

Abstract—In this paper we present AgentService Mobile:

an infrastructure aimed to the execution of agents on devices

with limited resources. The mobile device plays the role of a

client which consumes a set of services exposed by the

AgentService platform. This is the entry of AgentService in a

SOA context, with the main goal to open the multi-agent

platform to the outside, by using the most recent service

oriented technologies.

Keywords: mobile devices, SOA, Web Services, multi-agent

systems.

I. INTRODUCTION

GENTS are often in the common imaginary a sort of

digital alter-ego of the human owners. They play the

role of secretaries, avatars, and every other

responsibility that can be delegated to a software entity

running on a computer. If in the 70’s and 80’s a computer

was a heavy box that rarely went out of offices and labs,

since 90’s the advent of notebooks allowed users to use

their software more or less everywhere.

A new frontier of mobility has been reached with

wireless networks that cut off the cables from portable

computers. At now the mobility has reached incredible

levels with concentrates of computer technology in the palm

of a hand as PDAs (Personal Digital Assistants) and cellular

phones are.

By using mobile devices we can easily access web pages

and interact with remote services, from basilar mail servers

to a plethora of web services that remotely expose functions

and data. If we hold our all-day life and work activity in a

hand, the possibility to host software agents, so close to us,

is a real opportunity of releasing them from the closed

environment of a multi-agent platform running on a

motionless computer.

It is then our goal to expand the range of the agents that

are in execution on the platform we are developing:

AgentService [1].

For this reason, in this paper we present our on-going

project with the aim of executing AgentService agents on

devices having limited resources, in terms of CPU, RAM

and display capabilities.

From a general point of view, this project introduces

AgentService in a Service Oriented Architecture (SOA)

context [2], where the platform exposes its services to the

1 A special acknowledgement to Matteo Sommariva, for his precise

work during his Master Thesis activity.

outside, in order to allow remote applications and users to

exploit them. Therefore, by using a SOA interface, we do

not open AgentService only to C# based agents on mobile

devices, but also to whatever software entity able to manage

web services. As we will see in section IV, the only other

existing solution is based on an internal protocol which

enables just compatible agents to contact the remote

platform. Our contribution is then aimed to equip the .NET

development community with a framework for integrating

handheld devices in an agent based system, without

renouncing to the flexibility and the opening to the outside.

Following the essence of AgentService, the

infrastructure of the system in question is based on the latest

technologies in the Microsoft .NET field (the framework is

compatible with the Microsoft official releases, and the

open source versions, as Mono), in particular the contracted

version of the Framework .NET 3.5 (namely the Compact

Framework) [3] and the Windows Communication

Foundation (WCF) [4]: a communication infrastructure for

building and running connected systems that offers a SOA

implementation for Windows-based programming.

We consider AgentService as an alternative to the java

based multi-agent platforms, taking into account the

absence of solutions in the .NET community. AgentService

is especially aimed to industrial applications, where the

.NET Framework has gained a conspicuous space.

Considering the limited environment of a mobile device,

the main issue of this project was the creation of a light

infrastructure for executing agents and exploiting the

services offered by a remote standard AgentService

platform. AgentService is normally based on the Framework

.NET 3.5 and exploits functionalities which have been

removed in the Compact Framework version. For this

reason, the challenge was the reduction and adaptation of

the AgentService libraries to a minimal infrastructure,

running on the mobile devices only the essential services

and masking the others by using a proxy that contacts the

main remote platform through web services. The final goal

is to execute on a mobile device an agent that is developed

for a standard AgentService application, furnishing a

context that apparently is the same of a platform running on

a heavy motionless computer.

In this paper we first introduce the main problems

related to the development of SOA mobile applications,

illustrating the state-of-the-art in relation with the Compact

Framework, the Windows Communication Foundation and

the other existing solution in the field of multi-agent

systems.

AgentService in a hand
1

A. Passadore, A. Grosso, M. Coccoli, A. Boccalatte, Università degli Studi di Genova, Dipartimento

di Informatica, Sistemistica e Telematica, Via all’Opera Pia 13, 16145 Genova.

A

In the second part of this paper we show the architecture

of the proposed system, focusing on the two main aspects:

the runtime service proxies and the light execution

environment.

Conclusions, impressions, and a brief comparison with

the existing solution will follow.

II. MOBILE (AGENT) APPLICATIONS

A. The vivacious field of mobile applications

In the last years the software development for mobile

devices has been subject to a sudden growth due to the

massive diffusion of handheld computers. There exist

different types of portable devices whose classification is

now difficult because of the overlap of their features.

However we can outline a brief classification of such

devices, distinguishing:

• Smartphones: cellular phones with memory and

computational resources, mainly aimed to

communication features.

• PDA (Personal Digital Assistant): devices for the

management of personal information as agenda,

calendar, block-notes, etc.

• Tablet PC: denoting a touch-screen display, it is

mainly used in industrial field, but also for gaming

and multi-media player.

Smartphones and PDAs are often very similar and easily

indiscernible; this fact proves that the trend is to converge

to a multi-purpose mobile device with a heterogeneous set

of features.

The development of multi-agent mobile applications

cannot leave aside the hosting operating system. In the field

of handheld devices, there are heterogeneous solutions that

make this panorama more variegated than the desktop

computers one.

The market is dominated by Symbian OS (65% of the

market, in the fourth period of 2007), which outclasses

Windows Mobile (12%), and Blackberry OS (11%). Other

noteworthy solutions are based on iPhone OS, Palm OS,

JavaFX, OpenMoko Linux, and the incoming Google

Android. Some of them are open to third-part applications

and provide a SDK for the development in proprietary

languages, Java, C++, or C#. Several operating systems

support Java libraries (as Blackberry, Android, JavaFx,

OpenMoko, and Windows Mobile) and MIDP (Mobile

Information Device Profile): a specification for the use of

Java on mobile devices; it is part of J2ME: the micro

edition of the Java Framework. The Microsoft’s framework

for handheld devices is the Compact Framework .NET 3.5

which at the present moment is supported only by the

Windows Mobile family
2
.

2 Even if there exists an open source version of the Framework named

Mono, there is not yet an open source version of the Compact Framework.

The developers of Mono ensures the compatibility only for those

applications which have no GUI.

The choice of the Windows Mobile OS and the Compact

Framework for our project is bind to the fact that

AgentService is completely based on the Common

Language Infrastructure (CLI) specification [5]. Although

the most supported platform is Java, the .NET counter-party

denotes features that are in step with the former one
3
.

B. SOA Middleware

Mobile devices well represent the role of clients which

exploit and consume services hosted on machines with more

computational resources. In this sense, the power of a

collaborative network involving mobile clients is just the

possibility to access to a theoretically infinite set of services

from a device with a small CPU and few RAM.

The SOA philosophy embodies the approach we want to

apply to AgentService Mobile.

SOA [2] [6] is essentially a sort of style, paradigm, or

concept aimed to support services on the web, in order to

satisfy the user’s requests and consider the single

applications as coordinated components of a business

process. SOA is based on few strong principles that are

strongly relevant in agent based system too:

1) loose coupling: with a low intensity of connections

among the different components, it is possible to easily

update or modify a service without upset the rest of the

system. This feature warrants the system scalability and

decentralization.

2) Heterogeneousness: the different components of a

system can be based on different platform and different

implementation.

3) High interoperability: an easy communication

among the components of the system is a basis of each

implementation of both SOA and agent based systems.

The constitutional elements of a SOA are the services. A

service can be described by three aspects: the interface that

furnishes the signature of the exposed methods; the

contract: a formal representation of the interface

(expressed, for example, in WSDL); the implementation of

the service, in strict accordance with the contract. In this

sense, an AgentService platform will expose contracts for

the usual FIPA services, allowing our mobile agents or

other external applications (eventually based on different

platforms) to consume them.

SOA is an abstract concept that must be implemented.

At now, there exist different solutions which can be

classified, considering the way followed by users in order to

invoke services [7]: remote procedure calls (RPC) or

messages. Regarding RPC, the client obtains the service

interface and then contacts the service method by a

(generally synchronous) parametric call. Example of RPC

technologies that could be used to implement SOA are

CORBA [8], Java RMI [9], and .NET Remoting [10].

3 There are several comparisons between J2ME and Compact

Framework, but almost all are evidently prejudiced. For a equilibrated

comparison see: http://www.must.edu.my/~dwong/resources/mobile_

commerce_web/j2mevsnetcf.html

The second type is based on the exchange of few well-

defined (generally asynchronous) messages. The

frameworks based on messages are named Message-

Oriented Middleware (MOM) and provides a complete

management for message queuing, persistence, and security.

MOMs support different platforms, protocols, standards,

and languages. Because of their versatility and

interoperability, they are closer to the SOA concepts.

Several big enterprises invest in MOMs and deliver

powerful frameworks: IBM Websphere MQ, Sun Java

Message Service, Microsoft Message Queue Server, BEA

System Inc (now Oracle) MessageQ, etc.

A technology which matches the two styles and

represents a de facto standard for SOA system is the one

offered by Web Service standards (WS-*) [2] [11]. A web

service is based on SOAP: an XML protocol which supports

both RPC and messages. Also a Web Service has a contract

which is described by WSDL which, like SOAP, is an

XML-based language. The combined use of SOAP and

WSDL allows the definition of complex, dynamic, versatile

systems, which can be easily considered platform-agnostic.

Following this paradigm, AgentService Mobile is designed

in order to exploit the powerfulness of Web Services. The

implementation of the presented project is based on the new

framework, introduced by Microsoft, for the development

of connected services, named Windows Communication

Foundation.

C. Exploiting Windows Communication Foundation in

AgentService Mobile

With the release of the Framework 3.0, Windows

applications can be based on four sub-systems that manage

the different aspects of a software project: Windows

Presentation Foundation (the graphical layout), CardSpace

(management of digital identities), Windows Workflow

Foundation (a complete API for workflow management),

and Windows Communication Foundation.

The aim of WCF is to provide an environment for the

development of distributed applications in Windows-based

systems. It is a tool for implementing and hosting services

and it supports several industrial standards that define

interactions among services, type conversions, marshalling,

and protocol management.

A classification of the WCF features [3], which

demonstrates its adherence to SOA principles, is reported in

the following points:

1) Independent versioning: adhering to the WS-*

standards, WCF services can be developed with

different timetables in respect with consumers.

2) Asynchronous one-way messaging: it allows an

optimal use of the disposable computational resources.

3) Platform consolidation: all the different Microsoft

communication technologies (RPC, ASMX, Remoting,

COM+, and MSMQ) are now unified under WCF that

collects all the features of the single solutions.

4) Security: WCF supports several security models.

5) Reliability: it warrants the safe delivery of messages,

dividing the transport protocol from the delivery

mechanism. This approach ensures a safe

communication also on untrustworthy channels.

6) Transaction support for atomic operations.

7) Interoperability: WCF can interact with every single

past Microsoft communication technology and other

solutions that implement WS-* or REST, as Java.

8) Performance: different levels of interoperability and

performance are supported.

9) Extensibility: every aspect of the platform can be

customized, according to the application specification:

channels, bindings, codings, transports, etc.

10) Configurability, with the support of XML

configuration files.

Security and reliability are interesting features for the

AgentService Mobile architecture: secure transactions

among agents, over a reliable channel, are essential needs

for trustworthy multi-agent applications.

Interoperability does not close the AgentService

platform to contribute of external applications, eventually

based on different platforms so, a Java version of mobile

device-based agents could be developed in these languages

and then, freely interact with the AgentService .NET

platform (the Sun’s Java project named Tango ensures a

comfortable interoperability with WCF).

Even if WCF represents a good communication

infrastructure, it denotes aspects that can be ameliorated. In

the next sections we will show the architecture of the

developed system, pointing out every difficulty that the

WCF has risen. Especially in conjunction with the Compact

Framework, from the client point of view, some issues have

complicated the development of the mobile device

architecture.

In general the combination of WCF and Compact

Framework is not yet sufficiently tested and in the

developers’ community the experience about them is not so

deep. For these reasons, the practice ripened during this

project has been significant and appreciable.

D. The Compact Framework 3.5

A brief introduction of the Compact Framework is

necessary to understand the technical choices that have

guided the developers to the actual architecture of

AgentService Mobile.

With a dramatic reduction to 30% of available classes in

respect to the Framework .NET 3.5 and a physical size of 4

MB, the Compact Framework represents a typical

bottleneck for development of complex applications, as the

AgentService multi-agent platform is.

With the Compact framework, it is possible to develop

applications in C# or Visual Basic .NET. A special high-

performance, just-in-time compiler is provided with the

framework.

Figure 1 shows which features are preserved in the

Compact Framework. Server functionalities, ASP.NET,

C++ and J# Development, and Remoting are not supported.

In particular, Remoting would have been useful to create a

communication channel between the mobile client and the

remote platform, simply calling the remote methods of the

modules and services of AgentService.

Figure 1: differences between .NET CF and .NET Framework.

Significant restrictions concern the serialization

functions (both XML and binary), reflection, and threads.

These restrictions have a certain impact during the porting

of basic AgentService services from the usual Framework to

the Compact one.

Appreciable is the support nearly complete to the

Windows Communication Foundation that, in absence of

Remoting (and thanks to other considerations that will be

clear in the next subsection), is the chosen way to

implement a communication channel between mobile agents

and the resident platform or agents.

E. Agents on smart devices

In the multi-agent systems research and industry

communities, different applications that consider agents on

hand-held devices have been suggested. The application

domains are quite different: the tourism industry [12], home

care service [13], museum guides [14], educational [15],

tracking of goods with RFID [16], ambient intelligence

[17], industrial maintenance [18], etc.

Most of them exploit the well-known multi-agent

framework called JADE [19] along with the LEAP

extension [20], especially aimed to the execution of agents

on mobile devices. The remaining solutions implement ad-

hoc architectures essentially based on the Java framework

and J2ME. These facts induce two considerations: JADE

holds supremacy also in the management of agents on

PDAs; if AgentService is one of the very little examples of

MAS developed by using the .NET Framework, it is the

only one that supports agents on the Compact Framework

and then represents a different point of view for mobile

agent programming.

Nonetheless, JADE represents once more the state of the

art, considering the largeness of the project and the

employed resources. For this reason we consider JADE

LEAP as a basis for comparison and we report in the next

paragraph a short introduction to the architecture.

F. JADE LEAP

LEAP means Lightweight and Extensible Agent Platform.

The aim of this international project (involving some big

enterprises as Motorola, Siemens, Broadcom, British

Telecom, and TILAB) is to reduce the JADE framework in

order to execute an agent container in a device with few

resources and allow this agent to communicate with other

agents running on different containers or platforms. LEAP

is executable on every operating system supporting Java,

from a powerful server with J2EE (Enterprise Edition), to a

smart phone supporting MIDP.

A JADE platform is composed of containers: processes

that are in charge to host and execute agents, providing

runtime services. These containers must connect to a main

container that represents the bootstrap point of the platform

and hosts basic services as the Directory Facilitator and the

Agent Management System (AMS). Agents running on

different containers or even different platforms can

communicate by using the MTP (Message Transport

Protocol) furnished by JADE.

LEAP is totally inspired to the JADE architecture,

therefore the idea is to execute a LEAP container over the

handheld device, maintaining the same API of JADE. The

container is connected by a main container residing in a

desktop computer. Usually two JADE containers (which

could be deployed over a network) communicate by using

RMI; due to restrictions of J2ME this is not possible with

LEAP, then a new proprietary protocol has been developed:

the JICP (JADE inter-container protocol) which makes

incompatible JADE and LEAP containers.

An appreciable feature of LEAP is the possibility to split

the container into a front-end running on the device and a

back-end running on a remote computer. The goal is to

lighten the device, hosting almost all the runtime services on

the back-end.

III. AGENTSERVICE MOBILE EDITION

A. Overview

Leaving aside a complete introduction of AgentService (for

an exhaustive overview read [21]) we concentrate only on

those elements that are essentials for the execution of

mobile agents.

First, AgentService provides a particular model where

an agent is essentially composed of behaviours and

knowledges. Behaviours represent the business activities of

an agent and generally are managed as threads executed

concurrently. Behaviours of the same agent can share

information by using knowledge objects: a sort of

knowledge base containing data that can be persisted and

that must be accessed concurrently. AgentService Mobile

keeps the same model because is a specific requirement the

possibility of running standard agents on a mobile device.

From the agent point of view, the AgentService platform

is a sort of operating system that exposes services through a

runtime interface, dispatches messages, and schedules the

agent behaviours.

The runtime interface is available from any agent

behaviour. It exposes services useful during the execution

time of a behaviour:

• Yellow pages: as suggested by FIPA, it is

directory for publishing and advertising the

services managed by the agent.

• White pages service: a sort of telephone

directory for retrieving the agent addresses.

• Console: a service for monitoring the execution

of an agent through text messages.

• Context: it returns the behaviour execution

context, where it is possible to create and start

new behaviours and create new knowledge

objects.

• Logging service for the monitoring of

behaviour execution.

• Message service: it is responsible for the

forwarding of messages to the message module

(and then to the recipient queue). Moreover, it

supports the instantiation of conversations,

namely preferential communication channels

between two behaviours of different agents.

• Mobility: an infrastructure for the migration of

an agent from a platform to another one.

• Persistence: in order to preserve the agent

status following up a system crash or failure,

this service freezes the agent and saves it in a

storage facility (databases, xml file, etc...).

Considering the AgentService Mobile project, the

majority of these services should reside on the remote

platform. Agents that run on a mobile device access them

through a proxy that hides the communication channel with

the remote server. Other services, as persistence and

logging, must be local, in order to maintain the information

regarding agents on the local mobile machine. Finally, the

mobility service is unsupported due to the purpose of these

types of agent that are intimately tied with the mobile

device.

Another fundamental aspect that AgentService Mobile

must take into account is the message dispatching. Usually,

an agent which wants to send a message to a peer, contacts,

through the message client provided by the runtime, the

messaging module which delivers the message to the

message queue of the recipient agent. In case of the

recipient is running on a federated platform, the messaging

module directly contacts the other messaging module

through the .NET Remoting. Unluckily, this simple

mechanism is not allowed by the Compact Framework,

therefore a mobile agent cannot directly interact with the

remote central messaging module but must pass through a

proxy, as shown in the following.

Incidentally, a recent improvement of the messaging

module made it faster by suppressing every polling loop for

checking the message queue, in waiting for a new message.

Actually, every behaviour-thread that is waiting for a

message, is put in waiting status and released only when an

event, notified by the messaging module, occurred
4
. This

enhancement increases the speed up to 350 times. The use

of this approach allows also keeping down the resources

consuming in the mobile version, where this requirement is

fundamental.

Last, the scheduler is in charge of managing the agent

behaviours running them as threads. In the standard

AgentService version there are different policies to execute

behaviours:

• One behaviour, one thread: this is the preferred

way in term of performance.

• Every behaviour in a single thread: preferable

in term of resource occupation.

• A mixed approach for scenarios where some

behaviours have to be executed taking into

account the performance and others, the

resources.

Due to limitations of the Compact Framework in thread

management, we chose to implement the simplest scheduler,

namely the first. The tests we made, both on an emulator

and on physical devices gave a good response in term of

execution speed.

B. Architecture

Figure 2 shows the whole architecture involving the mobile

sub-platform and the remote, motionless AgentService

system.

Figure 2: AgentService Mobile architecture.

From the server-side, AgentService deploys a SOA

server which receives the requests from mobile agents. It is

a sort of bridge between the mobile device and the basic

services exposed by AgentService. At the communication

level it creates an http channel (the only one supported by

the Compact Framework) and sends SOAP messages. It

4 for further information, see AutoResetEvent on

http://www.developerfusion.co.uk/show/5184/3/

uses a bidirectional message exchange, in order to simulate

a remote calling of a method (invocation and return value).

The AgentService SOA server has been implemented to

reserve the channel for a short time, in order to avoid

pending calls. For example, the waiting for a message:

between the call of WaitForMessage method and its return,

several minutes could pass; for this reason the SOA server

does not wait for the message, leaving the call pending, but

it is the mobile client that periodically contacts the server

(See Figure 4).

Essentially, the SOA Server it is a sort of special runtime

that is able to contact the messaging module, the AMS, and

the DF, on mobile agents place.

Moreover, it manages the logging credentials for

accessing the server from a mobile device. From a

configuration file, it can be possible to set up a platform

opened to everyone, or a protected one, based on a list of

credentials.

Finally, the server periodically controls the connection

state of the mobile devices. In case of timeout (customizable

in the configuration file), it deregisters the lost mobile

agents from the AMS and DF.

Figure 3: a) the main form of AgentService Mobile; b) general settings; c)

batch for agent execution; d) the console.

On the client side, the architecture is implemented by an

executable file which instantiates and executes the agents

the user suggests in a configuration file or through the GUI.

Screenshots in Figure 3 show the settings (Figure 3.b and

Figure 3.c) the user must enter in order to connect to a

remote platform (settings that can be stored in a

configuration file). In particular, he must set the IP address

and the port through which the SOA Server is listening and

he must enter the username and password that allow him to

gain the access to the platform. An interesting setting is the

polling time which indicates how frequently the polling

thread monitors events coming from the remote platform.

These events regard, for example, the notification of a new

incoming conversation request, the presence of a new

message, etc. This polling loop is the only one running on

the mobile platform: it is an important technical solution,

because we avoid the saturation of the CPU due to a looping

thread for each behaviour. Thanks to this solution,

behaviours that are waiting for a message, notify their

request to the polling loop manager and then put their

thread in waiting status. As illustrated in Figure 4, when a

notification of an incoming message arrives to the polling

thread, the behaviour is awoken, the message is

downloaded, and the behaviour execution can continue. It is

important to mark that from the agent point of view, this

complex procedure is hidden behind a simple method call.

C. AgentService Mobile at runtime

The mobile side of the presented solution consists in a

driver object that first runs the SOA client, contacting the

SOA server and presenting the user credentials. The SOA

client also runs the aforementioned polling thread and

creates a runtime object: a sort of proxy for the remote

services hosted in the standard AgentService platform.

Second, the driver executes the mobile platform controller

which is in charge of creating agent instances, taking the

information about the types of agent templates, behaviours

and knowledge objects by using the .NET Reflection. The

platform controller also binds the runtime object to the

agent instances created by the SOA Client, granting a solid

link to the services of the remote platform, in a totally

transparent manner for the mobile agents. Finally, the

platform controller starts the agents, registering them to the

remote AMS and activating the behaviour schedulers.

Figure 5 describes in details the bootstrap process, from

the start of the driver to the agent execution. It shows the

sequences of steps that allow mobile agents to subscribe to

the remote platform services. From the UML diagram

transpires the most important feature of the driver which

eases the agent activities furnishing a runtime environment

identical to the desktop platform one.

IV. CONCLUSIONS

A. Implementing SOA with WCF

In the previous sections we shown the technical

solutions adopted to implement AgentService Mobile,

applying the SOA model to a multi-agent system

infrastructure. WCF offers a particular point of view,

largely diffused in the Windows-based programming.

Figure 4: how an agent gets a message.

The good points appeared clearly in the previous sections,

but during the implementation emerged some points which

can be considered as faults. In particular, the integration of

WCF and Compact Framework, although appreciable and

powerful, represent a slight difficulty in order to exploit the

real comfort of web services and WCF programming. In

particular, due to the sensible reduction operated in the

Compact Framework, the WCF support is surely complete

but free from those classes that represent a comfortable

surround. For this reason, because the WCF on the Compact

Framework does not directly support the Data Contract

serialiazer (the standard WCF serializer), we had to

manually instruct the basic xml serializer in order to

(de)serialize the messages used to invoke the WCF services.

A further issue regards not only WCF but also the SOA

paradigm. It is a usual need, among agents, to send objects

as message content. For this reason the message body is

defined in AgentService as a box which can contain

instances of every type targeting the .NET Framework (and

then which derives from the System.Object class). The

rigidity of the contract which characterizes every web

service does not permit the invocation of a method passing a

parameter which contains a generic object. This lack of

flexibility forces us to convert such generic objects in

strings containing their binary serialization, granting a solid

contract which counts strings instead of generic objects.

B. JADE LEAP and AgentService Mobile

For the two projects, the main obstacle was the porting

of the platform infrastructure on a little device. Curiously,

for both the implementations, the principal cause was the

message transport sub system. In JADE, agent containers

exchange messages by using the Java RMI RPC technology.

In AgentService does not exist a correspondence with

containers, because we consider a platform the basic

environment for circumscribed agent communities. In order

to interconnect different agent societies we use .NET

Remoting (which can be compared with Java RMI). Both

Java RMI and .NET Remoting are not supported by J2ME

and Compact Framework, here-hence the need to implement

a new way for message exchanging. In JADE LEAP they

opted for the creation of a proprietary protocol named JICP.

In AgentService we opted for a service-oriented solution.

Continuing to analyze the differences between JADE

LEAP and AgentService, because of the existence of the

container concept in JADE, LEAP developers created a

complete and autonomous infrastructure similar to a usual

container to host agents on a mobile device. In

AgentService we implement a minimal infrastructure which

essentially warrants the execution of an agent and entrusts

the implementation of each service to a remote standard

Figure 5: the bootstrap process.

AgentService platform. The JADE LEAP solution

guarantees a certain independence for an agent container.

On the other hand, the AgentService Mobile solution

reduces the resources consuming of the infrastructure,

leaving computational resources to the agent application.

Our approach looks like the split container option in JADE

LEAP but, while in LEAP it seems to be discouraged in the

majority of cases, in AgentService Mobile gives good

results in term of speed and performances.

A further difference between the two solutions is the fact

that LEAP is an add-on, while AgentService Mobile is

embedded in AgentService. In case the user want to add

mobile agents on a preexistent platform, in AgentService it

is sufficient to enable the SOA Server, while in JADE the

platform must be replaced with the LEAP version, because

a LEAP container and a JADE container must not live

together (the cause is the different message transport sub

system). From this point of view the AgentService solution

appears to be more flexible.

Moreover, the service oriented interface of AgentService

is not only aimed to agents on mobile devices but also to

those external applications which want to communicate with

agents and exploit the platform services.

We experienced that this requirement is fundamental for

a lot of AgentService users.

C. Future works

AgentService Mobile is an ongoing project which can be

improved in order to provide a more useful environment for

our agents. Considering the compliancy to web standards,

AgentService follows the ws-* specification, but additional

work as to be done for supporting ws-security, ws-

reliability, and ws-atomic transaction that could be

employed in the agents interaction protocol infrastructure

provided by AgentService in both the design and execution

phases.

In addition, we will develop a light message dispatcher

embedded in the mobile infrastructure, in order to avoid the

employ of the remote message module for those

conversations which involve agents running on the same

device. This modification could distort the essence of our

project, because every platform service is now considered

as a web service. Nonetheless, for some application the rate

of messages exchanged among agents hosted in the same

device could justify this by pass. For this reason, the local

message dispatcher will be optional.

An interesting evolution that confirms the trend to run

agents on heterogeneous and limited devices is the

development of an ultra-light infrastructure to host an agent

on an embedded device. Recently, a .NET Micro

Framework [21] has been delivered, in order to export the

.NET programming also on basic devices with ARM

processors, few RAM and no operating system. It could be

interesting to run micro agents on these small devices and

connect them to a standard AgentService platform. This

improvement could consolidate AgentService applications

in the industrial field, with agents deployed on sensors and

actuators.

REFERENCES

[1] C. Vecchiola, A. Grosso, A. Boccalatte; “AgentService: a framework

to develop distributed multi-agent systems”, Int. J. Agent-Oriented

Software Engineering, Vol. 2, No.3 pp. 290 – 323, 2008.

[2] N. Josuttis, “SOA in Practice, The Art of Distribuited System

Design”, O'Reilly, 2007.

[3] J. Smith, “Inside Microsoft Windows Communication

Foundation”,Microsoft Press 2007

[4] J. Löwy, “Programming WCF Services”, O'Reilly Media, 2007

[5] Standard ISO/IEC 23271:2003: Common Language Infrastructure,

March 28, 2003, ISO.

[6] OASIS, “Reference Architecture for Service Oriented Architecture

1.0”, Public Review Draft 1, Apr. 23, 2008, http://docs.oasis-

open.org/soa-rm/soa-ra/v1.0/soa-ra-pr-01.pdf

[7] D. Melgar, “Message-Centric Web Services vs RPC-Style

Invocations”, SOA World Magazine, March 2003.

[8] Object Management Group, CORBA 3.0 Specification

http://www.omg.org/technology/documents/formal/corba_2.htm

[9] Sun Developer Network, Remote Method Invocation (RMI)

http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp

[10] NET Framework Developer's Guide, .NET Remoting Overview

http://msdn.microsoft.com/en-us/library/kwdt6w2k.aspx

[11] W3C Working Group, Web Services Glossary, 11 February 2004

http://www.w3.org/TR/ws-gloss/

[12] J. S. Lopez and F. A. Bustos, “An Agent Application on the Tourism

Industry”, In Proceedings of the International Joint Conference

IBERAMIA/SBIA/SBRN 2006 - 1st Workshop on Industrial

Applications of Distributed Intelligent Systems (INADIS’2006),

Ribeir˜ao Preto, Brazil, October 23–28, 2006

[13] G. Itabashi, M. Chiba, K. Takahashi, Y. Kato, “A Support System

for Home Care Service Based on Multi-agent System”,In

Proceedings of Fifth International Conference on Information,

Communications and Signal Processing, 2005

[14] M. Bombara and D. Cal and C. Santoro, “Kore: A multi-agent

system to assist museum visitors”, In Proceedings of the Workshop

on Objects and Agents (WOA2003), 2003

[15] E. McGovern , B. J. Roche1 , E. Mangina and R. Collier,

“IUMELA: A Lightweight Multi-Agent Systems Based Mobile

Learning Assistant Using the ABITS Messaging Service”, Lecture

Notes in Computer Science, Springer Berlin / Heidelberg, 2007

[16] Feng Li Ying Wei, “Tracking In-Transit RFID-Tagged Goods

Using Multi-Agent Technology”, In Proceedings of International

Conference on Wireless Communications, Networking and Mobile

Computing, WiCom 2007.

[17] D. I. Tapia, J. Bajo, J. M. Sánchez and J. M. Corchado, “An

Ambient Intelligence Based Multi-Agent Architecture”, Developing

Ambient Intelligence, Springer Paris, 2008

[18] A. Passadore and G. Pezzuto, “A multi-agent platform supporting

maintenance companies on the field”, In Proceedings of the

Workshop on Objects and Agents (WOA2007), 2007

[19] F. Bellifemine, G. Caire, D. Greenwood, “Developing Multi-agent

Systems with JADE”, John Wiley & Sons, 2007.

[20] M. Berger, S. Rusitschka, D. Toropov, M. Watzke, M. Schlichte,

“Porting Distributed Agent-Middleware to Small Mobile Devices”,

In Proceedings of the Workshop on Ubiquitous Agents on

embedded, wearable, and mobile devices, Bologna, 2002.

[21] D. Thompson, R. S. Miles, “Embedded Programming with the

Microsoft .NET Micro Framework”, Microsoft Press, 2007.

