
Towards filling the gap between AOSE
methodologies and infrastructures:

requirements and meta-model
Fabiano Dalpiaz∗, Ambra Molesini†, Mariachiara Puviani‡ and Valeria Seidita§

∗Dipartimento di Ingegneria e Scienza dell’Informazione
Università di Trento

Email: dalpiaz@disi.unitn.it
†Dipartimento di Elettronica, Informatica e Sistemistica

Università di Bologna
ambra.molesini@unibo.it

‡Dipartimento di Ingegneria dell’Informazione
Università di Modena e Reggio Emilia

mariachiara.puviani@unimore.it
§Computer Science and Artificial Intelligence Laboratory

Università degli Studi di Palermo
seidita@dinfo.unipa.it

Abstract—Many different methodologies have been proposed
in Agent Oriented Software Engineering (AOSE) literature, and
the concepts they rely on are different from those adopted when
implementing the system. This conceptual gap often creates
inconsistencies between specifications and implementation. We
propose a metamodel-based approach that aims to bridge this
gap, resulting in an integrated meta-model that merges the best
aspects of four relevant AOSE methodologies (GAIA, Tropos,
SODA and PASSI). The meta-model assembly followed a well-
defined process: for each methodology to be integrated in the
meta-model, we elicited the requirements, identified a set of
process fragments, thoroughly compared the concepts belonging
to the various fragments, and finally composed the meta-model.

I. INTRODUCTION

The trend towards agent-oriented software engineering
(AOSE) is motivated by the need for a new engineering
paradigm to face the increasing complexity and openness of
computational systems. Object-oriented software engineering
is adequate for the development of a variety of systems, but it
falls short when applied to the development of open complex
systems. This class of systems introduces the need for a
new computing paradigm based on distributed intelligent units
– agents –, whose characteristics are intrinsically different
from objects [1]. This paradigmatic shift involves both the
conceptual and the technical levels of the development cycle,
ranging from the requirements analysis to the implementa-
tion and the deployment over an infrastructure. The work
we present here is in the context of the “Methodologies
for the Engineering of complex Software systems: Agent-
based approach” (MEnSA) project1, which aims at filling the

1http://www.mensa-project.org

conceptual gap between AOSE methodologies and multi-agent
systems (MAS) infrastructures.

This gap is well known: Molesini et al. [2] examined this
problem and proposed a case study concerning the SODA
methodology [3]. Integrating an AOSE methodology with
a MAS infrastructure requires to compare and relate the
concepts, to provide a set of methodological guidelines, and
to introduce a set of new concepts acting as a glue to make
the integration successful. This task is not trivial, and one of
the main reasons that make it complex is the difference in
perspectives of methodologies and infrastructures developers.
AOSE methodologies follow a top-down approach starting
from a real world problem and moving towards a solution
(the architecture of a MAS); thus, the concepts and techniques
developed are mainly suitable for the use at analysis and design
phases. On the other hand, the developers of MAS infras-
tructures follow a bottom-up approach starting from already
existing programming paradigms, often an object-oriented one,
and build upon it to form higher level programming constructs
that make the development of the agent-based software easier.

MEnSA’s “filling the gap” objective requires a complex
process, made up of several sub-tasks, whose common element
is the usage of a meta-model approach, and will ultimately
produce an integrated methodology. This paper is focused on
the work we have done concerning the integration of a number
of AOSE methodologies; the integration of infrastructures is
ongoing, and it will be presented in future publications. The
AOSE methodologies taken into consideration by MEnSA are
GAIA [4], Tropos [5], SODA [2], and PASSI [6]: they mainly
differ in the typical scenarios they are designed to support, and
in the phases they better cover. For instance, Tropos exploits
a well established technique for requirements analysis (goal



modeling), SODA provides an exhaustive characterization of
the environment, PASSI has an extensive coverage of the im-
plementation phase, and GAIA is well suited for the modeling
of organizational aspects.

Our approach is founded on the work done by Cossentino
et al. [7], [8] and starts from the definition of a set of require-
ments for the meta-model we want to assembly. Then, we
elicit a set of fragments fulfilling the identified requirements,
define a semantic conceptual map to precisely relate concepts
belonging to various methodologies, and finally compose the
fragments into an integrated meta-model.

This paper is structured as follows: Section II discusses
the requirements we identified to lead the assembly of the
meta-model; Section III describes the selected fragments and
presents the conceptual map to compare the methodologies;
Section IV focuses on the meta-model, describing the current
version of meta-model; Section V terminates the paper by
proposing conclusions and future work.

II. REQUIREMENTS AND PRINCIPLES FOR ASSEMBLING
THE META-MODEL

In order to obtain a good meta-model – and a good
methodology – we followed a path similar to that adopted
in the engineering of a (software) system and proposed in [7],
[9]. After defining the requirements for our product (the meta-
model), we identified the fragments that better contribute to
the satisfaction of the requirements.

In this section we illustrate how the integrated meta-model
was conceived (Section II-A), and describe the requirements
that led to a new methodology (Section II-B).

A. Assembling a meta-model

A meta-model describes the structure of all the elements that
should be designed when following a specific methodology.
Relationships between elements have specific meanings, and
they should reflect the phases in the methodology. Different
methodologies are built according to specific design philoso-
phies, and comparing their meta-models is not a trivial task:
often, the described concepts and relationships share the name
but have different semantics.

Previous experiences in meta-models creation (e.g., [8], [9])
made it clear that this activity is much more than the mere
selection and composition of concepts from the existing meta-
models. Different composition patterns can be encountered:

1) selected elements from existing meta-models present
the same name but have different meanings. This is
the most common and difficult situation to be faced; a
deep analysis of the collected elements has to be done,
possibly some new elements have to be introduced, some
others have to be modified in order to fill the presented
differences;

2) selected elements have the same meaning but different
names (the opposite of the previous case): renaming
some elements is necessary;

3) all the selected elements present totally disjoint names
and definitions, requiring just a simple composition; this

is the best situation we could encounter, though the most
unusual.

Given the consistency and coherence problems enumerated
above, an integrated meta-model normally needs to be com-
pleted by concepts and relations acting as glue, introduced to
ensure the important features of the original methodologies are
not lost. After a sufficient refinement of the meta-model, it is
possible to start the new methodology definition by assembling
a set of selected process fragments according to the chosen
life-cycle. If the selected fragments do not completely cover
all the life-cycle phases and the requirements, new fragments
will be selected, modified (if needed) and added.

B. The methodology requirements

The definition of a new methodology has to start by speci-
fying the requirements to be satisfied. For the construction of
a new integrated methodology, we decided to start from the
requirements, choose the more suitable fragments belonging
to existing methodologies, and assemble them in a proper
way. The evaluation of the resulting integrated methodology
is the verification of the extent to which the requirements are
satisfied.

Now we list and describe the requirements and sub-
requirements for our integrated AOSE methodology:

1) Fill the gap between design and implementation:
a) Transformational approach from requirements elic-

itation to design and implementation, which refines
high-level abstractions into low-level more con-
crete entities.

b) Support for traceability: the path from each re-
quirement to the corresponding source code should
be clear and easy to identify.

c) Powerful abstractions during the design phase are
needed to provide an appropriate design of the
system; they should be close to the infrastructure-
level abstractions, but attention should be paid to
avoid too fine-grained designs.

2) Good requirements elicitation and analysis:
a) Support for both functional and non-functional

requirements.
b) Support for both goal-oriented and functional-

oriented analysis.
3) Different abstractions in the different phases should

make the comprehension of the design process easier.
4) Enabling an easy transition towards the new method-

ology for designers who are expert with one or more of
the input methodologies.

5) Precise and compact modeling constructs for the
concept of agency:

i Agent: the definition of what an agent is and what
it is supposed to do during its lifetime.

ii Agent’s rationale: the rationale an agent follows to
achieve its objectives, that is the general reasoning
principles leading the agent’s behavior.



iii Situated agents: the environment where agents live
requires an explicit representation throughout the
whole methodology.

iv Social agents: agent-to-agent and agent-to-
environment interactions are essential to engineer
a multi-agent system.

Considering these requirements we started the analysis
of the four selected methodologies (Tropos, Gaia, SODA,
and PASSI), and we discovered more specific and detailed
requirements. These requirements are listed below:

1) Transformational process: this need comes from re-
quirements 1 and 3. The model-driven engineering
paradigm [10] will be therefore adopted. Transforma-
tions between the elements of different domains should
be clearly defined. For example, the notion of agent
exists in different development phases and methodolo-
gies with (slightly) different meanings. Following a
transformational approach, we can define several types
of agent (requirements agent, design agent, . . . ), and
define the way a certain agent transforms (or refines)
into another one.

2) Layering: the management of different abstraction lev-
els simplifies the design (requirements 1 and 3). SODA
supports layering by means of the zooming and projec-
tion mechanisms. Zooming makes it possible to pass
from an abstract layer to another, while projection
projects the entities of a layer into another [3].

3) Goal-oriented analysis should be performed before
functional-oriented analysis. The latter should start
from results of the former. The goal-oriented analysis
stands as a basis for Tropos, where agents are defined
in terms of the functional and non-functional goals they
want to achieve. Functional-oriented analysis is then
used by eliciting the tasks to be executed to achieve
the goals.

4) Interaction:
a) Agent interactions should support semantic com-

munications for removing or minimizing the am-
biguity of messages contents.

b) An ontology should be used to model agent knowl-
edge in order to provide a conceptual background
to all the agents belonging to a MAS.

c) Compliance with FIPA ACL (Agent Communica-
tion Language) [11] specifications at the commu-
nication level is necessary.

d) Agent interactions with the environment should be
explicitly modeled.

e) Indirect interactions (e.g., blackboard-based)
should be supported.

5) Organizational rules proved to be a useful approach
for modeling some social aspects. Gaia and SODA are
examples of methodologies based on (organizational)
rules to constrain and direct the agents behaviors.

6) Environment and topology modeling can be done
by adopting abstractions like SODA’s artifacts and

workspaces in order to explicitly distinguish between
active entities (agents) and passive entities (artifacts),
and for organizing the conceptual places – workspaces
– structuring the environment.

7) Non-functional requirements should be explicitly
modeled (requirement 2). Tropos is the first AOSE
methodology supporting explicit modeling of non-
functional requirements, through the concept of soft-
goals.

8) Agent plans should be modeled but they should not
constrain the agent architecture to a specific kind of
agent. In other words, the methodology should provide
an abstract representation of plans, which can be realized
into several implementations.

III. SELECTED FRAGMENTS AND CONCEPTUAL MAP

The starting point for the meta-model creation is the re-
quirements we described in the previous section. Given this,
the approach we used to devise a meta-model is the following.
• Firstly, we have derived a set of fragments (Section III-A)

satisfying the requirements identified in Section II. These
fragments represent the core of the meta-model, which
should be analyzed and refined in order to provide a better
integration of the fragments.

• Secondly, we built a glossary of terms relevant to the
fragments identified in Section III-A. For space reasons
the dictionary is not reported here and it can be found
in [12].

• Then, based on the glossary, in Section III-B we defined
a conceptual map of terms, identifying synonyms and
similar terms, and pointing out existing conflicts.

• Finally, on the basis of all the previous work, we defined
the first version of the meta-model in Section IV.

A. Selected fragments

Each of the studied methodologies has some strong points,
and should give a significant contribution to formulate the
final MEnSA methodology. Here we list the coarse-grained
fragments we have initially chosen from each methodology,
which we extracted from the FIPA TC repository of fragments
[13]:

1) Tropos
a) Early requirements phase:

i) Organization description.
ii) Analysis.

b) Late requirements phase:
i) System identification.

ii) Environment description.
2) Gaia

a) Analysis phase:
i) System roles identification.

ii) Role model elaboration.
b) Design phase:

i) Service model development.



3) SODA
a) Architectural Design:

i) MAS Organisational model.
b) Detailed Design:

i) MAS Interaction model.
c) Environment model.

4) PASSI
a) Agent Society:

i) Domain Ontology design.
ii) Communication Ontology description.

b) Agent Implementation:
i) Multi-agent system design.

c) System Requirement:
i) Agent Identification.

B. Linking methodologies: a conceptual map

In order to propose an integrated meta-model, we built a
conceptual map for eliciting synonyms (or, at least, similar
concepts), and inter-level relations between concepts used at
different abstraction levels. The conceptual map has been built
on the basis of the MEnSA glossary [12], which has provided a
complete and accurate semantic matching schema connecting
the fragments’ abstractions.

The conceptual map is shown in Figure 1; we used different
colors to depict concepts belonging to fragments coming from
distinct meta-models. The concepts are tied by two types of
graphical links that represent two different relationships:
• non-directed links represent horizontal relations, which

relate two concepts that are “synonyms”. Identifying con-
cepts sharing the same definition is very unlikely, and the
resulting integration would be loose and nearly useless.
Therefore we decided to extend the equivalence relation
to include those concepts having a similar definition and
whose usage in practice is equivalent. Horizontal relations
(h) are not transitive: h(c1, c2)∧ h(c1, c3) 9 h(c2, c3) .

• directed links point out vertical relations, which create
“inter-level” links (top-down) between concepts belong-
ing to different abstraction levels. We define abstraction
as the development phase a concept belong to. Since
we use h-relations to express similarity (and not only
sameness), h(c1, c2) ∧ v(c1, c3) 9 v(c2, c3).

In order to explain the conceptual map, in Figure 1 we have
organized the different relations among concepts in various
labeled sets. So, the first diagram chunk (a) concerns non-
agentive concepts, which are typically in the system-to-be
together with the agents. The Tropos concept Resource is hori-
zontally linked to Function and Legacy System in SODA: more
precisely, the former SODA concept is almost equivalent to
Tropos resource, whereas the latter is linked because a legacy
system defines a set of resources that should be modeled.

Aggregation of agents is examined in (b): Gaia Organization
is a very high-level view of a set of agents (analysis phase),
which is vertically linked to the lower-level concept Society
of SODA (detailed design). These concepts are useful to

Fig. 1. Conceptual map linking concepts of different methodologies.

support the multi-level definition of the MEnSA meta-model,
providing two related abstractions at different levels.

Requirements are considered in (c): Tropos Goal and Soft-
goal are horizontally linked to PASSI Requirement, the latter
representing either a functional or a non-functional require-
ment.

Sociality of agents is represented in chunk (d). In this
particular case, we have been able to point out a well
defined hierarchical structure connecting the four examined
methodologies. Tropos Dependency is used to depict linked
actors justifying the reason why they depend on each other
(for a goal, a task, or a resource); dependencies are defined
during requirements analysis, and in our map they are verti-
cally connected to PASSI Communication, which is a design-
time concept defining an abstract interaction between two
agents. We achieve a lower level of abstraction by linking
communication to the Gaia Protocol, which defines the way
in which roles interact with each other. Protocol is linked to
an even lower level to the SODA Speaks To, which refers to
the act of interaction between agents. It is worth noting that
these concepts refer to different types of entity: a dependency
involves actors, a communication is between agents, a protocol
involves roles, a speaks-to is an atomic interaction act between
agents. The meta-model and the derived methodology will
handle this heterogeneity by defining exactly where these
concepts apply.

Another interesting topic is that related to tasks and services



(e). Tropos Task is vertically connected to PASSI Implemen-
tation Platform Task, the latter being an implementation-level
realization of the former (which stands at requirements level).
Tropos Task is horizontally linked to PASSI Task. PASSI Ser-
vice has a definition which is very similar to Gaia Service, and
hence these two concepts are horizontally linked, providing an
abstraction during the design phase. PASSI Task is vertically
linked to Gaia Service. Gaia Activity is horizontally linked
both to Tropos and PASSI Task. From these relations, we can
derive a top-down relationship between task (or activity) and
service, the former being higher level than the latter.

A crucial part of the conceptual map is the one related
to agents, actors, and roles (f), because these are the active
entities that glue all the other concepts together. Tropos Agent
is horizontally linked to PASSI Agent, for they are both repre-
sentations of the same concept. Another horizontal relation is
between Tropos and PASSI Actor. Moreover, Tropos Actor is
horizontally linked to PASSI Agent. These four concepts are
not synonymous, but they are at the same level of abstraction.
A third couple of horizontally linked concepts is Gaia and
Tropos Role, with a further horizontal relation between Tropos
Agent and Gaia Role. There is a vertical relation between
Tropos agent and PASSI Implementation Platform Agent.
This diagram chunk is not very precise: many relations have
been identified, but during the meta-model and methodology
definition we will have to make some choices and define the
selected concepts in a more precise way.

Constraints are an important aspect in multi-agents systems,
and our conceptual map contains some related entities and
relations in (g). SODA Rule is a general design-time concept
for regulating agents and their interaction with the environment
they live in. Gaia Permission and Organizational Rule are
analysis-level concepts which define the organization in terms
of rules and permissions, and are linked vertically to SODA
Rule.

The last part of the diagram (h) mainly involves the usage of
entities by agents. SODA Uses is intended to depict a kind of
interaction between an agent and an artifact, whereas Tropos
Means-end is a higher-level abstraction of this behavior, where
there is an intentional relation between a goal (or task)
and a resource: the latter is the means to achieve the end
(the goal or the task). PASSI Action is vertically linked to
Use, whereas PASSI Concept is horizontally linked to SODA
Topology, since a topology is defined in terms of the concepts
constituting and regulating it.

IV. MENSA META-MODEL: A PRELIMINARY VERSION

Starting from the MEnSA glossary and the conceptual map
linking concepts of different methodologies, we have created
a first version of the MEnSA meta-model. This initial effort
is restricted to the phases of requirements and design; the
layering is coarse grained, and implementation-level concepts
are just sketched. The meta-model we present here slightly
refines the initial version described in MEnSA deliverable
1.2 [12].

The key notions around which all the other elements are
placed, are role and agent, which are building blocks for
several AOSE methodologies. The meta-model is presented
in Figure 2, and we describe it in the next two sub-sections,
which refer to (1) requirements phase, and (2) design and
implementation phases of the meta-model. The term “phase” is
here used in order to represent the logical connection between
the three main software process engineering phases and the
meta-model elements a designer instantiates while developing
each phase.

A. Requirements phase

The requirements phase is mainly based on the fragments
of Tropos and Gaia, with some concepts coming from SODA
(environment-related), and ontological aspects extracted from
PASSI. The meaning of the presented concepts and relations
derives from the corresponding methodologies, unless we
specified otherwise in the description.

The main notion in the requirements phase in MEnSA meta-
model is that of Requirements Agent, which is defined in terms
of the concepts it connects to (through association links). A
requirements agent plays one or more Roles, and knows an
Ontology. The concept of Role is defined as Tropos’ role plus
Gaia’s rules and permissions, whereas Ontology comes from
PASSI. An Organization (Gaia) is composed of a set of agents
(made of relation between Organization and Requirements
Agent), and has a set of Organizational rules (Gaia) which
define the regulations of the Organization. Every Role adheres
to the Organizational rules of the Organization where the agent
playing that Role lives.

The element Ontology is specified in a slightly different
way from PASSI’s definition, because we support here a
refinement process of the ontology in different development
phases. At requirements time, the Ontology is made of a set of
Requirements Concepts, which can be hierarchically organized
(self-transition). This is a coarse-grained representation of an
ontology, which will be refined at design-time.

Each Role is responsible for one or more Requirements
(equivalent to Tropos’ abstract goal), and each Requirement
can belong to more than one Role. Requirement is specialized
(concretized) into Goal (hard-goal in Tropos) and NFR (Non-
Functional Requirement) (soft-goal in Tropos). A Goal can be
and/or-decomposed into a set of sub-goals, contribute to Non-
Functional Requirements, and can be means-end decomposed.
The means to achieve a Goal can be either a Resource (in the
Tropos sense, which corresponds to SODA Function) or an
Activity (in Gaia glossary, but we showed this it is horizontally
linked to Tropos and PASSI task). Activities, like Goals,
contribute to the satisfaction of Non-Functional Requirements,
and can be refined through and/or decomposition. Resources
can be viewed as means to carry out an Activity, in the same
manner they are used to achieve Goals.

Another important concept in the requirements phase is that
of Dependency: this notion is taken from Tropos, and connects
a depender role to a dependee role for a certain Dependum
(the object of the dependency). A Dependum can be either a



Fig. 2. First version of the MEnSA meta-model.

Goal (the depender wants the dependee to fulfill that Goal),
an Activity (the depender wants the dependee to execute an
activity), or a Resource (the depender wants the dependee to
provide a Resource).

A Role is defined also by expressing which Permissions
it has on certain Resources. This enables the definition of
constraints on the usage of/access to resources.

A Requirement has a relation map to with SODA Topology,
because the achievement of that requirement depends on the
topology definition. The concept of Legacy System (SODA)
map to a topology, as well.

B. Design and implementation phases

In these phases an additional modeling construct is used to
define elements, that is the realization links between concepts
at different abstraction layers, which define the inter-layer
relationships that ensure connections between the various
phases.

The concept Design Agent realizes the Requirements Agent,
and is defined in terms of the associations with other design-
time entities. In the context of communication, it has a set
of Communications active at a certain time (zero or more);
every Communication follows a Protocol, that is the set of

rules that govern the interaction between agents. The Protocol
is in turn composed by a number of Speaks To elements,
which are the elementary (atomic) communication actions,
involving two different Design Agents through the association
participates. A Communication is a top-down realization of
Dependency, implementing in the meta-model the vertical link
of the conceptual map of Figure 1. Moreover, communication
is connected to the abstract class Ontology Element, which
is made concrete by Action, Predicate, and Design concept.
Action and Predicate are connected to Design Concept, as
prescribed by PASSI. The difference between PASSI’s repre-
sentation of Ontologies and our specification is in the realiza-
tion of the requirements concept into a design concept, which
enables a refinement of the Ontology during the development
cycle. Ontology concept has an incoming association from
Design Agent labeled knows, which represents the ontological
knowledge of an agent.

The Design Agent provides a number of Services, which are
design-time realizations of the requirement-level concept Ac-
tivity. The second realization of Activity is the concept of Plan,
which is a common design-time construct to define the behav-
ior of an agent. An Agent also perceives a Workspace, which
realizes Topology, and can be connected to other Topology



entities. A Workspace can be connected to other workspaces.
Design Agents use a set of Artifacts, which in turn expose
their interface (manifests relation between Artifact and Design
Agent). Artifacts are the realization of the requirements-time
concept Resource. The relation between agents and Artifacts
comes from SODA, and it is very important to connect active
entities to passive entities in the system. Following SODA
meta-model, an Artifact provides one or more Operations, can
links to other Artifacts, and is allocated to a Workspace.

Composition is another concept derived from SODA: here
it is intended as a design-time realization of Organization.
Composition is made of Design Agents and Artifacts, and
is specialized by Society (a collection of agents and artifacts
exhibiting proactive behavior) and Aggregate (which exhibits
a functional behavior).

The concept of Rule is quite important at design-time,
for it allows constraining a number of other entities. It is
a realization of both Organizational rule, Permission, and
Topology; this way it enables control over disparate concerns
in the multi-agent system. The concept of Rule is linked, via
the association constrains, to many other concepts: it governs
the Communication between agents, puts constraints on the
Design Agent behavior, is encoded into Artifacts to define how
they can be used and accessed, constrains both the Services
provided and the Plans executed by the agents, and regulates
the Workspace where Artifacts are located.

We did not put emphasis to the implementation phase
here, because we believe that the definition of this meta-
model part will be much easier when infrastructures come into
place, providing the suitable abstractions to model this phase.
From the methodologies we introduce just two realization:
Design Agent into the Implementation Agent, and Service into
Implementation Task, both coming from PASSI.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented an initial version of an
integrated agent-oriented meta-model which aims at being the
basis for the creation of a new agent-oriented methodology
integrated with MAS infrastructures through a well interrelated
set of phases from requirements to implementation. The basis
of the meta-model are the fragments selected from the four
AOSE methodologies: Gaia, PASSI, SODA and Tropos.

The process we followed for defining the meta-model starts
from the identification of the requirements for the target
methodology. These requirements helped in the selection of
a list of fragments from the four considered methodologies.
The next two steps were the construction of a glossary, and the
definition of a conceptual map of methodologies abstractions.
This map was built to reflect the relations of similarity (at
the same level of abstraction, that is at the same development
phase) and realization (in the form of “requirements concept
X is realized by design concept Y”) among the abstractions
adopted by each considered methodology.

The most immediate work direction is the definition of the
meta-model’s implementation phase, extracted from a set of

MAS infrastructures. This will likely be done by adopting the
process presented in Section II.

In addition, the meta-model will certainly be refined as
a result of the work on the methodological aspects and the
validation phase over a case study.

Another aspect to be considered for refining the presented
meta-model concerns the meta-model structure: in the current
version we have only two development phases that seem too
coarse-grained. We will refine the meta-model splitting the two
phases into different and more detailed sub-phases, e.g., the
requirements analysis phase could be split into early and late
requirements.

All these directions will lead to the creation of the MEnSA
methodology, which will be based on the meta-model intro-
duced here. In addition, during the definition of the methodol-
ogy there will be bidirectional feedbacks between the method-
ology and the meta-model in order to refine again the meta-
model.

ACKNOWLEDGEMENTS

Part of this work makes use of results produced by the
MEnSA project (PRIN 2006) and by the PI2S2 Project man-
aged by the Consorzio COMETA (PON 2000-2006).

REFERENCES

[1] N. R. Jennings, “On agent-based software engineering,” Artif. Intell.,
vol. 117, no. 2, pp. 277–296, 2000.

[2] A. Molesini, E. Denti, and A. Omicini, “From AO methodologies to
MAS infrastructures: The SODA case study,” in Engineering Societies
in the Agents World VIII, ser. LNAI, A. Artikis, G. O’Hare, K. Stathis,
and G. Vouros, Eds. Springer, 2008, vol. 4995, pp. 300–317, 8th
International Workshop (ESAW’07), 22–24 Oct. 2007, Athens, Greece.

[3] A. Molesini, A. Omicini, E. Denti, and A. Ricci, “SODA: A roadmap
to artefacts,” in Proc. of the 6th International Workshop (ESAW 2005),
Kuşadası, Aydın, Turkey, 26–28 Oct. 2005. Revised, Selected & Invited
Papers, O. Dikenelli, M.-P. Gleizes, and A. Ricci, Eds., 2006, pp. 49–62.

[4] F. Zambonelli, N. R. Jennings, and M. Wooldridge, “Developing Multi-
agent Systems: the Gaia Methodology,” ACM Transactions on Software
Engineering and Methodology, vol. 12, no. 3, pp. 417–470, 2003.

[5] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini,
“Tropos: An agent-oriented software development methodology,” Au-
tonomous Agent and Multi-Agent Systems (8), vol. 3, pp. 203–236, 2004.

[6] M. Cossentino, “From requirements to code with the PASSI method-
ology,” in Agent Oriented Methodologies, B. Henderson-Sellers and
P. Giorgini, Eds. Hershey, PA, USA: Idea Group Publishing, Jun. 2005,
ch. IV, pp. 79–106.

[7] M. Cossentino, S. Gaglio, A. Garro, and V. Seidita, “Method fragments
for agent design methodologies: from standardisation to research,”
International Journal of Agent-Oriented Software Engineering, vol. 1,
no. 1, pp. 91–121, 2007.

[8] M. Cossentino, S. Gaglio, N. Gaud, V. Hilaire, A. Koukam, and V. Sei-
dita, “A MAS metamodel-driven approach to process composition,”
in Proceedings of The 9th International Workshop on Agent Oriented
Software Engineering (AOSE’08), M. Luck and J. Gómez-Sanz, Eds.,
Estoril, Portugal, 12–13 May 2008.

[9] V. Seidita, M. Cossentino, and S. Gaglio, “Adapting PASSI to support
a goal oriented approach: a situational method engineering experiment,”
in Proc. of the Fifth European workshop on Multi-Agent Systems
(EUMAS’07), 2007.

[10] S. Kent, “Model driven engineering,” in IFM, ser. Lecture Notes in
Computer Science, M. J. Butler, L. Petre, and K. Sere, Eds., vol. 2335.
Springer, 2002, pp. 286–298.

[11] FIPA, “Home page,” http://www.fipa.org/.
[12] MenSA Group, “Deliverable 1.2,” http://www.mensa-project.org/

request.php?41.
[13] FIPA Methodologies, “Home page,” http://www.pa.icar.cnr.it/

∼cossentino/FIPAmeth/.


