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Abstract—This paper describes the outcomes of a project that
involved DISI, the Computer Science Department of Genoa Uni-
versity, and Ansaldo Segnalamento Ferroviario, the Italian leader
in design and construction of signalling and automation systems
for conventional and high speed railway lines. The result of the
project, started in February 2008 and ended in September 2008, is
an implemented MAS prototype that monitors processes running
in a railway signalling plant, detects functioning anomalies, and
provides support to the early notification of problems to the
Command and Control System Assistance. The MAS has been
implemented using DCaseLP, a multi-language prototyping envi-
ronment developed at DISI, that provides libraries for integrating
TuProlog agents into Jade. Due to the intrinsic rule-based nature
of monitoring agents, Prolog has been proved extremely suitable
for their implementation.

I. INTRODUCTION

Distributed diagnosis and monitoring represent one of the
oldest application fields of rule-based software agents.

ARCHON (ARchitecture for Cooperative Heterogeneous
ON-line systems [12]) was Europe’s largest ever project in
the area of Distributed Artificial Intelligence. It was em-
ployed for monitoring and controlling the cycle of generating,
transporting and distributing electrical energy to industrial
and domestic customers, for the Iberdrola company, one of
the world’s leading private energy groups [8]. ARCHON’s
Planning and Coordination Module was implemented as a rule-
based system.

In [25], Schroeder et al. describe a declarative and reactive
diagnostic agent based on extended logic programming. Both
the inference engine used for computing diagnoses and the
reactive layer that implements a meta-interpreter for the agent
were implemented in Prolog extended with communication
facilities.

Both ARCHON and Schroeder’s agent systems date back
to more than ten years ago. In the meanwhile, a large number
of MASs for diagnosis and monitoring has been developed,
many of them based on rule-based approaches.

There are many good reasons for choosing a MAS approach
to process diagnosis and monitoring. Some of them had been
clearly stated by N. Jennings1:

1N. Jennings, ARCHON: Cooperating Agents for Industrial Process Con-
trol, http://users.ecs.soton.ac.uk/nrj/download-files/archon/arch10.html

• To permit reasoning based on information of different
granularity: The MAS may be organised in a hierarchy
of agents with different competencies, starting from those
at the lowest level, directly interfaced with the processes,
and going up towards more and more sophisticated
agents, equipped with expert system-like rules for devis-
ing problems according to the information coming from
agents below in the hierarchy, and reporting aggregated
information and diagnosis to the agents higher in the
hierarchy.

• To enable a number of different problem solving
paradigms to be utilised: Rephrasing Jennings’ consid-
erations,

there is no universally best problem solving
paradigm: procedural techniques may be required
for algorithmic calculations, whereas symbolic rea-
soning based on heuristic search may be the best
approach to diagnosis. A distributed approach en-
ables each component to be encoded in the most
appropriate method.

• To meet the application’s performance criteria: The dis-
tributed nature of a MAS makes it a suitable solution for
monitoring different processes concurrently, thus gaining
in performance and responsiveness.

The motivations for choosing a Distributed Artificial Intel-
ligence approach given by [5], [1] also apply to the process
diagnosis and monitoring domain: economy, robustness, reli-
ability, natural representation of the domain.

Situational awareness, that is mandatory for the successful
monitoring and decision-making in many scenarios, is one of
the founding characteristics of intelligent software agents [13].
When combined with reactivity, situatedness may lead to the
early detection of, and reaction to, anomalies.

Last but not least, an agent-based distributed infrastructure
can be added to any existing system with minimal or no
impact over it. Agents monitor processes, be them computer
processes, business processes, chemical processes, by “looking
over their shoulders” without interfering with their activities.

The simplest and most natural form of reasoning for produc-
ing diagnoses starting from observations is rule-based. Also,



a monitoring activity may be profitably modelled by means
of reactive rules. If the agents employed in the MAS are
implemented in a rule-based language, the implementation of
a rule-driven reasoning mechanism is greatly simplified.

This paper describes the results of a joint academy-industry
project started at the beginning of 2008. The project involves
the Computer Science Department of Genoa University, Italy,
and Ansaldo Segnalamento Ferroviario, a company of Ansaldo
STS group controlled by Finmeccanica, the Italian leader in
design and construction of railway signalling and automation
systems.

The outcome of the project is a MAS prototype that mon-
itors an Ansaldo process, which controls railway signalling,
and reacts to anomalies either by interacting with other agents
in the MAS or by killing the process that raised the anomaly.
The MAS has been implemented in Jade [6] extended with
TuProlog [9] by means of the DCaseLP libraries [18].

At this stage of the project, the MAS is running in an
“off-line” modality: agents are not installed on machines in
Ansaldo and the MAS tests have been carried out at DISI.
Agents read original log-files provided by Ansaldo as if new
lines were added by the monitored process once every m
minutes. Agents act in accordance to the content of the last
lines read, thus simulating an “on-line” reading phase. Also the
“kill process” action is just simulated at the time of writing.
When Ansaldo will fully integrate the MAS into its system,
log-files will be read in real-time as they are produced by the
monitored process. Furthermore, the MAS will be allowed to
really kill processes and to contact the Assistance Centre of
the Command and Control System for Railway Circulation to
report the anomalies in an automatic way. When the MAS will
be installed on the Ansaldo SCC system, other ways to manage
processes, aside from the “kill process”, will be studied.

The paper is structured in the following way: Section II
describes the operating scenario and the MAS architecture,
Section III describes the rule-based implementation of the
agents, Section IV shows the potential of the system by
discussing different execution runs. Section V overviews the
related work and concludes.

II. OPERATING SCENARIO AND MAS ARCHITECTURE

The architecture of the MAS and its operating scenario have
been extensively described in [17]. In this section we briefly
recall them to allow the reader to understand the original
contribution of this paper, namely the system implementation
and execution described in Sections III and IV.

A. Operating Scenario

The Command and Control System for Railway Circulation
(“Sistema di Comando e Controllo della Circolazione Fer-
roviaria”, SCC) is a framework project for the technological
development of the Italian Railways (“Ferrovie dello Stato”,
FS). It is based on the installation of centralised Traffic
Command and Control Systems, able to remotely control the
plants located in the railway stations, and to manage the

movement of trains from the Central Plants (namely, the offices
where instances of the SCC system are installed).

The SCC can be decomposed into five subsystems
• Circulation, for remote control of traffic and for making

circulation as regular as possible;
• Synoptic Frame, for representing railway lines, nodes, and

trains, in a summarised, easily understandable way;
• Diagnosis and Upkeep, for the diagnosis of plants and

equipments of the SCC;
• Information to Customers, for providing information to

the FS customers;
• Remote surveillance, intrusion avoidance, fire detection,

emergency management, for dealing with all these situa-
tions efficiently.

The MAS we have implemented monitors and reacts to
problems of one critical process belonging to the Circulation
subsystem: Path Selection.

The Path Selection process is the front-end user interface for
the activities concerned with railway regulation. There is one
Path Selection process running on any workstation in the SCC
and each operator interacts with one instance of this process.
The Path Selection process visualises decisions made by the
Planner process and allows the operator to either confirm or
modify them.

The Planner process is the back-end elaboration process for
the activities concerned with railway regulation. There is only
one instance of the Planner process in the SCC, running on
the server. It continuously receives information on the position
of trains from sensors located in the stations along the railway
lines, checks the timetable, and formulates a plan for ensuring
that the train schedule is respected. Operators may modify the
Planner’s decisions thanks to the Path Selection process.

By integrating a monitoring MAS into the circulation sub-
system, we equip any operator of the Central Plant (any
workstation) with the means for early detecting anomalies that,
if reported to the SCC Assistance Centre in a short time, and
before their effects have propagated to the entire system, may
allow the prevention of more serious problems.

To have an idea of the dimensions of an SCC and of the area
it controls, the SCC of the node of Genoa, that we employed
as a case-study for the implementation of our MAS, controls
an area with 255 km of tracks, with 28 fully equipped stations
plus 20 stops (Figure 1).

One of the 16 user workstations of Genoa’s SCC is shown
in Figure 2. The synoptic frame can be seen in the background.

It is worth noting that our MAS does not manage problems
tightly connected with the railway domain. Indeed, it monitors
parameters which are common to many processes in many
domains, like the use of the cpu and the hard disk, the state of
the connection to the network, etc.. The aim of our project was
to develop a system able to monitor the execution of a process
characterised by the above parameters. As a consequence, the
architecture and the MAS developed are general and flexible
enough for monitoring many different processes, and not only
to the Path Selection one: our system could be easily adapted



Figure 1. Railway tracks controlled by Genoa’s SCC.

Figure 2. Operator and synoptic frame in Genoa’s SCC.

to monitor new processes without changing the architecture of
the MAS but just creating specific reader agents and equipping
the other agents with new rules.

B. MAS architecture

Our MAS consists of the four kinds of agent depicted in
Figure 3.

Agents are organized in a hierarchy: Log Reader Agents
are at the bottom of the hierarchy and interact with Process
Monitoring Agents, which in turn interact with Computer
Monitoring Agents. At the root of the hierarchy is the Plant
Monitoring Agent, unique in each SCC. Agents live and act
in the software Environment consisting of the already existing
processes developed by Ansaldo, and interact with it in the
limited way discussed below.

• Log Reader Agent. In our MAS, there is one Log Reader
Agent (LRA) for each process that needs to be monitored.
Thus, there may be many LRAs running on the same
computer (if there are more processes to monitor; at the
time of writing, only Path Selection is considered). Once
every m minutes the LRA reads the log-file produced
by the process P it monitors, extracts information from
it, produces a symbolic representation of the extracted
information in a format amenable of logic-based reason-
ing, and sends the symbolic representation to the Process

Figure 3. MAS architecture, from [17].

Monitoring Agent in charge of monitoring P. Relevant
information to be sent to the Process Monitoring Agent
includes loss of connection to the net and life of the
process. LRA is the only agent able to get information
from the Environment where the MAS is situated.

• Process Monitoring Agent. Process Monitoring Agents
(PMAs) are in a one-to-one correspondence with LRAs:
the PMA associated with process P receives the infor-
mation sent by the LRA associated with P, looks for
anomalies in the functioning of P, reports them to the
Computer Monitoring Agent (CMA) and asks it for more
information, and in case kills and restarts P if necessary.
It implements a sort of social, context-aware, reactive
and proactive expert system. PMA can interact with
the Environment by killing and restarting the process it
monitors.

• Computer Monitoring Agent. The CMA receives all
the messages arriving from the PMAs that run on that
computer, and monitors parameters like network avail-
ability, CPU usage, memory usage, hard disk usage. The
messages received from PMAs together with the values
of the monitored parameters allow the CMA to make
hypotheses on the functioning of the computer where it is
running. If necessary, the CMA may ask the PlaMA for
more information, to know about the state of the entire
plant and to act consequently.

• Plant Monitoring Agent. There is one Plant Monitoring
Agent (PlaMA) for each plant. The PlaMA receives
messages from all the CMAs in the plant and in case
alerts the SCC Assistance Centre. It interacts with the
Environment by alerting the remote assistance centre.



III. IMPLEMENTATION

All the agents of the MAS, apart from LRA that is a
pure Jade [6] agent, have been implemented in TuProlog
[9] integrated into Jade by means of an extended version of
DCaseLP libraries [18]. The extension consists in making a
blocking selective receive predicate available to the agents,
which takes three arguments: Performative, Content, Sender. It
was motivated by the need to allow our agents to retrieve only
messages respecting a given pattern (in particular, messages
arriving from a given Sender) from their message queue. Jade
offers the MessageTemplate class that provides static methods
to create filters for each attribute of the ACLMessage. The
Jade blockingReceive method can accept a message template
as argument, and retrieve only those messages that match the
template. The DCaseLP blocking selective receive predicate
creates a template that filters on the name of the Sender, and
then calls the Jade blockingReceive(mt) to return the value for
Performative and Content.

LRAs have been designed and developed as agents for
clearly separating what has been developed as part of this
project (“agents”) from what already existed (“non agents”).
We also wanted to emphasise their autonomy (although very
limited) and to separate the functionality of parsing the log-
file from the one of reasoning over facts. However, LRAs
are very trivial agents and we could have designed and
implemented them as “Artifacts” in the A&A metamodel [23]
or as “Touchpoints” in the Autonomic computing terminology
[2] as well.

The CMA, PMA and PlaMA have a cyclic “observe-think-
act” behaviour [14] (and a “cyclic behaviour” in Jade) where
they

• look if a new message matching a given template has
been received;

• retrieve the message from their message queue and store
it in their history;

• manage the message according to the rules in their
program, and to their knowledge base (that includes all
the messages received in the past);

• answer to the agent that has sent the message, and, in
case, send messages to other agents in the MAS.

The architecture of each agent, apart LRA ones, is a
declarative architecture where the knowledge base is modeled
as a set of Prolog facts, the behavior is determined by Prolog
rules, reactivity is implemented by allowing agents to look
at their message box and to react to incoming messages.
Messages arrive from the LRA to the PMA every m seconds
(where m is a configuration parameter of the MAS), and the
PMA looks for anomalies and starts the managing process if
necessary.

Agents are equipped with different rules dealing with the
different parameters to be monitored, namely:

1) parameters tightly connected to the process monitored
by the PMA; these parameters include “cpu usage” and
“errors” and are not influenced by the state of the network
or by other processes;

2) parameters influenced either by the state of the network,
or by the behaviour of other processes as those running
on the server (for example, “connection to server” and
“view”).

Parameters of the first type are treated locally by the PMA.
Parameters of the second type are dealt with by PMA asking
the CMA, which can ask the PlaMA, for more information,
since they may involve non-local problems.

An example of message sent by the LRA to the
PMA is: log(time(‘‘Mon Feb 11 21:30:43 CET
2008’’), [view(normal), cpu_usage(normal),
connection_to_server(active),
disk_usage(normal), answer_to_life(slow),
errors(absent), memory_usage(normal)]),
whose meaning is easy to understand.

Currently the agents do not use a common ontology, that is
implicitly known as the set of the monitored parameters and
their possible values.

The state of an agent consists of a set of facts representing
what happened in the past. Different agents store different
facts: PMAs store information about what local problems have
been found and when (facts reporting a timestamp and what
the problem is), CMAs keep information about the problems
of all its PMAs and the notifications of a process killing (facts
reporting the name of the process, a timestamp and what the
problem is and facts reporting why and when a process have
been killed), whereas PlaMA records facts about problems in
the network (facts reporting the name of the machine and the
process, a timestamp and what the problem is), but nothing
about the solutions that have been taken (because they are local
solutions). Messages received in previous interactions are also
stored by agents in their knowledge bases, since agents may
act in different ways if some problem is reported for the first
time or if the problem is common to other agents that recently
reported it.

This structure allows us to leave the rules that establish
how to manage a problem (kill o not, according to the CMA
advice) in the PMA, to store the intelligence to monitor a
computer and decide when more information is needed in the
CMA, and to have the PlaMA look over the whole network
and answer CMAs’ requests, but without intruding in the local
management.

In the sequel we show some schemes of interaction proto-
cols among agents aimed at managing some parameters. The
translation from these schemes into Prolog code has been done
creating and distributing rules among the agents involved in the
interaction. We did not use any standard interaction protocol:
indeed, we designed the needed interaction protocols on an
application-driven basis.

For example, in order to manage the “connection to server”
parameter, the MAS acts in the following way:

1) If the value of the “connection to server” parameter
received by the PMA from the LRA is “active”, no action
has to be taken; instead

2) if the value received by the PMA from the LRA is “lost”,
the PMA asks the CMA to know if this problem is



common to other processes or not.
a) If the CMA has no recent information2 about this

problem in its history, it notifies the PMA that the
problem is not a “net problem” (that is, it is not
common to other processes); in this case, the PMA
kills and restarts the process, and informs CMA of this.

b) If the CMA has other (one or more) recent notifications
of the problem, before answering to the PMA, it asks
the PlaMA to know if the problem is local to the
machine where the CMA runs, or has been reported
also on other computers.
i) If the PlaMA received no notifications of this

problem from other CMAs recently, it answers that
the problem is not common to the MAS; in this
case, the CMA answers the PMA that there are no
net problems, and the PMA kills and restarts the
process and informs CMA of this. Otherwise,

ii) if the PlaMA already received notifications of the
same problem in the last M minutes, it answers the
CMA that there are network problems; the CMA
forwards this answer to the PMA, which, in this
case, does not kill the process.

There are also situations where the PMA waits for two (or
more) consecutive messages from the LRA notifying the same
problem, before reporting it to the CMA. This situation is
shown below, for the parameter “answer to life”:

1) If the value of the “answer to life” parameter received
by the PMA from the LRA is “ready”, no action has to
be taken.

2) If the value received by the PMA from the LRA is
“absent”, the PMA kills and restarts the process (and
informs CMA).

3) If the value received by the PMA is “slow”, the PMA
must wait for the successive message arriving from the
LRA. If the successive message reports again a “slow”
answer to life, then the PMA must ask the CMA to know
if this problem is common to other processes or not.

a) If the CMA received no recent notifications of this
problem, it notifies the PMA that the problem is not
a “net problem” (that is, it is not common to other
processes). In this case, the PMA waits for two more
messages from the LRA and, if the problem persists,
kills and restarts the process and notifies it to CMA.

b) If the CMA received recent notifications of the same
problem, it asks the PlaMA if the problem is local
to the machine or had also been reported on other
computers.
i) If the PlaMA answers that the problem is not

common to the MAS, since no notifications of
the same problem have been reported in the last
M minutes, the CMA sends a “no net problem”.
The PMA waits for two next messages and kills

2By recent information, we mean information stored no later than M
minutes ago, where M is a parameter that can be set by the person in charge
of configuring the MAS.

and restarts the process (and notifies CMA), if the
problem persists.

ii) If the PlaMA was recently notified of the same
problem, it answers the CMA that there are network
problems; this answer is forwarded by the CMA to
the PMA, that does not kill the process.

The hierarchical structure of the system ensures scalability:
there will always be only one PlaMA in the MAS, but many
CMAs may be connected to it, and many PMAs can be started
on a machine and controlled by the local CMA. In case other
PMAs should be developed in the future, with rules ad hoc for
different processes, only the new PMAs and their associated
LRAs should be developed from scratch, with no impact on
the entire system.

IV. RUNNING THE SYSTEM

In order to run the developed system, Jade and tuProlog
(version 1.3, in order to be compliant with the DCaseLP
libraries) need to be installed on the machine, as well as the
extended DCaseLP libraries. The simplest configuration of the
MAS includes

• one PlaMA
• one CMA
• one PMA

but usually the MAS will consist of at least two CMAs
controlling different PMAs. At this stage of the project we
use more PMAs of the same type, which is not a problem
because the rationale is to simulate the behaviour of the CMA
with more processes, regardless of their type. The PlaMA is
one for each MAS. In the sequel we show the behaviour of
the MAS concerning the management of different parameters,
and with different configurations and history. Some figures
will not show the LRA to let the reader better understand the
interactions among the other agents.

The first example shows the behaviour of the MAS when
the value “high” of the “cpu usage” is reported by the LRA
to the PMA, with the simplest MAS configuration consisting
of just one agent of any kind.

When the PMA receives a message from the LRA:
1) If the value of the “cpu usage” parameter is “normal”,

no action needs to be taken.
2) If the value of the parameter is “high”, and it remains high

in the successive message sent by the LRA, the PMA kills
and restarts the process, and informs the CMA.

The simplest MAS configuration works well enough to
demonstrate this behaviour, because it does not depend on
how many PMAs encountered the same problem. As shown
in Figure 4, the first message notifying a high cpu usage from
the LRA does not cause the delivery of message from the
PMA. The second message with the same content, instead,
causes the PMA to send a message to the CMA, with the
content “process killed”.

Figure 5 depicts the behaviour of the PMA with respect
to the “answer to life” parameter. In this configuration we
have only one CMA. The PMA will wait for two messages



Figure 4. Execution run concerning the “cpu usage” parameter.

from the LRA with the value “slow” for the parameter, then it
contacts the CMA for further information: CMA received no
recent information from other PMAs, so PMA kills (after two
messages from LRA with the same problem) the monitored
process and informs of this the CMA, as described in the
previous section.

Figure 5. Execution run concerning the “answer to life” parameter.

The third example shows the behaviour of the system for
the management of the “connection to server” parameter. The
behaviour has been illustrated in Section III and is more
complex than the one dealing with the “cpu usage”. To allow a
good understanding of how it works, we will use two different
configurations and histories.

The first configuration, shown in Figure 6, involves one
PlaMA, one CMA and two PMAs, named Pma1 and Pma2.
Pma1 receives a message from its LRA with “connec-
tion to server(lost)”: Pma1 asks for more information to
CMA, that has no recent notifications of this problem from
other PMAs, and answers “no network problem” to Pma1.
Pma1 kills and restarts the process and informs CMA of
this. Later, also Pma2 receives the same message from its
LRA, and, in the same way as Pma1, asks to CMA if the
same problem has already been reported. CMA, which had
registered the problem of Pma1 in its history, needs to verify
if this is a local problem or a problem involving the entire
network. Thus, it asks the PlaMA if it is aware of other
CMAs with the same problem. For the PlaMA, this is the first
notification of the problem so it registers it into its history
and answers “no network problem”. The CMA forwards the
message to Pma2 which kills and restarts the process, and
informs CMA of it.

If we make the configuration even more complex (Figure
7), the behaviour of the MAS changes. We add another CMA
named Cma2, controlling two PMAs (Pma3 and Pma4). The

Figure 6. Execution run concerning the “connection to server” parameter.

agents shown in Figure 6 are still alive and their history
includes the events discussed before. If Pma3 receives the
notification of the “connection to server(lost)” problem, it
reacts exactly as Pma1, and Cma2 acts as Cma1. That is,
Cma2 answers to Pma3, without asking the PlaMA, that
there are no network problems. But if also Pma4 receives
the “connection to server(lost)” message from its LRA, then
Cma2 must ask the PlaMA if there are network problems.
The PlaMA’s history contains the fact that Cma1 reported the
same problem a short while ago, so PlaMA sends a message
with content “network problem” to Cma2. This answer is
propagated to Pma4 by Cma2, and, as a consequence, Pma4
does not kill the process because the problem cannot be
managed locally.

V. RELATED WORK AND CONCLUSIONS

The exploitation of intelligent agents for monitoring and
diagnosing distributed processes has a long and successful
history dating back to the early and mid nineties. Before
that, Distributed Artificial Intelligence (DAI) techniques were
adopted. Even if the first DAI systems did not integrate
“agents” as we intend them today, they were the ancestors
of MASs and deserve to be shortly mentioned in this section.

In 1990, the “Large-internetwork Observation and Diagnosis
Expert System”, LODES [29], was implemented. It represents
an interesting example of application of DAI to diagnosis. The
diagnostic system was created by reusing and unifying pre-
existing network diagnosis expert systems. Each sub-LAN had
its own LODES system, and problems were solved by their
co-operative work. In the same year, Weihmayer and Brandau
developed TEAM-CPS [30], a test bed for introducing DAI
to control and manage customer networks: in TEAM-CPS
the customers’ virtual private networks were automatically
reconfigured using links from the public network. In 1992, the
“Distributed Big Brother” was one of the earliest works where
DAI was adopted for monitoring purposes in the telecommu-
nications area [28]. The project applied DAI techniques to
Local-Area Networks, to make their management more robust
and faster.

Among the oldest applications of rule-based intelligent



Figure 7. Execution run concerning the “connection to server” parameter, complex configuration.

agents in the monitoring and diagnosis domain, besides
those already cited in Section I, we may mention a re-
implementation of TEAM-CPS [31] where agents used the
PRODIGY planning system [20] for local network planning,
and the well-known Agent-Orientated Programming frame-
work [27] for communication and control. In 1997, Leckie et
al. [15] developed a prototype agent-based system for perfor-
mance monitoring and fault diagnosis in a telecommunications
network, where agents were implemented using C5 [24], based
on the OPS5 rule language [11], and communicated using
KQML [10].

An architecture for a software agent operating a physical
device and capable of testing and repairing the device’s com-
ponents is described in [3]. In that work, the authors focus on
modelling the agent’s behaviour after the discovery of a fault in
a circuit: the knowledge as well the behaviours of the agent are
expressed in A-Prolog [4]. The life of the agent is an “observe-
think-act” loop where actions are quite simple, but nevertheless
able to modify the circuit in order to repair it. An industrial
application of A-Prolog to a medium size knowledge-intensive
application for controlling some functions of the Space Shuttle
is described in [21]. However, no agents are used there.

Moving to nowadays, [26] describes Space Shuttle Ground
Processing with Monitoring Agents. JESS is used to realize
a system that helps the monitoring of all the processes,
instrumentation and data flows of the Kennedy Space Center’s
Launch Processing System. The system, called NESTA, helps
to monitor and above all to discover problems concerning
the “ground process”, i.e. the set of the operations carried
out in the weeks before the Space Shuttle’s launch. NESTA
autonomously and continuously monitors shuttle telemetry

data and automatically alerts NASA shuttle engineers if it
discovers predefined situations. This system, developed and
tested in a real, safety-critical scenario, shows that an agent-
oriented solution implemented with a rule-based language
may be employed to satisfy concrete industrial needs, and
demonstrates the success of agents outside the boundaries of
academia.

Other applications of agents for diagnosis and monitoring do
not rely on a rule-based approach. For example, the paper [16]
presents a technique for monitoring the start up sequences of
gas turbine: the system uses a MAS where decisions are taken
by combining partial information possessed by individual
agents, thus obtaining a global view of the situation, and
producing an automatic fault diagnosis for the engineers. The
MAS is implemented with the ZEUS Agent Building Toolkit
[22]. In 2006, the Rockwell Automation company applied
agents to control manufacturing production [19]. The MAS
is implemented with real-time control agents, and also the
information transfer among the software agents takes place
in real-time, using a Programmable Logic Controller. A MAS
for the simulation of the environment for material handling
systems has been implemented in Jade. Finally, [7] describes
a model for managing faults in industrial processes. The
model is based on a generic framework that uses MASs for
distributed control systems; the system manages faults with
feedback control process and decides about the scheduling of
the preventive maintenance tasks, also running preventive and
corrective specific maintenance tasks.

Our project, although similar in its purposes to other ap-
plications developed in the past, demonstrates an increased
industrial interest and trust in both agent-based and rule-



based technologies. To the best of our understanding only few
proposals of using rule-based agents led to the development
of a MAS prototype used inside an industry ([12], [26]). The
industrial strength system described in [19], despite not using
rule-based technologies, shares with our project the choice of
Jade as the agent middleware.

In 2004, the Agent Technology Roadmap: Overview and
Consultation Report observed that “One of the most funda-
mental obstacles to the take-up of agent technology is the
lack of mature software development methodologies for agent-
based systems.”. According to the experience of DISI and
Ansaldo, agent tools, languages (rule-based ones in particular),
and methodologies are today mature enough to be adopted by
the industry. Although the competencies on how to exploit
them are still missing in many companies, companies now
know that agents exist, believe in their usefulness for coping
with the complexity of open, distributed, dynamic applications,
and are more and more keen on integrating them into their
projects. The role of academia in providing a good support
during the design and implementation of MASs for real appli-
cations is a key factor in the take-off of the agent technology,
and the joint DISI-Ansaldo project discussed in this paper
represents a success story in this direction.
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