
Ontology Agents in FIPA-compliant Platforms:
a Survey and a New Proposal

Daniela Briola
DISI, Univ. di Genova,

Via Dodecaneso 35, 16146, Ge, IT
E-mail: daniela.briola@unige.it

Angela Locoro
DIBE, Univ. di Genova,

Via Opera Pia 11/A, 16146, Ge, IT
E-mail: angela.locoro@unige.it

Viviana Mascardi
DISI, Univ. di Genova,

Via Dodecaneso 35, 16146, Ge, IT
E-mail: viviana.mascardi@unige.it

Abstract—In 2001, FIPA delivered a specification suggesting
that each MAS should integrate an “Ontology Agent” (OA)
offering services for ontology management. These services should
include ontology discovery, maintenance, matching, as well as
translation of expressions between different ontologies or con-
tent languages. Currently, no FIPA-compliant OA exists that
implements all of them. One of the reasons is that providing
a service for ontology matching is not an easy task, and coping
with translation between ontologies and/or content languages may
be even harder. In this paper we survey the state of the art in
the area, and we describe our prototypical implementation of
an OA for Jade able to match ontologies. Besides “standard”
ontology matching algorithms, our OA offers a “matching via
upper ontologies” method that, as we showed in a recent technical
report, improves the precision of the matching w.r.t. the use of
traditional techniques.

I. INTRODUCTION

In 2001, FIPA delivered a specification for organizing and
managing ontologies in a MAS [7]. This specification suggests
that each MAS should integrate an “Ontology Agent” (OA)
providing services to deal with ontologies. The OA should
be at the same conceptual level as the Directory Facilitator
Agent, and should be able to deal with ontologies explicitly
represented in some ontology language, and stored somewhere
(perhaps in some server), where agents can access, query, and
in case update them.

In particular, an OA should offer the following services to
the agents in the MAS:

1) discover public ontologies in order to access them,
2) maintain (for example, register with the Directory Fa-

cilitator, upload, download, and modify) a set of public
ontologies,

3) translate expressions between different ontologies and/or
different content languages,

4) answer queries about relationships between terms or
between ontologies,

5) facilitate the identification of a shared ontology for com-
munication between two agents.

It’s not mandatory for an OA to be able to realize all these
services, provided that it is able to answer that it cannot
process the required service.

The FIPA specification assumes that each ontology accessi-
ble through the OA’s services adheres to the OKBC model
[19]. OKBC supports an object-oriented representation of

knowledge and provides a set of representational constructs
commonly found in object-oriented knowledge representation
systems. This standard is widely used there, but differs from
the standards commonly accepted in the semantic web area,
where OWL [27] is the most widespread model. The RDF,
RDFS, and OWL languages are represented as a graph of
triples <object, property, subject>. The semantics of OWL
is based on Description Logic [2]. Even when the modelling
primitives look similar to OKBC, the semantics is different,
thus converting the operations associated to an OWL ontology
into OKBC operations is not feasible. The lack of support to
OWL ontologies is one of the main limitations of the FIPA
OA specification, and motivates the lack of fully implemented
FIPA-compliant OAs.

Another reason why no OAs exist that implement all the
services suggested by the FIPA specification is that “answering
queries about relationships between terms or between ontolo-
gies”, as the specification suggests, is definitely an hard task
if we consider semantic relationships, and not just structural
ones. Answering a query on the structure of ontologies, such
as “Is concept c1 ∈ o a subconcept of c2 ∈ o (or even a
subconcept of c′ ∈ o′)?” is almost trivial; answering a query
on the semantics of terms, such as “What is the confidence in
c ∈ o and c′ ∈ o′ having the same meaning?” is much more
difficult. This activity requires that the OA is able to “match”
ontologies o and o′, namely, it is able to compute an “ontology
alignment” between them.

Many algorithms for ontology matching exist, and some of
them have been implemented and are available to the research
community1. Surprisingly, none of them has been integrated
into an OA. Thus, to the best of our knowledge, no existing
OAs offer services for ontology matching.

In this paper we describe our implementation of an OA
for Jade, able to provide both “standard” and new ontology
matching services, as well as services for comparing one or
more alignments to a reference one. In particular, our OA
offers services for ontology matching via upper ontologies, a
new approach that has proven to give good results in precision

1For example, the Alignment API developed by J. Euzenat and his team at
INRIA-Rhône Alpes is available at http://alignapi.gforge.inria.fr/ under GNU
Lesser General Public License. It provides string-based and simple language-
based ontology matching methods, as well as methods for computing precision
and recall of a given alignment w.r.t. a reference one.

and recall [16].
Our OA is far from implementing all the services suggested

by the FIPA specification as, at the time of writing, it only
offers the matching one. Since most of the existing FIPA-
compliant OAs provide services for ontology discovery and
interrogation, whereas none of them provides a service for
ontology matching, we started our research by implementing
the latter, in order to complement existing proposals. As other
researchers, we deviate from the FIPA specification since we
assume that ontologies are represented in OWL instead than
OKBC.

The paper is organized as follows: Section II discusses the
state of the art of FIPA-compliant OAs, after providing a short
background on ontology matching and upper ontologies. Sec-
tion III describes the functionalities of our OA, briefly presents
the algorithms for matching OWL ontologies, discusses the
implementation of a simple MAS consisting of a Request
Agent and one OA, and shows experimental results. Finally,
Section IV concludes and highlights future improvements of
our work.

II. BACKGROUND

A. Ontology Matching

A formalization of the ontology matching process can be
found in [6]. Quoting the authors, we define a matching
process as “a function f which takes two ontologies o and
o′, an input alignment a, a set of parameters p and a set of
oracles and resources r, and returns an alignment a′ between
o and o′”.

A correspondence (also named “mapping”) between an
entity e belonging to ontology o and an entity e′ belonging to
ontology o′ is a 5-tuple < id, e, e′, R, conf > where:
• id is a unique identifier of the correspondence;
• e and e′ are the entities (e.g. properties, classes, individ-

uals) of o and o′ respectively;
• R is a relation such as “equivalence”, “subsumption”,

“disjointness”, “overlapping”, holding between the enti-
ties e and e’;

• conf is a confidence measure (typically in the [0;1]
range) holding for the correspondence between the en-
tities e and e′.

An alignment of ontologies o and o′ is a set of correspon-
dences between entities of o and o′.

Among the matching techniques, we just discuss those that
fall under the “Granularity / Input Interpretation” classification
described in [6], based on the granularity of the matcher and
on the interpretation of the input information.
• String-based methods. These methods measure the simi-

larity of two entities just looking at the strings (seen as
mere sequences of characters) that label them. Among
them we may cite substring distance, where two strings
are compared to find the longest common substring, n-
gram distance [4], where two strings are the more similar
the more n-grams (sequence of n characters) they have in
common, and SMOA measure [24], which is a function

of the commonalities (in terms of substrings) as well as
of differences between two strings.

• Language-based methods. These methods exploit natural
language processing techniques to find the similarity
between two strings seen as meaningful pieces of text
rather than sequences of characters. Some of them exploit
external resources like WordNet, and exploit the semantic
relations that it offers to compute the correspondences.

B. Upper Ontologies and their Application to Ontology
Matching

An upper ontology (also named top-level ontology, or
foundation ontology) is “an attempt to create an ontology
which describes very general concepts that are the same across
all domains” [28]. Few upper ontologies exist: BFO [10], Cyc
[13], DOLCE [9], GFO [11], PROTON [5], Sowa’s ontology
[23], and SUMO [17]. They vary in dimension, ranging from
the 30 classes of Sowa’s ontology to the 300,000 of Cyc, in
representation language (OWL, KIF [1], First Order Logic),
in structure (monolithic vs. decomposed into modules), and
in developed applications. Nevertheless, all of them describe
general concepts (also named “classes”) and share the aim to
have a large number of ontologies accessible under them.

In our previous work, we implemented different algorithms
that used upper ontologies for boosting the ontology match-
ing process [16]. We run experiments with SUMO-OWL (a
restricted version of SUMO translated into OWL), OpenCyc
(the open version of Cyc, which is a commercial ontology),
and DOLCE. The experiments demonstrate that when the
“structural matching method via upper ontology” uses an
upper ontology large enough (OpenCyc, SUMO-OWL), the
recall is significantly improved and the precision is kept
w.r.t. not using upper ontologies. Instead, the “non structural
matching method” via OpenCyc and SUMO-OWL improves
the precision and keeps the recall. The “mixed method”, that
combines the results of structural alignment without using
upper ontologies and structural alignment via upper ontologies,
improves the recall and keeps (improves, with OpenCyc) the
F-measure, whatever the upper ontology used.

C. FIPA-compliant OAs: the State-of-the-Art

The FIPA reference model for the services provided by the
OA is shown in Figure 1.

In the literature there have been few attempts to realize the
FIPA OA, and each one adopts a particular point of view of
the problem.

Some solutions implement only a subset of the OA’s ser-
vices, others change the FIPA specification in order to use
the OWL specification language, others realize a Web Service
playing the OA role. Besides being different from the design
point of view, these solutions also differ in the choice of the
middleware where the OA is integrated, and hence of the
language used to implement it.

In the following sections we discuss the most relevant
solutions for the integration of the OA in a FIPA compliant
framework.

Figure 1. FIPA Ontology Service Reference Model

Implementation over the COMTEC platform

The first attempt to realize an OA was made in 2001 by
Suguri, Kodama, Miyazaki [25]. They realized an OA for the
COMTEC platform.

The OA is divided into two parts. The first part is an
interface to the OKBC front-end. From the OKBC point of
view, the OA is one of the front-end user applications. The
second part is the FIPA interface where the agent wrapper
is implemented. The FIPA interface is an agent wrapper
that takes care of generating and interpreting SL [8] actions,
predicates and ACL communicative acts based on appropriate
interaction protocols. It also processes the registration with the
DF, the management of ontology names and the relationship
between the ontologies.

The COMTEC OA implements a subset of the services of
a generic FIPA-compliant OA, in particular

1) register an ontology in the framework;
2) operate over an ontology (create, delete frames, slot,

modify the hierarchies);
3) answer queries about ontologies’s structure, and their

level of similarity.
No ontology matching service is provided by this OA.

From a design point of view, this solution is one of the best
because it tries to faithfully adhere to the FIPA specification.
Its main problem is that the COMTEC platform on which it
was implemented is no longer available.

Implementation over the AgentService platform

Vecchiola, Grosso, and Boccalatte implemented a FIPA
compliant framework called AgentService [26], based on the
.NET platform. Together with Passadore, they integrated an
OA into AgentService [20].

Ontologies in AgentService are represented in OKBC: the
implementation of the OA is thus fully compliant with the

FIPA specification.
The services that the OA offers are a subset of the possible

ones: the OA implements the discovery and publication of
the ontology and its maintenance, allows two agents to check
whether they use the same ontologies and if not, it helps them
to download the “missing” ones. However, neither ontology
matching nor translation are supported.

AgentService uses Protégé [22] to support the designer
from the creation of the ontology to the development of an
agent that can communicate using that ontology, and MS Visio
(http://office.microsoft.com/en-us/visio/default.aspx) to design
agent interaction protocols. Visio allows the designer to import
an ontology and supports him/her in the creation of message
contents compliant with concepts expressed in the ontology
itself.

Thus, the main usefulness of having ontologies integrated
into AgentService is to support developers in designing mes-
sage exchange in a clear and well-founded way. This makes
the design easily sharable among developers. AgentService
OA has been conceived for managing ontologies within closed
MASs, rather than for implementing open systems where het-
erogeneous/unknown agents interact and choose an ontology
on the fly.

Implementation over the Jade platform

One of the most used FIPA-compliant platform is Jade [3].
This framework is fully compliant to the FIPA standards, and is
based on Java. Jade offers some utilities to model ontologies,
but in the spirit of integrating the ontology into the agent’s
code. Thus, Jade supports the hard coding of the ontology both
at design and compile time: all the entities of the ontology
have to be transformed in classes and objects, in order to
allow a Jade agent to use them. This approach gives little
help to a MAS developer who wants to create agents that can
communicate with others automatically, after having agreed on
an ontology known and available to all of them. Then, Jade
lacks a real support to the use of ontologies in open MASs.

We have implemented an OA in Jade offering services for
matching OWL ontologies using different algorithms, and for
evaluating the result of the matching. Its functionalities are
described in Section III.

The only other attempt of integrating a FIPA-compliant OA
into Jade we are aware of, is that by Obitko and Snáěl [18].
Their implementation follows the FIPA specification but adapts
it to ontologies represented in OWL, as we do.

Since Obitko and Snáěl intended to store OWL ontologies
only, they had to adapt the language for describing actions
performed by the ontology agent. Their OA agent exploits Jena
[12] and implements the basic functionalities of the ontology
services as specified in the FIPA proposal, i.e. the possibility
of modifying ontologies (assert and retract) and of querying
ontologies using RDQL.

Obitko and Snáěl’s OA is well organized and closely follows
the FIPA specification except for the usage of OWL instead
to OKBC.

Non FIPA-compliant solutions

Ontology Services as the result of Distributed Coopera-
tion: A good effort to design and implement a MAS with a
support to ontology matching comes from Li, Wu and Yang
[14], [15]. Their work concentrates on the process of mapping
and integrating ontologies: these functionalities are integrated
in the MAS thanks to a set of agents which collaborate to
offer them to the other agents. The agents which are involved
in the delivery of ontology services are:

1) User Agent (UA): assists the user in formulating his/her
requests, posts queries (e.g. tasks) to the proposed system
via the IA and visualises the required results according
to the user’s requirement. The UA only knows the IA.

2) Interface Agent (IA): acts as an interface among agents
in the MAS and the UA. Every agent knows the IA.

3) Ontology Agent (OA): acts on behalf of the correspond-
ing ontology, is in charge of ontology related tasks. It
provides as much information of the ontology it acts on as
possible. The OA operates over the ontology structure and
the mapping result file. When a new ontology is loaded
in the system, a corresponding OA is created to manage
it.

4) Mapping Agent (MA): maps, if possible, concepts from
an ontology to the concepts of a second ontology, using
also the SA.

5) Similarity Agent (SA): maintains a thesaurus for the
purpose of similarity. It holds a list of common words
and synonyms of words.

6) Query Agent (QA): operates over the mapping results
to investigate ontology-understandable of heterogeneous
ontologies after executing ontology mapping.

7) Integration Agent (InA): merges two ontology in a new
one (in RDF format). Is based on the result of ontology
mapping.

8) Checking Agent (CA): checks the consistency of the
integrated ontology (assuming all given ontology are
consistent at the beginning).

The purposes of this system, namely providing a large set of
ontology services that include ontology matching ones, make
it very close to our proposal. However, the way these services
are implemented make the system really far from the FIPA
OA specification, since services are distributed among differ-
ent agents, and are not integrated within a FIPA-compliant
framework.

An OA implemented as a Web Service: In [21] Peña,
Sossa and Gutierrez implement the OA as a web service, in
order to offer its services also over the Internet. The OA
carries out the management of the ontologies through an
interface between the application agents and the ontologies.
It is responsible for catching the requests arriving from the
agents, interpreting them, forwarding them to the Ontology
Manager in charge of the Ontology referenced in the request,
and forward back the response from the Ontology manager.
Ontologies are in OWL format, and each Ontology Manager
answers only to requests about the structure of the ontology

or for changing its structure, but no support is offered to
the mapping, translating or more complex queries about two
ontologies.

III. OUR OA IN JADE

The OA we have implemented in Jade provides the follow-
ing services:

1) matching two OWL ontologies through a direct matching;
2) matching two OWL ontologies via an upper ontology

(represented in OWL too);
3) evaluating an alignment against a reference alignment.

The implementation of a fourth service, namely the repair of
an alignment based on word sense disambiguation techniques,
is under way. We do not discuss it here for space constraints.

In this section, we describe the algorithms that realize all
the implemented services of the OA. It is worth specifying
that in our matching algorithms we only consider concepts as
entities to match, and equivalence as relation.

In order to be compliant with the Align API mentioned
in Section I, and to be able to exploit some of the methods
it provides, our alignments are represented in RDF and their
format is like the one shown below.

<rdf:RDF .. namespaces here ...>
<Alignment>
<xml>yes</xml>
<level>0</level>
<type>**</type>
<time>15</time>
<method>StringDistAlignment</method>
<onto1>file:///ka.owl</onto1>
<onto2>file:///edumit.owl</onto2>
<uri1>file:///ka.owl</uri1>
<uri2>file:///edumit.owl</uri2>
...
<map> <Cell>

<entity1 rdf:res=ka.owl#Book/>
<entity2 rdf:res=edumit.owl#Book/>
<relation>=</relation>
measure>1.0</measure>

</Cell> </map>
<map> <Cell>

<entity1 rdf:res=
ka.owl#TechnicalReport/>

<entity2 rdf:res=
edumit.owl#Techreport/>

<relation>=</relation>
<measure>1.0</measure>

</Cell> </map>
...

</Alignment>
</rdf:RDF>

With respect to the definition provided in Section II-A, our
correspondences are simpler due to the lack of the correspon-
dence identifier, which is strictly necessary only in case we

need to uniquely identify them (e.g. when storing them in a
repository).

Direct Matching

The direct matching service is implemented by a function
that we named parallel match(o, o′, {WordNet}, th), be-
cause it runs in parallel different “standard” matching methods,
and combines their outputs. The matching methods that we
used are the substring, n-gram, SMOA and WordNet ones that
we introduced in Section II-A. We used the implementation
of these methods offered by Euzenat’s Align API2. The th
parameter is used as a threshold for cutting all correspondences
below it. In our experiments, we set it at 0.5. To obtain a final
alignment from the ones obtained by the individual matching
methods, we use an aggregate function that composes the
four alignments by making the union of all their correspon-
dences. In case different alignments produced correspondences
between the same concepts c and c′, aggregate keeps the
correspondence with the highest confidence measure.

Matching via Upper Ontology

For matching two ontologies o and o′ via an upper ontology
uo we compute the parallel match(o, uo, {WordNet}, th)
and parallel match(o′, uo, {WordNet}, th), obtaining two
alignments between o and uo, and o′ and uo respectively.
These two alignments are given in input to a merge(a, a′)
function. Merge produces the final alignment between o and
o′ by combining the correspondences of o-uo and o′-uo in
such a way that: if ∃ a correspondence < c, cu, r, conf1 >
in o-uo and ∃ a correspondence < c′, cu, r, conf2 > in o′-
uo, then the merge function creates a new correspondence
< c, c′, r, conf1 ∗ conf2 > and adds it to the final alignment.

Alignment Evaluation

The Alignment API provided by Euzenat and colleagues
offers a PrecEval method for measuring the goodness of an
alignment based on precision, recall and F-measure. Precision
is the number of correctly found correspondences with respect
to the reference alignment (true positives), divided by the
total number of found correspondences (true positives and
false positives), and recall is the number of correctly found
correspondences (true positives) divided by the total number of
expected correspondences (true positives and false negatives).
F-measure is the harmonic mean of precision and recall.

We have integrated the PrecEval method into our OA; an
example of evaluation produced by the OA is given by the
following RDF fragment:

<rdf:RDF ..namespaces here ..>
<map:output rdf:about=’’>

<map:in1 rdf:resource="ka.owl"/>

2In particular, we used the Alignment API version 3.1. The methods
we used are StringDistAlignment that provides subStringDistance,
ngramDistance and smoaDistance string metrics, and JWNLAlignment
that computes a substring distance between two concepts exploiting their
WordNet 3.0 synsets.

<map:in2 rdf:resource="edumit.owl"/>
<map:precision>0.097</map:precision>
<map:recall>0.084</map:recall>
<map:fMeasure>0.09</map:fMeasure>
<map:nbcorrect>7</map:nbcorrect>
<map:nbfound>72</map:nbfound>

</map:output>
</rdf:RDF>

Implementation and Experiments

In order to test the behaviour of our OA we implemented
a Request Agent (RA) that acts as an interface between the
user and the OA, and allows the user to request services to
the OA. The RA receives a set of parameters from the user,
and saves them for later use. These parameters are:
• the URI of the OWL file containing the first ontology to

match, o;
• the URI of the OWL file containing the second ontology

to match, o′;
• the URI of the file where the computed alignment will

be stored;
• the URI of the file containing the reference alignment for

performing an evaluation of the computed alignment;
• the matching method (“direct matching” or “matching via

upper ontology”);
• a further optional parameter providing the URI of the file

containing the upper ontology in OWL. This parameter
is needed only in case of matching via upper ontology.

The system architecture is depicted in Figure 2.

Figure 2. Architecture of the Ontology Agent integrated into Jade.

During its start up phase, RA searches and identifies an OA
inside the Jade Platform.

After having received the parameters from the human user,
and having found OA, RA:
• sends as many INFORM messages to the OA, as the

parameters it wants to send to OA; the parameters are sent
as the message content (one parameter for each message);
the conversation id of the message is used to keep track
of the conversation just started;

• sends a REQUEST message asking for the matching
and evaluation services (which, in this first prototype,
are always coupled); the ontologies to match, and the
method to use, are those passed in the previous INFORM
messages.

OA starts its life with the registration of its ontology services
to the DF. When RA begins the interaction phase, OA reacts
as follows:
• it receives all the parameters from the RA and sends

an ACL Message in reply to each message, setting the
same conversation id for correctly keeping track of the
conversation, after having successfully received and saved
each parameter;

• on reception of a REQUEST message, it runs the required
matching method on the ontologies specified in the pre-
vious interaction steps with the RA;

• sends an INFORM message to notify the RA of the
accomplishment of the matching service and to communi-
cate the alignment file URI and the evaluation file URI; in
case something goes wrong, it sends a FAILURE message
to the RA.

Both agents terminate after the completion of these activi-
ties.

OA and RA have been structured according to Jade recom-
mendations for the development of agents. RA’s setup()
method includes the steps to save parameters from the com-
mand line, the instantiation of a wakerBehaviour object
in order to find the OA via DF query and the call to
the RequestPerformer behaviour. This one includes the
action() method where the agent sends the parameters,
sends the alignment and evaluation requests, and waits for the
results. It has been implemented as a generic Behaviour
class.

OA’s setup() method starts with the registration of
OA’s services to the DF and the instantiation of its
two behaviours which are of type ReceiveParameters
and Align respectively. The action() method of
ReceiveParameters is dedicated to receive the param-
eters and has been implemented as a OneShotBehaviour
class. The action() method of Align first waits for an
ontology matching request. After the request message has been
received, the matching and evaluation activities are performed,
and the result is notified to the sender. This class has been
modelled extending the generic Behaviour class.

To better synchronize the exchange of messages each of
them is received by the two agents in blocking mode and the

MessageTemplate class has also been used to deal with
conversation id patterns.

For the development of our MAS consisting of the OA and
the RA we used Jade 3.6.

In order to verify the feasibility of our approach, we have
run a large set of experiments. We discuss only two of them
in details; the other ones have been carried out in a similar
way.

In the first experiment, the RA asks the OA to execute
a direct alignment between Ka (protege.cim3.net/file/pub/
ontologies/ka/ka.owl) and Bibtex (oaei.ontologymatching.org/
2004/Contest/304/onto.rdf). Ka has 96 concepts dealing with
the academic domain, including Event (Activity, Meeting,
Conference, Workshop), Publication (concepts similar to those
of the Bibtex ontology), Organisation (Department, Enterprise,
Institute, University), ResearchTopic, whereas Bibtex has only
15 concepts including Article, Book, Conference, Manual,
Person, Publisher, etc.

Before using Ka and Bibtex in our experiments, we pre-
processed them by hand in order to remove properties and
individuals that we do not use in our matching algorithms.
We also built a reference alignment between Ka and Bibtex by
hand because we wanted to evaluate how good the alignments
resulting from the automatic matching methods were, w.r.t. the
reference one.

We passed the URIs of the two ontologies to match as
input parameters to RA together with the URI of the file
that had to contain the alignment, the URI of the file that
contains the reference alignment, and the chosen method
(direct alignment).

The second experiment also aimed at aligning Ka and Bib-
tex, but using the “matching via upper ontology” method. The
upper ontology we used is SUMO-OWL, a lossy translation
into OWL of the SUMO ontology, whose full version is
encoded in KIF.

The results of these two experiments are shown below; the
table summarizes the total correspondences found w.r.t. the
correct ones and the precision, recall and f-measure computed
by the PrecEval method integrated into our OA.

Method Found Correct Prec. Recall F-meas.
Direct 27 7 0.26 0.08 0.13
SUMO-OWL 9 6 0.67 0.07 0.13

While running this experiment, we activated the Jade sniffer
agent to follow the interactions between RA and OA. A
screenshot of the “sniffed” messages is given in Figure 3.
The messages exchanged in the first and second experiment
are very similar. In both experiments OA and RA exchange
messages to pass and save parameters. When the parameter
negotiation phase ends, the RA sends a request to OA for
performing the matching and the evaluation. The task has been
successfully executed in both experiments. As a consequence
OA sends an INFORM message to RA to inform it of the suc-
cessful outcome of the matching, and both agents terminate.

Figure 3. A sniffer screenshot with OA and RA agents.

The first experiment uses a direct matching method that
took less than a minute to complete3, while the second one
required about 10 minutes due to the usage of a more sophis-
ticated matching algorithm involving a large upper ontology
(SUMO-OWL has 4,393 concepts). From a comparison of the
alignments computed by the OA in the two experiments, which
are reported in Table III, it turns out that matching Ka and
Bibtex via SUMO-OWL gives the best precision (67% against
26% of the direct alignment), while recall and F-measure are
the same (recall: 7% against 8%; F-measure: 13% for both).

We have run 9 more tests. Besides Ka and Bibtex, the
ontologies that we have used in our experiments and the URLs
from where they may be downloaded are:

• Agent, 212.119.9.180/Ontologies/0.2/agent.owl
• Biosphere, sweet.jpl.nasa.gov/ontology/biosphere.owl
• Ecology, wow.sfsu.edu/ontology/rich/EcologicalConcepts.owl
• Food, silla.dongguk.ac.kr/jena-owl1/food
• Geofile, www.daml.org/2001/02/geofile/geofile-ont.daml
• HL7 RBAC, lsdis.cs.uga.edu/projects/meteor-s/wsdl-s/

ontologies/HL7 RBAC.owl
• MPEG7, dmag.upf.es/ontologies/2003/03/MPEG7Genres.rdfs
• Restaurant, guru-games.org/ontologies/restaurant.owl
• Resume, statistic.gunadarma.ac.id/research/

WorkGroupInformationSystem/DownLoad/onto colection/
resume.owl

• Space, 212.119.9.180/Ontologies/0.3/space.owl
• Subject, www.library.yale.edu/ontologies/subject.owl
• Top-bio, www.co-ode.org/ontologies/basic-bio/top-bio.owl

3We run our experiments on a HP Pavillon Notebook with Intel Core Duo
T2250 processor, 1.73 GHz of clock, 2 GB of RAM, and Windows XP.

• Travel, lsdis.cs.uga.edu/projects/meteor-s/downloads/Lumina/
ontology/travelontology.owl

• Vacation, www.guru-games.org/ontologies/vacation.owl
• Vertebrate, www.co-ode.org/ontologies/basic-bio/

basic-vertebrate-gross-anatomy.owl (Vertebrate has been
reduced by hand when running our experiments)

The experiments run consisted of matching the following
couples of ontologies:
• 1: Ka - Bibtex;
• 2: Biosphere - Top-bio;
• 3: Space - Geofile;
• 4: Restaurant - Food;
• 5: MPEG7 - Subject;
• 6: Travel - Vacation;
• 7: Resume - Agent;
• 8: Resume - HL7 RBAC;
• 9: Ecology - Top-bio;
• 10: Vertebrate - Top-bio
The obtained results are summarized in Table I. In 7

experiments out of 10, matching via SUMO-OWL allowed us
to obtain the best precision. In many cases, the recall of the two
methods can be compared even if, in some experiments, the
direct matching performs definitely better. The suitability of
the “matching via upper ontologies” method strictly depends
on the ontologies to match. From our experiments we have
learnt that for example, the type of English words used by
both upper and matched ontologies counts, as well as the
terminology used by both upper and matched ontologies.

IV. CONCLUSIONS

This paper describes a FIPA-compliant Ontology Agent
integrated in Jade, able to deal with OWL ontologies.

Our OA is able to produce alignments between two OWL
ontologies via direct matching or via an OWL version of
an upper ontology. It evaluates the obtained alignment with
respect to a given reference one and is going to be extended
with more “standard” services such as registration, discovery,
and maintenance of ontologies. The exploitation of an upper
ontology for performing an alignment between two ontologies
is a new approach that we only described in a recent technical
report. This approach represents an original contribution to the
ontology matching process.

For what concerns our decision to match concepts only,
and to limit ourselves to considering the equivalence relation,
our intention is to extend the matching methods towards the
exploitation of properties and individuals, and to take into
consideration at least subsumption and disjunction relations.

Our OA can be improved through a deeper analysis of the
FIPA-Agent-Management ontology in order to see if it is
feasible to join the description of the services provided by OA
with concepts of the Jade BasicOntology, thus allowing
the matching process, the evaluation and the correspondences
repair services to be a part of the Jade Agents semantic.
Future extensions we would like to carry on are: the modelling
of more complex behaviours which would better reflect the

Test Method Found Correct Prec. Rec. F-meas.
1 Manual 83 83 1.00 1.00 1.00
1 Direct 27 7 0.26 0.08 0.13
1 SUMO-OWL 9 6 0.67 0.07 0.13
2 Manual 604 604 1.00 1.00 1.00
2 Direct 26 6 0.23 0.01 0.02
2 SUMO-OWL 2 0 0.00 0.00 0.00
3 Manual 513 513 1.00 1.00 1.00
3 Direct 164 38 0.23 0.07 0.11
3 SUMO-OWL 49 22 0.45 0.04 0.08
4 Manual 1041 1041 1.00 1.00 1.00
4 Direct 107 12 0.11 0.01 0.02
4 SUMO-OWL 82 28 0.34 0.03 0.05
5 Manual 637 637 1.00 1.00 1.00
5 Direct 323 94 0.29 0.15 0.20
5 SUMO-OWL 224 93 0.42 0.15 0.22
6 Manual 262 262 1.00 1.00 1.00
6 Direct 50 19 0.38 0.07 0.12
6 SUMO-OWL 26 8 0.31 0.03 0.06
7 Manual 1122 1122 1.00 1.00 1.00
7 Direct 157 58 0.37 0.05 0.09
7 SUMO-OWL 71 31 0.44 0.03 0.05
8 Manual 295 295 1.00 1.00 1.00
8 Direct 127 36 0.28 0.12 0.17
8 SUMO-OWL 60 34 0.57 0.12 0.19
9 Manual 308 308 1.00 1.00 1.00
9 Direct 88 28 0.32 0.09 0.14
9 SUMO-OWL 140 17 0.12 0.06 0.08
10 Manual 19 19 1.00 1.00 1.00
10 Direct 12 2 0.17 0.11 0.13
10 SUMO-OWL 7 2 0.29 0.11 0.15

Table I
COMPLETE RESULTS OF OUR EXPERIMENTS

alignment, evaluation and correspondences repair tasks (i.e.
parallel behaviours for string based and language based
partial alignments which could be nested inside a sequential
behaviour able to produce the final alignment and the merged
alignment via an upper ontology), the extension of OA life to
prolong the availability of these services for the whole time
the platform is running and the exploitation of FIPA standard
interaction protocols to manage the conversation between our
agents. Separating the alignment process from the evaluation
one by providing different requests for alignment, evaluation
and correspondences repair, hence exploiting a modular
architecture, is a further goal we will pursue.

ACKNOWLEDGMENTS

The authors acknowledge the “Iniziativa Software” CINI-
FINMECCANICA project that partially funded this work.

REFERENCES

[1] American National Standard. KIF Knowledge Interchange Format –
dpANS NCITS.T2/98-004, 1998.

[2] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F.
Patel-Schneider, editors. The Description Logic Handbook: Theory,
Implementation, and Applications. Cambridge University Press, 2003.

[3] F. Bellifemine, G. Caire, and D. Greenwood. Developing Multi-Agent
Systems with JADE. WILEY, 2007.

[4] E. Brill, S. Dumais, and M. Banko. An analysis of the askmsr question-
answering system. In Conference on Empirical Methods in Natural
Language Processing, EMNLP 2002, Proceedings, 2002.

[5] N. Casellas, M. Blázquez, A. Kiryakov, P. Casanovas, M. Poblet, and
R. Benjamins. OPJK into PROTON: Legal domain ontology integration
into an upper-level ontology. In R. Meersman and et al., editors,
WORM 2005, 3rd International Workshop on Regulatory Ontologies,
Proceedings, volume 3762 of LNCS, pages 846–855. Springer, 2005.

[6] J. Euzenat and P. Shvaiko. Ontology Matching. Springer, 2007.
[7] FIPA Ontology Service Specification, 2001. http://www.fipa.org/specs/

fipa00086/XC00086D.pdf.
[8] FIPA SL Content Language Specification, 2002. http://www.fipa.org/

specs/fipa00008/SC00008I.html.
[9] A. Gangemi, N. Guarino, C. Masolo, A. Oltramari, and L. Schneider.

Sweetening ontologies with DOLCE. In A. Gómez-Pérez and V. R.
Benjamins, editors, EKAW, 13th International Conference, Proceedings,
volume 2473 of LNCS, pages 166–181. Springer, 2002.

[10] P. Grenon, B. Smith, and L. Goldberg. Biodynamic ontology: Applying
BFO in the biomedical domain. In D. M. Pisanelli, editor, Ontologies in
Medicine, volume 102 of Studies in Health Technology and Informatics,
pages 20–38. IOS Press, 2004.

[11] H. Herre, B. Heller, P. Burek, R. Hoehndorf, F. Loebe, and H. Michalek.
General formal ontology (GFO): A foundational ontology integrating
objects and processes. part i: Basic principles. Technical report, Research
Group Ontologies in Medicine (Onto-Med), University of Leipzig, 2006.
Version 1.0, Onto-Med Report Nr. 8, 01.07.2006.

[12] JENA. http://jena.sourceforge.net/.
[13] D. Lenat and R. Guha. Building large knowledge-based systems.

Addison Wesley, 1990.
[14] L. Li. Agent-based ontology management towards interoperability.

Master’s thesis, Swinburne University of Technology, 2005.
[15] L. Li, B. Wu, and Y. Yang. Agent-based ontology integration for

ontology-based application. In AOW 2005, associated with the 18th
CRPIT Conference series by Australian Computer Society, Vol 58, pages
53–59, 2005.

[16] V. Mascardi, A. Locoro, and P. Rosso. Exploiting DOLCE,
SUMO-OWL, and OpenCyc to boost the ontology matching
process. Technical Report DISI-TR-08-08, University of
Genoa, 2008. http://www.disi.unige.it/person/MascardiV/Software/
OntologyMatchingViaUpperOntology.html.

[17] I. Niles and A. Pease. Towards a standard upper ontology. In C. Welty
and B. Smith, editors, FOIS 2001, 2nd International Conference on
Formal Ontology in Information Systems, Proceedings, pages 2–9. ACM
Press, 2001.

[18] M. Obitko and V. Snáěl. Ontology repository in multi-agent system. In
M. H. Hamza, editor, Artificial Intelligence and Applications, AIA 2004,
Proceedings, 2004.

[19] OKBC. http://www.ai.sri.com/∼okbc/.
[20] A. Passadore, C. Vecchiola, A. Grosso, and A. Boccalatte. Designing

agent interactions with Pericles. In ONTOSE 2007, 2nd International
Workshop, 2007.

[21] A. Peña, H. Sossa, and F. Gutierrez. Web-services based ontology agent.
In Distributed Frameworks for Multimedia Applications, 2006. The 2nd
International Conference on, pages 1–8, 2006.

[22] Protégé. http://protege.stanford.edu/.
[23] J. F. Sowa. Knowledge Representation: Logical, Philosophical, and

Computational Foundations. Brooks Cole Publishing, 1999.
[24] G. Stoilos, G. B. Stamou, and S. D. Kollias. A string metric for

ontology alignment. In Y. Gil, E. Motta, V. R. Benjamins, and M. A.
Musen, editors, 4th International Semantic Web Conference, ISWC 2005,
Proceedings, volume 3729 of Lecture Notes in Computer Science, pages
624–637. Springer, 2005.

[25] H. Suguri, E. Kodama, M. Miyazaki, H. Nunokawa, and S. Noguchi.
Implementation of FIPA Ontology Service. In Workshop on Ontologies
in Agent Systems, Proceedings, 2001.

[26] C. Vecchiola, A. Grosso, and A. Boccalatte. AgentService: a framework
to develop distributed multi-agent systems. Int. J. Agent-Oriented
Software Engineering, 2(3):290 – 323, 2008.

[27] W3C. OWL Web Ontology Language Overview – W3C Recommenda-
tion 10 February 2004, 2004.

[28] Wikipedia. Upper ontology – Wikipedia, the Free Encyclopedia, 2008.
[Online; accessed 30-March-2008].

