbmainh which to apply it, the structure and

the proposed solution.

Entity — An entity is a set of roles that the users playmtiey interact with use cases.
The entities can be of two types:
» Active entities that act autonomously;
» Passive entities that can only exchange data with theemy therefore, they are

considered system resources.

Environment - The environment is everything that surrounds the agent irhwhig acts.

Functional requirements - The functional requirements are expressions of pbssible

actions and of the behaviors of the system.

Non functional requirements - The non functional requirements are expressionshef t

system properties and of the constraints on the furati@quirement.

Goal - A goal is the objective that the system must to achaeketo maintain.

GUI - The GUIs are the interfaces that allow to the usanteract with the system.

Interaction - The languages of interaction allows to an agent tonwaomicate with other
agents or directly with its environment. The interactiam be classified in: perception and

action.

Interaction language - The interaction language is a set of classes or ajmgsttern used

by the agent to directly or indirectly communicate withestagents or with the environment.

Multi-Agent System (MAS) - A multi-agent system is based on the cooperation of

autonomous entitities, said agents, able to withdrawrmmdtions from the surrounding

47

environment, to communicate to the other agents and laboohte with them to achieve their
own objectives;

Non Cooperative Situation -NCS are unusual situations in which the agent must face an
unpredictable environment. There are different kinds of N@&mprehension, ambiguity,

incompetence, unproductiveness, concurrency, conflict, seeles.

Package -The package, in UML, is used for grouping the system elemen

Perception - Through the perception is possible to receive some ioomon the physical

or social environment, therefore the designer mustdowrhe agents of perceptive ability.

Protocol Diagram - A protocol diagram describes the model of communicatiba &
sequence of messages exchanged between the agents andsinaints contained in those

communications.

Representation -A representation is used from the agent to determinbeibsviour. The

representation that evolve are represented throughuhieagent system.

Sequence Diagram UML sequence diagram represents the behavior in terimgecéctions.
It also is used for illustrating the use cases reptiegethe collaborations between entities

from a temporal point of view.

Skill - The skill of an agent is referred to the knowledge thads on the domain, allowing

him to understand what are its functions.

State-chart diagram - UML State-chart diagram represents the behaviour ofctheses
when there are external stimuli, it provide a modelhef of dynamic control from state to

State.

System -A system offers to the final user a set of use cadas.system corresponds to the

final software.

Use Case A use case corresponds a set of scenarios to reawdl aljjective. A scenario is

composed by a series of steps that describes the tmerbetween the system and the user.

48

World Representation - The world representation correspond to the descripfigrhygsical
and social environment of the agent. The agent must esset the information of the world

to act and to change it.

49

6 Artifacts Dependency Diagram

é/
N ~ o 7, S Functional
Requirpmen¥§ Set > /Eﬁ/wronment Deﬁ{ntlor Description Model
| \ //\
| \ Va //
I A Interface Models
I N s
I N
A\
/ 7 ~
s N
-~ - g \
\
N T T ——

AN
~ \\ Domain mode
. N
Software Archltéc\ture N
~ AN

Internal Interaction between
Domain Classes

- Detailed Architecture
Protocol Diagrams
Design Model

Figure 28. Dependencies Diagram

50

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

Katia P. Sycara — Multyagent Systems.

http://www.pa.icar.cnr.it/~cossentino/FIP Ameth/metadeichtm

Object Management Group — Software Process Engineeringridde&d Specification.

Adriano Comai — RUP (Rational Unified Process) Caratiehe, Punti di Forza,

Limiti.

Amund Tveit — A survey of Agent-Oriented Software Engiiag.

http://www.metamodel.com

Pierre Glize — The AMAS Theory.

Carole Bernon, Marie-Pierre Gleizes, Sylvain PeyruqueGauthier Picard -

ADELFE, a Methodology for Adaptive Multi-Agent SystelBagineering.

Carole Bernon, Massimo Cossentino, Marie-Pierreiz€4¢ Paola Turci, Franco

Zambonelli - A Study of some Multi-Agent Meta-Models.

Carole Bernon, Valérie Camps, Gauthier Picard, IRIT,vehsité Paul Sabatier,
Toulouse, France — MAS Model in ADELFE.

http://www.irit.frfADELFE

IRIT/SMAC, Université Paul Sabatier, Toulouse, FranddELFE’s Fragments.

Marie-Pierre Gleizes, Thierry Millan, Gauthier PicardABELFE: Using SPEM
Notation to Unify Agent Engineering Processes and Metloggol

51

