
Advancing Object-Oriented Standards Toward
Agent-Oriented Methodologies: SPEM 2.0 on

SODA
Ambra Molesini∗, Elena Nardini†, Enrico Denti∗ and Andrea Omicini†

∗

Alma Mater Studiorum – Università di Bologna
Viale Risorgimento 2, 40136 Bologna, Italy

Email: {ambra.molesini, enrico.denti}@unibo.it
†

Alma Mater Studiorum – Università di Bologna a Cesena
Via Venezia 52, 47023 Cesena, Italy

Email: {elena.nardini, andrea.omicini}@unibo.it

Abstract—Building ad-hoc design processes and methodologies
has become a key challenge in Software Engineering, and several
efforts are being made for developing appropriate meta-models
both for methodologies and development processes. The Software
Process Engineering Meta-model (SPEM) – an OMG object-
oriented standard – is a natural candidate for representing,
comparing and reusing design processes in a uniform way.

In this paper we apply SPEM 2.0 to Agent-Oriented Software
Engineering methodologies, so as to assess its strengths and
limitations. To this end, we take the SODA methodology as a
significant case study, and compare the meta-model of its process
obtained from SPEM 2.0 with the former meta-model obtained
from SPEM 1.0.

I. INTRODUCTION

In the Software Engineering (SE) research field, several
efforts are underway for developing appropriate meta-models
for SE methodologies and processes. According to Cernuzzi et
al. [1], a Development Process is an ordered set of steps that
involve all the activities, constraints and resources required
to produce a specific output which satisfies a set of input
requirements. Typically, a process is composed of different
stages/phases in relation with each other: each stage/phase
identifies a portion of the work to be done, the resources to be
exploited and the constraints to be obeyed for that purpose.

The relation between methodologies and processes is well
studied in the literature: as pointed out in [1], methodologies
focus more explicitly on how an activity or task should be
performed in specific stages of the process, while processes
may also cover more general management aspects about who,
when, how much, etc.

Software development processes and methodologies have
always been described in suitable terms for developers [2]: in
fact, they talk about what tasks and techniques should be used,
what sort of lifecycle is appropriate, and how these process
elements should be organised in time and assigned to people.
These aspects are often described in a manual or book that the
project manager and his/her team of developers closely follow
[2]. However, such manuals are not suitable for the automatic

tools that typically support the designer’s work, such as CASE
tools that need specific rules for supporting methodologies and
processes—rules stating, for instance, that it is a nonsense to
put in a sequence two activities, three techniques and four
roles: these rules are usually captured by a meta-model.

Although it is possible to describe a methodology / process
without an explicit meta-model, formalising their underpinning
ideas is valuable for checking consistency, or when planning
extensions or modifications: there, meta-models can be ex-
ploited to check both the software development process and
the completeness and expressiveness of methodologies. More
generally, the relevance of meta-model becomes clear when
studying the completeness and the expressiveness of a method-
ology / process, and when comparing or integrating different
methodologies / processes together. For these reasons, research
efforts are being made to define unified meta-models, aimed
at representing the existing methodologies and processes in a
uniform way, so as to promote their mutual comparison, their
composition and reuse—this area is sometimes referred to as
Method Engineering [3], [4].

SPEM (Software Process Engineering Meta-model, [5]) is
one of the key references for this purpose: as it could be
expected, SPEM is conceived for an object-oriented context,
since most current methodologies adopt this paradigm as their
reference.

SPEM seems a natural candidate for representing the meta-
models of Software Engineering methodologies, both because
it is an OMG standard, and because it is based on formal
descriptions that can lead to consistent, comparable models:
so, an interesting challenge is to test its applicability to other,
non object-oriented Software Engineering domains. Despite
its origin in the object-oriented context, SPEM can be ap-
plied to the agent-oriented process quite naturally, since the
process of software development is mostly independent of the
computational paradigm adopted, and has essentially the same
phases in any methodology. However, AOSE methodologies
introduce a richer set of abstractions and mechanisms, which



naturally lead to a more articulated definition of the software
development process.

In a previous work [6] we explored the applicability of
SPEM to the Agent-Oriented Software Engineering (AOSE)
domain, whose abstractions and mechanisms are particularly
suited to the design and development of complex software
systems. There, we highlighted several limitations (briefly
recalled in Section IV), exploiting the SODA methodology
as a significant case study for stressing SPEM 1.0’s strengths
and weaknesses because of its focus on modelling the social
issues and the application environment, and its mechanisms
for capturing the layered structure of complex systems. Other
AOSE methodologies modelled by SPEM [7] apparently do
not suffer from such limitations (mainly because they do not
include some mechanisms, like the SODA layering which
is discussed below), so it seems quite difficult to determine
general metrics and criteria for assessing the SPEM meta-
modelling power.

So, in this paper we explore SPEM 2.0 by modelling the
SODA methodology process and comparing the results with
the previous ones—in particular, aiming to discover whether
and how the previous limitations have been addressed: in a
sense, to check whether the extension of the SPEM object-
oriented standard has gone farther in addressing the many
issues of agent-oriented methods and techniques.

Accordingly, the paper is structured as follows. Section II
briefly presents SPEM 2.0 and some considerations about the
adoption of SPEM in the AOSE field (Subsection II-A), while
Section III presents the corresponding SODA process. Then,
Section IV compares the meta-modelling power of SPEM 1.0
and SPEM 2.0, by taking the SODA process as its running
example. Conclusions are reported in Section V.

II. SPEM

SPEM is an OMG standard meta-model for formally defin-
ing software and systems development processes [5]. The
goal of SPEM 2.0 is not only to support the representation
of one specific development process ore the maintenance of
several unrelated processes, but to provide process engineers
with mechanisms to consistently and effectively manage whole
families of related processes promoting process reusability
[5]. To this end, its meta-model introduces a clear separa-
tion between reusable methods content and its application in
processes: the first item provides step-by-step explanations of
how the development goals are achieved, independently of the
placement of these steps within a development lifecycle; then,
processes take these methods content elements and relate them
into partially-ordered sequences that are customized to specific
types of projects.

More in detail, SPEM 2.0 is structured into seven packages:
Core, Process Structure, Process Behaviour, Manage Content,
Method Content, Process With Method, and Method Plugin.

The Core package defines the base classes and abstractions
for all other meta-model packages, while Process Structure
provides the base for creating flexible process models —
in particular, defining a process model as a breakdown or

decomposition of nested Activities, with the related Roles and
input / output Work Products. In addition, this package enables
process reuse by providing mechanisms such as dynamic
binding of process patterns (or capability patterns), which are
reusable best practices for quickly creating new development
processes.

The Process Behavior package supports the extension of the
static breakdown structure of a process by externally-defined
behaviour models. Manage Content, then, introduces the con-
cepts to document and manage development processes through
natural language description—indeed, practice of processes
techniques and methods often cannot be formalised, but can
only be expressed in natural language. In its turn, Method
Content makes it possible to build a reusable development
knowledge base which is independent of any specific devel-
opment process: in particular, this package comprises textual
step-by-step explanations, describing how specific fine-grain
development goals are achieved by which roles, with which
resources and results, independently of the placement of these
steps within a specific development lifecycle. Process With
Method provides what is needed to integrate processes with
instances of Method Content concepts. Finally, the Method
Plugin package introduces concepts for ‘designing’ and man-
aging maintainable, large scale, reusable, and configurable
libraries or repositories of method content and processes. In
the next Subsection we outline some of the main issues in the
use of SPEM in the AOSE context.

A. SPEM&AOSE

As introduced above, AOSE methodologies introduce a
richer set of abstractions and mechanisms then OO systems, so
the software development process is more articulated; in turn,
the wide range of peculiarities of each methodology makes it
difficult to define some general metrics and criteria for SPEM
testing and evaluation.

Yet, some points can be put in evidence. First, each process
and subprocess resulting from methodology representation
should be reasonably clear and easy to understand, since
failing to do so would make the SPEM representation itself
little useful. SPEM’s separation between Method Contents
and Processes is a natural candidate to support this aspect,
although the limited set of symbols offered by SPEM might
lead to difficulties in representing elements or state changes.
Second, since most methodologies exploit some iterative /
incremental processes, the SPEM representation should be
able to support such aspect. Third, since methodologies for
complex systems typically include conceptual mechanisms
for complexity management (such as some form of in/out
zooming, the ability to view the system by levels at different
abstraction levels, etc), some support should be provided by
SPEM in order to capture such aspects in a satisfactory way.

In the following section we will try to exploit SODA as a
testbed for evaluating SPEM 2.0’s expressiveness with respect
to such issues.



III. THE SODA PROCESS

SODA (Societies in Open and Distributed Agent spaces)
[8], [9] is an agent-oriented methodology for the analysis and
design of agent-based systems, which adopts the Agents &
Artifacts meta-model (A&A) [10], and introduces a layering
principle as an effective tool for scaling with the system com-
plexity, applied throughout the analysis and design process.

SODA abstractions are logically divided into three cate-
gories: i) the abstractions for modelling/designing the system’s
active part (task, role, agent, etc.); ii) those for the reactive part
(function, resource, artifact, etc.); and iii) those for interaction
and organisational rules (relation, dependency, interaction,
rule, etc.). In its turn, the SODA process is organised in
two phases (Figure 1), each structured in two sub-phases:
the Analysis phase, which includes the Requirements Analysis
and the Analysis steps, and the Design phase, including the
Architectural Design and the Detailed Design steps. Each sub-
phase models (designs) the system exploiting a subset of the
SODA abstractions: in particular, each subset always includes
at least one abstraction for each of the above categories—that
is, at least one abstraction for the system’s active part, one for
the reactive part, and another for interaction and organisational
rules.

In order to represent the whole SODA process in a simple
yet effective way, we exploited SPEM’s separation between
Method Contents and Processes (Section II): first, we modelled
each sub-phase as a separate and independent Method Content,
then we defined a specific process for each sub-phase – see
Figures 3, 4, 5 and 6 for details – and re-used these processes
to create the whole SODA process presented in Figure 1. In
this way the whole process is reasonably easy to understand,
since each sub-phase in the Activity Diagram is depicted as a
simple activity, hiding the internal complexity of that process
portion.

In addition, since the SODA process (Figure 1) is iterative
and incremental, each step can be repeated several times, by
suitably exploiting the layering principle: so, for instance,
if, during the Analysis step, the System Analyst – one of
the roles involved in the SODA process – recognises some
omissions or lacks in the requirements’ definition, he/she can
restart the Requirements Analysis step adding a new layer
in the system or selecting a specific layer and then refining
it. Analogous considerations could be made for both the
Architectural Design step – where the Analysis step can be
restarted from the layering – and the Detailed Design step—
which leads to restart the Architectural Design step.

The layering in Figure 1 is represented as a simply Activity
of the process: actually, it is a capability pattern (Section II),
i.e., a reusable portion of the process, as shown in Figure
2 where the layering process is detailed. In particular, the
layering presents two different functionalities: (i) the selection
of a specific layer for refining / completing the abstractions
models in the methodology process, and (ii) the creation of
a new layer in the system by in-zooming (i.e., increasing
the system detail) or out-zooming (i.e., increasing the system

Requirements Analysis

Analysis

Layering

Architectural Design

Layering

Detailed Design

Is the problem well specified?

no

Is the system well specified?

yes

yes no

Are there problems in the system?

yes

no

Fig. 1. Activity Diagrams of the whole SODA process.

abstraction) activities. In latter case, the layering process
terminates with the projection activity needed to project the
abstractions from one layer to another “as they are”, so as to
maintain the consistency in each layer.

The layering pattern is also used within sub-phases—except
in the Detailed Design, where the layering principle is, by
definition, not applicable. For instance, Figures 3, 4 and
5 report the sub-process of the Requirements Analysis, of
Analysis and of Architectural Design steps, respectively: the
layering activity is applied multiple times, both as a refinement
or layer selecting technique in the single models (activities)
– e.g., task layering, role layering, resource layering, space
layering interaction layering, etc. . . – and as a way for re-
starting the stage if some problems arise in the models or just
for triggerring a new iteration of the stage. In the following,
each sub-phase is presented in short.

a) Requirements Analysis.: Several abstract entities and
models are introduced for this purpose. Each model is repre-
sented in Figure 3 as an activity, related to the corresponding
Task in the Requirements Analysis Method Content. The latter
specifies the steps to be completed to achieve the task, as well
as the Workproducts to be produced—i.e., the SODA tables



In-zoom Out-zoom

Projection

Select Layer

increases detail increases abstraction

new layer?

no

yes

Fig. 2. Activity Diagram of the Layering Pattern.

describing the abstract entities of the Requirements Analy-
sis. During the Requirements modelling activity (Figure 3),
requirement and actor are used for modelling the customers’
requirements and the requirement sources, respectively, while
the external-environment notion is used as a container of
the legacy-systems that represent the legacy resources of
the environment in the Environment modelling activity. The
relationships between requirements and legacy systems are
modelled in the Relation modelling activity in terms of a
suitable relation.

Requirements modelling Environment modelling 

Relations modelling

Requirements layering Environment layering

Relations layering

Layering

another layer? another laye?

another layer?

yes

start

no

yes

no

yes

Are the models well specified?

yes
no

new iteration

Fig. 3. Activity Diagram of the Requirements Analysis step.

b) Analysis.: The first activity in the Analysis step is
Moving from Requirements (Figure 4), where the abstractions
identified in the previous step are mapped onto the abstractions
adopted in this stage to generate the initial version of the
Analysis models. In particular, the Analysis step expresses the
requirement representation in terms of more concrete entities
such as tasks and functions. Tasks are activities requiring
one or more competences and are analysed in the Task
analysis activity, while functions are reactive activities aimed
at supporting tasks analysed in the Function analysis activity.
The structure of the environment, analysed in the Topology
analysis activity, is also modelled in terms of topologies—
i.e., topological constraints over the environment. The relations
highlighted in the previous step are here the starting point for
the definition of dependencies among such abstract entities in
the Dependency analysis activity.

Moving from requirements

Task analysis Function analysis Topology analysis

Dependency analysis

Task layering
Function layering

Topology layering

Dependency layering

Layering

Layering

other layer? 

another layer?
another layer?

another layer?

another layer?

new iteration

no

yes

yes

 no

yes

no

yes

yes

no

no

Are the models well specified?

yes

Fig. 4. Activity Diagram of the Analysis step.

c) Architectural Design.: This stage (Figure 5) is one of
the more complex sub-phases in SODA. The first activity is
Transition (Figure 5), where the abstractions identified in the
previous step are mapped onto the abstractions adopted in this
stage so as to generate the initial version of the Architectural
Design models. The main goal is to assign responsibilities
for achieving tasks to roles – Role design activity – and for
providing functions to resources—Resource design activity.
In order to attain one or more tasks, a role should be able
to perform actions – Role design activity –; analogously, the



resource should be able to execute operations providing one
or more functions—Resource design activity. The topology
constraints lead to the definition of spaces, i.e., conceptual
places structuring the environment in the Space design activity.
Finally, the dependencies identified in the previous phase
become here interactions and rules. Interactions represent
the acts of the interaction among roles, among resources
and between roles and resources, and are designed in the
Interaction design activity; rules, instead, enable and bound the
entities’ behaviour and are designed in the Constraint design
activity.

Transition 

Role design Resource design

Space design

Interaction design

Constraint design

Role layering
Resource layering

Space layering

Interaction layering

Constraint layering

Layering

Layering

other layer?

another layer? another layer?

another layer?

another layer?

need another layer?

yes
yes

yes

yes

yes

new iteration

no

yesno

no
no

no

no

are all the models well specified?

yes

Fig. 5. Activity Diagram of the Architectural Design step.

d) Detailed Design.: The Detailed Design step (Figure 6)
is the only stage where the layering principle is not applicable,
since its goal is to choose the most adequate representation
level for each architectural entity, thus leading to depict
one (detailed) design from the several potential alternatives
architectures outlined in the previous step. So, as shown in
Figure 6, the first activity of this sub-process is Carving, which
represents a sort of boundary between the Architectural Design
and the Detailed Design, where the chosen system architecture
is “carved out” from all the possible architectures. We also
provide some SPEM’s Guidelines for performing the carving
activity properly. The next activity is Mapping (Figure 6),
where the carved abstractions are mapped onto the abstractions
adopted in this stage, thus generating the initial version of the
Detailed Design models. These models are expressed in terms

Carving

Mapping

Agent design Environment design Workspace design

Interactions design

noyes

is the system well specified?

Fig. 6. Activity Diagram of the Detailed Design step.

of agents, agent societies, composition, artifacts, aggregates
and workspaces for the abstract entities, while the interactions
are expressed by means of uses, manifests, speaks to and
links to concepts. More precisely, agents are intended here
as autonomous entities able to play several roles, while a
society can be seen as a group of interacting agents and
artifacts whose overall behaviour is essentially autonomous
and proactive: they are designed during the Agent design
activity. The resources identified in the previous step are here
mapped onto suitable artifacts, while aggregates are defined as
a group of interacting agents and artifacts whose overall be-
haviour is essentially functional and reactive: they are designed
during the Environment design activity. Workspaces take the
form of an open set of artifacts and agents: artifacts can be
dynamically added to or removed from workspaces, and agents
can dynamically enter (join) or exit workspaces. Workspaces
are designed in the Workspace design activity. Finally, the uses,
manifests, speaks to and links to concepts are designed during
the Interactions design activity.

IV. DISCUSSION

In [6], the SPEM 1.0 meta-modelling power was put to test
in the context of AOSE methodologies. There, SODA was
taken as a case study to assess the strengths and limitations
of SPEM, given its peculiar focus on the modelling and
engineering (i) social issues, (ii) application environments, and
(iii) complexity management—essential aspects for complex
software systems. In order to simplify the comparison among
the two versions of SPEM, Figure 7 reports the Activity
Diagram of the Architectural Design stage as it was modelled



in SPEM 1.0. Three major problems were put in evidence at
that time:

1) Activity Diagrams and abstractions did not easily cap-
ture the SODA layering principle: this is quite clear
in Figure 7, where layering is represented as a simply
activity and there is no way to detail the layering sub-
process without reporting in the Activity Diagram all the
layering sub-activities;

2) WorkProduct elements are characterised by a unique
symbol, which makes it difficult to model the state
changes of a WorkProduct during the process evolution
(Figure 7);

3) UML Diagrams often become unreadable due to the
too many elements required to represent a process: for
instance, Figure 7 shows how Activities, Roles, Inputs
and Workproducts are depicted in the same diagram.

(if exists)

(if exists)

(if exists)

(updated)

Fig. 7. Activity Diagram of the Architectural Design step (SPEM 1.0).

These limits depend on the fact that SPEM 1.0 does not offer
sufficient abstractions for effectively managing the representa-
tion complexity of articulated processes like those underpinned
by SODA. From this viewpoint, SPEM 2.0 seems to overcome
the limits of the previous version. In fact, the first issue is
now addressed by providing the capability pattern mechanism

(Section II) that makes it possible to represent a process
pattern as a single activity, hiding its internal structure. As
seen in Section III, such a pattern is suitable for modelling
the layering principle, and allows engineers to realise more
understandable and readable diagrams by hiding the process
complexity behind the Activity abstraction. So, the different
activities composing the Layering can now be detailed without
reporting them in the Activity Diagrams each time, leading to
a great simplification (compare Figures 5 and 7).

The second issue is addressed in SPEM 2.0 by extending
both the UML Activity Diagrams so as to represent the input
and output parameters of an Activity, and the UML State
Diagrams so as to annotate the State elements [5]. Such
extensions enable UML State Diagrams to model the lifecycle
of each WorkProduct, and relate each State element to the
corresponding Activity that causes the state change.1 This
makes it unnecessary to represent the Workproducts inside the
Activities Diagrams as it was in SPEM 1.0.

The last issue is already partially addressed by the solution
adopted for the first issue, since capability patterns simplify
the Diagrams structure; in addition, as seen in Section II,
SPEM 2.0 introduces the concept of process reusability and
allows Method Contents to be defined independently of their
application in the development lifecycle. So, Method Contents
can be re-used by relating their elements into a process that is
customised for the specific type of project. As a result, each
UML Diagram is now more readable, as it can focus only on
a given portion of the Method Content / Process, and does not
contain all the “unusable” entities which are not related to the
considered portion of the meta-model.

In Section III, for instance, we defined a Method Content
for each SODA stage, relating them to the corresponding
processes. The Method Content defines the involved Roles,
the Tasks to be performed with the corresponding steps, the
Inputs and Workproducts, and the relation between the Inputs
/ Workproducts and Tasks; processes, in their turn, specify the
Activities responsible for the tasks achievement and their order
inside processes. The resulting Activities Diagrams in SPEM
1.0 and SPEM 2.0 for the Architectural Design stage are
shown in Figure 7 and 5, respectively: the latter appears more
readable, as it does not contain the Roles and Workproducts
that are not necessary in this Diagram.

Summing up, SPEM 2.0 seems to overcome the major
limits of its previous version, providing the right abstractions
and mechanisms to model articulated process like SODA’s,
perhaps finding its way in the AOSE context.

V. CONCLUSIONS AND FUTURE WORK

In this paper we took the SODA methodology as a case
study for testing the applicability of SPEM 2.0 to AOSE
methodologies. Moving from a previous work [6] where the
SODA process was modelled in SPEM 1.0, we explored here
whether SPEM 2.0 addressed the weaknesses and limits of ex-
pressiveness that had clearly emerged—mainly, the readability

1Example concerning WorkProduct elements are not reported here for
obvious limitations in space.



of UML diagrams, both for the intrinsic complexity of Agent-
Oriented methodologies, and for the lack of suitable ad-hoc
entities.

Our experience indicates that SPEM 2.0 addresses such lim-
its, by introducing a clear separation between Method Contents
and Processes, adding capability patterns, and making it possi-
ble to express the ties between the Workproducts’states and the
Activities that produce the changes in the Workproducts’states.
Our next plans include testing SPEM in other contexts such
as modelling the processes underpinned by MAS infrastruc-
tures, with the purpose of integrating AOSE methodologies
and MAS infrastructures according to the Situational Method
Engineering technique [11].

VI. ACKNOWLEDGEMENTS

This work has been supported by the MEnSA project
(Methodologies for the Engineering of complex software
Systems: Agent-based approach) funded by the Italian Min-
istry of University and Research (MUR) in the context of the
National Research ‘PRIN 2006’ call.

REFERENCES

[1] L. Cernuzzi, M. Cossentino, and F. Zambonelli, “Process models for
agent-based development,” Engineering Applications of Artificial Intel-
ligence, vol. 18, no. 2, pp. 205–222, March 2005.

[2] B. Henderson-Sellers and C. Gonzalez-Perez, “A comparison of four
process metamodels and the creation of a new generic standard,”
Information & Software Technology, vol. 47, no. 1, pp. 49–65, 2005.

[3] S. Brinkkemper, K. Lyytinen, and R. Welke, Method engineering:
Principles of method construction and tool support. Kluwer Academic
Publishers, 1996.

[4] J. Ralyté and C. Rolland, “An approach for method reengineering,”
in Conceptual Modeling. London, UK: Springer-Verlag, 2001, pp.
471–484, 20th International Conference (ER 2001), Yokohama,
Japan, 27-30 Nov. 2001. Proceedings. [Online]. Available:
http://www.springerlink.com/content/pbtbr52cwya7qyd4/

[5] Object Management Group, “Software & Systems
Process Engineering Meta-Model Specification 2.0,”
http://www.omg.org/spec/SPEM/2.0/PDF, Apr. 2008.

[6] E. Nardini, A. Molesini, A. Omicini, and E. Denti, “SPEM on test: the
SODA case study,” in 23th ACM Symposium on Applied Computing
(SAC 2008), R. L. Wainwright, H. M. Haddad, R. Menezes, and
M. Viroli, Eds., vol. 1. Fortaleza, Ceará, Brazil: ACM, 16–20 Mar.
2008, pp. 700–706, special Track on Software Engineering. [Online].
Available: http://portal.acm.org/citation.cfm?id=1363686.1363853

[7] IEEE-FIPA Methodology Working Group, “Home page,”
http://www.fipa.org/activities/methodology.html.
[Online]. Available: http://www.fipa.org/activities/methodology.html

[8] A. Molesini, A. Omicini, E. Denti, and A. Ricci, “SODA: A roadmap
to artefacts,” in Engineering Societies in the Agents World VI, ser.
LNAI, O. Dikenelli, M.-P. Gleizes, and A. Ricci, Eds. Springer,
Jun. 2006, vol. 3963, pp. 49–62, 6th Inter. Workshop (ESAW 2005),
Kuşadası, Aydın, Turkey, 26–28 Oct. 2005. Revised Paper. [Online].
Available: http://www.springerlink.com/link.asp?id=j68l84713542525p

[9] SODA, “Home page,” http://soda.apice.unibo.it. [Online].
Available: http://soda.apice.unibo.it

[10] A. Omicini, “Formal ReSpecT in the A&A perspective,” Electronic
Notes in Theoretical Computer Sciences, vol. 175, no. 2, pp. 97–
117, Jun. 2007, 5th Inter. Workshop on Foundations of Coordination
Languages and Software Architectures (FOCLASA’06), CONCUR’06,
Bonn, Germany, 31 Aug. 2006. Post-proceedings.

[11] M. Cossentino, S. Gaglio, N. Gaud, V. Hilaire, A. Koukam, and V. Sei-
dita, “A MAS metamodel-driven approach to process composition,” in
9th International Workshop on Agent Oriented Software Engineering
(AOSE’08), M. Luck and J. Gómez-Sanz, Eds., AAMAS 2009, Estoril,
Portugal, 12–13 May 2008.


