
Design and Development of Intentional Systems
with PRACTIONISTStudio

Angelo Marguglio∗, Giuseppe Cammarata∗, Susanna Bonura∗, Giuseppe Francaviglia∗

Michele Puccio∗, and Vito Morreale∗.
∗Intelligent Systemsunit - R&D Laboratory

ENGINEERING Ingegneria Informatica S.p.A.

Abstract— In this paper we present PRACTIONIST Studio,
which is an integrated design and development environment
for BDI agent-based systems, providing facilities and tools to
represent the concepts and intentional elements underlying such
a model as well as several common features offered by UML-
based tools.

PRACTIONIST Studio aims at bridging the gap between the
increasing trend of developing BDI-based multi-agent systems
and the availability of tools for their design. It supports de-
velopers from early requirements analysis to automatic code
generation.

More in detail, we first give an overview of the modelling edi-
tors provided with PRACTIONIST Studio. Then some fragments
of the modelling and development approach when applied to a
real-world implementation are presented. Such a complex system
is the PSTS (PRACTIONIST Stock Trading System), which is
aimed to monitor investors’ stock portfolio by managing risk
and profit and supporting decisions for on-line stock trading, on
the basis of investors’ trading rules and their risk attitude.

I. I NTRODUCTION

Recently the increasing complexity and the introduction of
new Web and networking technologies are making it difficult
for designers to entirely model systems and for operators
to handle effectively all unpredictable situations. The effort
of scientific communities is towards the building of systems
where interactions among components cannot be thoroughly
planned and anticipated.

In other words an open issue is to investigate the modelling
of systems where the collective behavior of their parts is
related to the emergence of properties that can hardly, if not
at all, be infered from properties of the parts. Aristotele stated
that ”The whole is more than the sum of its parts”; with this
assertion he had already, more than two thousand years ago,
defined what complex systems are.

Several authors (e.g. McCharty [1]) have argued that in
certain situations, the so-called intentional stance [2] of sys-
tems can aid to efficiently predict, explain, or define their
behaviour, without having to understand how they actually
work. Therefore, some systems may be better explained in
terms of mental qualities or attitudes, rather than in termsof
conventional physical phenomena or design artifacts, i.e.by
specifying the so-called intentional stance of systems.

In the context of the development of intentional systems,
the agent-oriented approach plays a central role, due to the
vast number of theories and models that have been developed
for twenty years. Moreover, with regards to complex systems,

Georgeff [3] asserts that”the notions of complexity and change
will have a major impact on the way we build computational
systems, and that software agents - in particular BDI agents
- provide the essential components necessary to cope with the
real world” .

The Belief-Desire-Intention (BDI) architecture [4] suggests
that the development of agents should rely on the specification
of some mental states, i.e. beliefs, desires, and intentions,
which are very intuitive for people to understand. Indeed,
beliefs represent information the agent has about the world;
desires represent state of affairs the agent wishes to bringabout
and intentions are desires that it has committed to achieving.

Although BDI model has become a very attractive approach
for dealing with the complexity of modern software appli-
cations, engineering such systems is still a challenge due to
the lack of effective tools and actual implementations of very
interesting and fascinating theories and models.

In past years we developed the PRACTONIST Framework
[5], which is a set of Java libraries to develop agent-based
systems according to the BDI model. PRACTIONIST adopts
a goal-oriented approach and a clear separation between the
deliberation and the means-ends reasoning, and consequently
between the states of affairs to pursue and the way to do
it. Moreover, PRACTIONIST allows developers to implement
agents able to reason about their beliefs and the other agents’
beliefs, expressed by modal logic formulas.

Due to the differences between the objects and agents [6],
design tools used to model object-oriented systems do not
represent the best way to design and develop agent-oriented
softwares, especially BDI agent systems. In addition, several
existing MAS modelling tools (e.g. INGENIAS Development
Kit [7]) suffer a too strong tie-up with specific methodologies
for the development of MAS. Moreover, some of them cover
well only a subset of development phases (e.g. TROPOS Tool
for Agent Oriented visual Modeling [8]). Other tools are sim-
ple prototypes and do provide a very limited assistance when
developing agents and their components. In practice, none of
them can be directly adopted (or extended) to design and
develop multi-agent systems according to the PRACTIONIST
model.

Thus we developed the PRACTIONISTStudio, which is
the novel visual environment to model, design and develop
PRACTIONIST-based systems. The PRACTIONISTStudio

has been developed by using several Eclipse1 plug-ins, such
as: UML2, Eclipse Modelling Framework (EMF), Graphical
Editing Framework (GEF), Graphical Modeling Framework
(GMF) and other Eclipse extensibility features. It supports the
representation of the concepts underlying the BDI model and
part of UML 2.0 meta-model as well as several features com-
mon to (commercial) well-known UML-based CASE tools,
such as unified underlying model for all diagrams within an
project, consistency check within diagrams, editing facilities
(e.g. cut and paste, unlimited undo and redo, and so forth).

In this paper we present an overview of the modelling
editors and facilities included in PRACTIONISTStudio, along
with some fragments of modelling and development of a real
system, i.e. the PSTS (PRACTIONIST Stock Trading System).

The paper is organized as follows: in section II we first
present the PSTS as a running example. Then we give an
overview of the PRACTIONIST suite (section III), while in
section IV PRACTIONISTStudio is described in details; in
section 4 some of the models of the PSTS developed with
PRACTIONIST Studio are shown, while in section 5 we
present how PRACTIONISTStudiohas supported the imple-
mentation of the PSTS. Finally, we point out our intended
future work and give some conclusions.

II. RUNNING EXAMPLE

Systems supporting stock markets’ operations and decisions
are an example of systems with a high complexity. Here
elementary building blocks can be individual traders, each
making buying and selling decisions from his/her own per-
spective.

It should be noted that systems for stock trading manage-
ment have been implemented by adopting agent technology
and related approaches. Among them, Wang et al. [9] have
presented a lightweight, distributed, intelligent agent-based
financial monitoring system that monitors and reports on trans-
actions within an organization. In such a prototype system,
the intelligent agents are assisted by a formal conceptual
model that makes up an unambiguous understanding of the
institution, the transactions, the instruments involved,and the
business processes.

In [10], Feng and Jo present a system, called AST (Agent-
based Stock Trader), which is a stock-trading expert based
on intelligent agents using the BDI model of agency. Finally,
Davis et al. [11] have designed a system around portfolio
management tasks that include eliciting user profiles, collect-
ing information on the users portfolio position, monitoring
the environment on behalf of the user, and making decision
suggestions to meet the users investment goals.

The existence of such implementations confirm that agent-
based systems can benefit the development of complex systems
even in critical fields such as financial and stock trading. For
this reason we chose to use such an application domain to
test and evaluate the PRACTIONISTStudioby designing the
PRACTIONIST Stock Trading System (PSTS), which is also
used as a running examble throughout the paper.

1http://www.eclipse.org/

Development Process

UML i* notation

PAML

PRACTIONIST Methodology

Eclipse

PRACTIONIST Studio

PRACTIONIST

Code Generator

PRACTIONIST Packages

Java
Prolog

(SWI, TuProlog)

PRACTIONIST Runtime & Framework

PAIT PAM

PRACTIONIST Modelling Editors

Fig. 1. PRACTIONIST Suite.

PSTS is a PRACTIONIST-based system, which is able to
monitor investors’ stocks portfolio, to monitor and manage
risks, to manage and optimize profit and to support decisions
regarding on-line stock trading, by taking into account in-
vestors’ trading preferences and rules (i.e. stop loss, stop profit,
profit target, tolerance, maximum budget to be inevested per
week) and their degree of willingness to risk.

III. PRACTIONIST SUITE

As stated above, in order to exploit the full potential offered
by the agent-oriented paradigm, and particularly the BDI
model, the support of efficient integrated development tools
and methodologies is required to produce real-world (and
sometime complex) software systems.

Our solution to this issue is PRACTIONIST (PRACTIcal
reasONIng sySTem), which is an integrated suite providing
the following tools (see Fig. 1):

• PRACTIONIST Methodology, including thePRACTION-
IST Agent Modelling Language (PAML), which is a UML-
based modelling language, and an iterative development
process;

• PRACTIONIST runtime and framework (PRF), which
provides the APIs to develop PRACTIONIST-based agent
systems by defining the execution logic and providing the
builtin components according to such a logic;

• PRACTIONIST Studio, a visual modelling, design and
development environment supporting the representation
and specification of the concepts underlying the BDI
model as well as several features present in other UML-
based tools.

The focus of this paper is on modelling facilities provided
by PRACTIONISTStudio, which is described in details in the
following sections, while in the remaining part of this section
an overview of the other two components of PRACTIONIST
is given.

A. Methodology

PRACTIONIST Methodology is based on an iterative and
incremental development process supporting developers from
early requirements analysis to coding, debugging and testing
of agents and artefacts (according to the A2A approach [12]).
It is the result of the following interacting tasks: (i) theoretical
analysis of requirements that similar processes should meet,

(ii) theoretical analysis of novel features introduced with
PRACTIONIST that need to be specified at the design time
and (iii) practical application of PRACTIONIST in real cases
as well as its integration with other technologies, such as Web
services.

It should be noted that the development process is still a
work in progress and our research is going towards the defi-
nition of a more general framework for process and software
engineers, with the aim of providing tools to define/customize
processes as well as full support to the usage of them during
development phases.

As an important part of our methodology, PAML is a UML-
based visual modelling language for specifying, modelling
and documenting BDI multi-agent systems. Its meta-model
contains general metaclasses to model intentional components
of BDI agents, such as beliefs, goals and relations among
them, plans and so forth. It also includes metaclasses specific
to PRACTIONIST and the development of related systems.

PAML extends the Agent modelling Language (AML)
[13], a semi-formal visual modelling language for specifying,
modelling and documenting systems that incorporate general
concepts drawn from the Multi-Agent Systems (MAS) theory.
AML can be used to build models that consist of autonomous
entities able to observe and interact with their environment
using complex interactions and aggregated services.

Thus rather than extending the UML and building a new
modelling language, PAML extends the AML, particularly
for the concepts underlying the Belief-Desire-Intention (BDI)
model. Indeed, AML already provides a Mental section, that
lets the modelling of mental attitudes of autonomous entities
having deliberative and motivational states. Moreover, PAML
also extends the UML [14], in order to meet specific require-
ments of for developing PRACTIONIST systems.

The overall package structure of the PAML is depicted in
the Figure 2.

The detailed description of PAML is out of the scope of this
paper. In brief, theKernel package defines the metaclasses
to model artefacts, agents and their components as well as
architectutal aspects of multi-agents systems. More in detail,
the Mental Attitudes package defines the metaclasses
to model intentional attitudes of PRACTIONIST agents (i.e.
belief, desires, intentions, goals and plans), extending the
Mental package of AML. TheInteractions package
defines the metaclasses to model ways and means agents use
to interact with the environment where they live, includingper-
ceptors, to listen to relevant external stimuli (i.e. perceptions)
and actions, to act over the environment and the effectors that
actually execute such actions. ThePlanning package defines
the metaclasses to model the body of plans; indeed the body
represents the actual sequence of act being executed by the
agent. TheBDIEntities package defines the metaclasses
to model artefects and agents, which are the building blocks
of the system. Finally, theRequirements package defines
the metaclasses to support the requirement analysis phase
according to the i* notation [15] and use case model.

Fig. 2. Overall package structure of the PAML metamodel.

B. Runtime & Framework

As already mentioned, PRACTIONIST suite provides the
framework and the runtime environment, respectively support-
ing the coding and the execution of BDI agents(i) endowed
with a symbolic representation about their beliefs,(ii) able
to proactively deliberate about their intentions,(iii) capable
of performing reactive behaviours, and(iv) endowed with the
ability to plan their activities in order to meet some objectives
[16].

PRACTIONIST framework supplies the required built-in
services that define the computational model of PRACTION-
IST agents. This includes thebelief logic, the deliberation
mechanisms that produce agent intentions, the way the agent
makes means-ends reasoningto figure out the means (i.e.
plans) to achieve its intentions [17], and the support for the
actual execution of such plans. Thus PRACTIONIST agents
present a double-layered structure: the bottom layer represents
the framework, which defines the execution logic and provides
some built-in services implementing such a logic, while thetop
layer includes the specific agent components to be defined in
order to satisfy specific application requirements [5].

More concretely, in order to design a PRACTIONIST agent
developers shall specify the following components:(i) Goal
Model, that is the set ofGoals the agent could pursue and
the relations among them;(ii) Plan Library, that is a set of

means, to pursue such goals or to react to the stimuli coming
from the environment;(iii) Perceptorsto receive such stimuli;
(iv) Actions the agent could perform and the corresponding
Effectors, and(v) Belief Base, that is a set of beliefs and rules
on them to model the information about both its internal state
and the external world.

Moreover, agents are endowed with the ability to dynami-
cally build plans (i.e.Planning). Finally the management of
perceptors and effectors is part of the agentcore services
infrastructure.

The framework also includes the PRACTIONIST Agent
Introspection Tool (PAIT), a visual integrated monitoringand
debugging tool, which supports the analysis of the agent’s state
during its execution. In particular, the PAIT can be suitable to
display, test and debug the agents’ mental attitudes (i.e. beliefs,
desires, and intentions) and their execution flow, in terms of
active behaviours. Each of these components can be observed
at run-time through a set of specific tabs.

Furthermore, the runtime and framework supplies facil-
ities and built-in components for autonomically manage
PRACTIONIST-based applications and external resources.

Finally, it is worth mentioning that PRACTIONIST run-
time and framework has been designed on top of JADE2, a
widespread platform compliant to the FIPA3 specifications,
that provides some core services, such as a communication
support, interaction protocols, life-cycle management, and so
forth.

IV. PRACTIONISTStudio

PRACTIONISTStudiois a modelling, design and develop-
ment tool for BDI agent systems according to the PRACTION-
IST mdoel. It includes a set of visual modelling editors, some
of which are based on UML 2.0 metamodel, whereas others
are based on PRACTIONIST Agent Modelling Language
(PAML). More accurately, a brief description of such visual
modelling editors follows:

• i* [15] based editors:

– Strategic Dependency (SD) editor: to describe the
dependency relationships among various actors in an
organizational context;

– Strategic Rational (SR) editor: to describe stake-
holder interests and concerns and how they might
be addressed by various configurations of systems
and environments;

• UML2.0 based editors:

– Use Case editor: to model use cases and system
funcionalities from the actor’s point of view;

– Class editor: to model static structures of a system
or of its parts;

• PRACTIONIST specific editors:

– Agent editor: to model agents and specify their
components;

– Domain editor: to model facts about the world the
agent can believe or not;

2http:jade.tilab.com
3http://www.fipa.org

– Goal editor: to model agent goals and the relation-
ships among them;

– Effector/Action - Perceptor/Perception editor: to
model the means agents use to interact with their
environment;

– Plan editor: to model the features of plans agent can
adopt to pursue their intention;

– Plan Body editor: to model the body of plans, in
terms of (simple or complex) flow of acts.

PRACTIONIST Studio aims at bridging the gap between
the increasing need of development of multi-agent systems
and the availability of tools for their design. Indeed, it can
be used in the same way as other software modelling tools
to develop multi-agent systems as it supports developers from
the requirements analysis to the code generation of agents.

As many well-known CASE tools, PRACTIONISTStudio
provide all the features that support the development of
complete and consistent visual models, such as:

• Unified model: all diagrams created inside a PRACTION-
IST project share the same model (i.e. an instance of the
meta-model), whereas each generic GMF diagram file has
usually its own model file.
Sharing the same model file means sharing the same
command stack, allowing us to execute cross-checks
among elements and consequently model more complex
and greater systems as a whole;

• Drag and Dropsupport: a PRACTIONIST project has its
own model view, where the developed model is displayed
as a tree. From this view it is possible todrag and
drop the elements into diagrams, enabling us to use the
same elements in different diagrams as well. Thus, if an
element is modified in a diagram, it will be updated in
all the other diagrams.

• Delete from diagramand delete from modelactions: in
a GMF diagram thedelete from modelaction is enabled
by default, so when an element is deleted in the diagram
it is also automatically deleted from the model. Such a
behaviour was modified in order to get thedelete from
view action as well, and thus have a more flexible model
management.

For the development of PRACTIONISTStudio, the support
provided by the Eclipse environment has been fully exploited.
As a consequence:

• a PRACTIONIST project, which is a custom Eclipse Java
project, provides several sections where developers can
create their own diagrams and the source folder that will
contain the generated source code;

• the model view of a PRACTIONIST project is a custom
Eclipse view that displays the unified model underlying
the project;

• the PRACTIONIST Java code can be generated starting
from diagrams in a simple way.

The hierarchical representation of a PRACTIONISTStudio
project is composed by several sections where developers
can create their own diagrams and manage the source code
generated; besides, the model view of the project is a custom
Eclipse view that presents the unified model underlying the

Fig. 3. A snapshot of the PRACTIONISTStudio.

project; finally, the Java code generation in a very simple
process.

V. M ODELLING WITH PRACTIONISTStudio

Throughout this section we present an overview on how
to model a PRACTIONIST system by using the facilities
and functionalities offered by PRACTIONISTStudio. This is
done by describing the design of some components of the
PSTS and showing some snapshots of models developed with
PRACTIONISTStudio.

As a complex system should be able to select at runtime
the best behaviour on the basis of the current situation, we
believe that in the requirements analysis phase, goals can be
used as an abstraction to model the functions around which the
systems can autonomously select the proper behaviour [17].

The requirements state that the goals of the PSTS (PRAC-
TIONIST Stock Trading System) must be the monitoring of
investors’ stock portfolio in terms of risk and profit manage-
ment and supplying a decision support for the on line stock
trading, by considering investors’ trading rules (i.e. stop loss,
stop profit, profit target, tolerance, maximum budget to be
inevested a week) and their degree of willingness to risk.
Besides, if users so wish, the PSTS has to be able to replace
orders (system orders) which are too risky or profitable, asking
a broker to execute them. Moreover, through the PSTS users
have to be allowed to placemarket orders(a market order is
a buy or sell order to be executed by the broker immediately
at current market prices) andlimit orders (a limit order is an

order to buy a stock at no more - or sell at no less - than a
specific price).

A. Modelling the organizational environment of the PSTS

In order to provide a deeper level of understanding about
how the PSTS can be embedded in the organizational envi-
ronment, the relevant stakeholders of the application domain
were modelled, where also the system-to-be (the PSTS) was
introduced as another actor, along with the dependencies
among them in terms of goals, tasks or resoures. In other
words, it was created a Strategic Dependency (SD) diagram.
Indeed the SD model focuses on the intentional relationships
among organizational actors.

Referring to the PSTS case study, the SD diagram was
modelled by using the SD editor of PRACTIONISTStudio,
which is shown in the Figure 4, where actors, depicted as
circles, are theInvestor, thePSTS, Yahoo and theBank;
the dependencies among the actors are depicted as arrowed
lines connected by a graphical symbol varying according to
the dependum: a rectangle if the dependum is a resource, a
rectangle with rounded corners if the dependum is a hard goal

More in detail, theInvestor would like to have a
system (thePSTS) that is able to provide information about
stock market (Get Stock Information), to provide up-
dated and detailed data about his/her Stock Portfolio (Get
Portfolio Information), to manage risky and prof-
itable stocks of the portfolio(Default Manage Risky

Fig. 4. Strategic Dependency model.

Stocks and Manage Profit), to give adivice on stocks
to be bought or sold (Do recommendation) and allow to
do trading autonomously (Make do trading). ThePSTS
depends on Internet (i.e. in particularYahoo) to obtain every
day the current data about stocks (opening and closing stock
prices, highest and lowest stock prices and volume of trading).
Finally, the PSTS depends on a broker (i.e. theBank), to
Place sell orders andPlace buy order).

B. Modelling agents’ goals

Architectural analysis of the PSTS produced the entities
classified as agents. In the resulting design they are

• the Trader, the agent in charge of managing all kinds
of order (i.e. market, limit and system orders) by asking
the broker (theBank) to place them;

• the Analyst, the agent liable for executing the market
analysis;

• the Advisor, the agent which interprets the
Analyst’s signals and does recommendations to
investors;

• the HoldingStockManager, the agent which moni-
tors investor’s stock current prices and places sell order
for that stocks resulting too profitable (if they have
reached the profit target indicated by investor or the profit
has descended below the stop profit of investors) or too
risky (if their value has descended below the stop loss of
investors).

It is worth noting that the goal turns out to be an in-
teresting abstraction related to autonomous entities for the
development of software systems whose requirements are not
entirely known at design time. Thus, the explicit representation
of goals and the ability to reason about them from agents,
plays an important role in the modelling phase. By using
PRACTIONISTStudio, a designer can specify for each agent,
goals it could pursue and their properties, and all relations
among such goals.

More in detail, for each goal it is possible to define the
success condition, the applicability condition stating whether
it is possible (given current conditions) to achieve that goal
and the cancel condition stating in which situations the agent
should give up to pursue a goal.

Regarding the relationships among goals, PRACTIONIST
Studioallows to model(i) the inconsistency between two goals
(if the designer want to declare that if a goal succeds, the other
one fails),(ii) the entailment (if the designer want to declare
that if a goal succeeds, then also the other one succeeds),(iii)
the fact that a goal is a precondition of another goal (that is
the fact that a goal must succeed in order to be possible to
pursue another goal),(iv) the dependence (if the designer want
to declare that a goal is precondition of another goal and must
be successful while pursuing this last one). A formal definition
of the goal relationships in PRACTIONIST can be found in
[17].

For example, referring to theHoldingStockMaganer,
the properties of goals and their relationships were modelled
in PRACTIONISTStudio as in Fig. 5

The main objective of theHoldingStockMaganer is
ManageHoldingStock: it is applicable if the agent be-
lieves that a new current price is available for one of the
holding stocks (NewStockPriceReceived predicate), or
that the investor has bought a new stock (NewStockBought
predicate); indeed in the last case, the agent has manage such
a new stock.

The agent monitors both the profit and the
risk of a stock, so the ManageHoldingStock
depends on the ManageRiskyStock and the
ManageProfitableStock goals; the agent continues to
pursue these goals until the price and the amount of a stock
do not change, otherwise both goals have to be cancelled.

To manage the risk and the profit of a stock, the agent
has to analyze its risk and profit on the basis of investors’
rules, so the goalsComputeRisk and ComputeProfit

Fig. 5. Goal Diagram related to theHoldingStocksManageragent.

entail respectively the goalsManageRiskyStock and
ManageProfitableStock.

Finally, the dependency relationships of the
ComputeProfit andComputeRisk goals were modelled;
the dependee goals have to be achieved to compute the
value of some investor’s trading rules, that is theprofit
target, thestop profit, and thestop loss.

C. Modelling agents’ plans

In the BDI agent model, another key element is the library
of plans, as it represents the set ofrecipe to meet agent’s
intentions.

In PRACTIONIST Studio it is possible to declare a set of
plans an agent has to own (theplan library), to specify the
activities it should undertake in order to achieve its intentions,
or handle incoming perceptions, or react to changes of its
beliefs.

Each plan presents five slots: (i)practical, which defines the
kind of events the plan is able to manage; (ii)applicable, to
define the formula that has to be believed as true by the agent
in order to actually adopt a practical plan; (iii)invariant, to
define the condition to hold during the execution of the plan;
(iv) cancel, to define when the plan has to be stopped with
failure; (v) success, to define the formula has to believed as
true by the agent then the plan ends with success.

But, the way a certain event is handled has to be specified
in the body, which is an activity that can contain a set of
acts ([17]), such as desiring to pursue some goal, adding or
removing beliefs, sending ACL messages, doing an action and
so forth.

Thus, in order to model the plan’s body, a designer can
use the Plan Body editor of PRACTIONISTStudio. In Fig.
6 it is shown the Plan Diagram where the plan library of the
HoldingStocksManagerwas modelled.

The HoldingStockManageragent has to manage the profit
and the risk of a holding stock every time a new price is

available or the investor has placed a new buy order for a
stock already held, or a new stock is bought. Therefore it
was equipped with theManageProfitForNewOrder, Manage-
ProfitForNewPrice plans, regarding the profit management,
and ManageRiskForNewOrderand ManageRiskForNewPrice
plans, regarding the risk management; as shown in Fig. 6.
Success and cancel conditions of these plans refer to the goal
success and cancel conditions, whereas they have a proper
applicable condition.

Finally, other plans were also modelled, for example to han-
dle the stimuli received from the environment (i.e. a stock price
updating or a stock placed order) and to compute the investor’s
trading rules (that is, to manage theComputeStopLossgoal,
etc.).

VI. CODING WITH PRACTIONISTStudio

As stated, PRACTIONISTStudio supports the actual im-
plementation of BDI agent systems by providing an automatic
code generation facility, which produces template or partially
filled parts of source code according to the developed models
and relying on the PRACTIONIST Framework.

In this section the source code related to theManageHold-
ingStockgoal generated by PRACTIONISTStudio is shown.
A snippet of the goal follows:

/**
* @generated
*/

public class ManageHoldingStock implements Goal
{

....

/**
* @generated
* @see org.practionist.core.GoalProfile#applicable())

*/
public boolean applicable()
{

// TODO: Insert the right variables value
return
beliefBase.bel(AbsPredicateFactory.create

("newStockPriceReceived(arrived: X)"))
|| beliefBase.bel(AbsPredicateFactory.create

Fig. 6. Plan Diagram related to theHoldingStocksManageragent.

("newPlacedOrderReceived(uid: X, stockSymbol: X,
operation: X, quantity: X, price: X)"));

}

/**
* @generated

*
* @see org.practionist.core.GoalProfile#succeed())

*/
public boolean succeed()
{

// TODO: Insert the right variables value
return beliefBase.bel(AbsPredicateFactory

.create("managed(investor: X, stockName: X)"));
}
....

}

This general implementation produced by the code genera-
tor of PRACTIONISTStudioshould be customized according
to the specific requirements for this goal. An example follows:

/**
* @generated
*/

public class ManageHoldingStock implements Goal
{

.....

/**
* @generated
* @see org.practionist.core.GoalProfile#applicable())

*/
public boolean applicable()
{

return beliefBase.bel(AbsPredicateFactory
.create("newStockPriceReceived(arrived: true)"))
|| beliefBase.bel(AbsPredicateFactory

.create("newPlacedOrderReceived
(uid: %, stockSymbol: %,
operation: %, quantity: %, price: %)",
uid, stockSymbol,
operation, quantity, price));

}

/**
* @generated

*
* @see org.practionist.core.GoalProfile#succeed())

*/
public boolean succeed()
{

return beliefBase.bel(AbsPredicateFactory
.create("managed(investor: %, stockName: %)",

investorID, symbol));
}
....

}

In this snippet, the designer just needs to detail the right
variables of the predicates (in this example a parametrized
form of the predicates has been adopted, using the symbol %
and then adding values). That is, in order to express the appli-
cability and success conditions of the goal, the corresponding
beliefs were customized by replacing the aforementioned
variables with the values that characterise the goal.

A code snippet of the dependency relation
between the ManageHoldingStock and the
ManageProfitableStock goals follows:
/**
* @generated
*/

public class GR_ManageHoldingStock_ManageProfitableStock
implements DependencyRel

{
public Goal verifiesRel(SerializableGoal goal1,

SerializableGoal goal2)
{

if (goal1 instanceof ManageHoldingStock
&& goal2 instanceof ManageProfitableStock)

return new ManageProfitableStock();
return null;

}
}

In this example, everyManageHoldingStock goal de-
pends on theManageProfitableStock goal, without
specifying any information about stocks. Thus, this code
should be now customized according to the designer’s needs:
/**
* @generated NOT
*/

public class GR_ManageHoldingStock_ManageProfitableStock
implements DependencyRel

{
public Goal verifiesRel(SerializableGoal goal1,

SerializableGoal goal2)
{

if (goal1 instanceof ManageHoldingStock
&& goal2 instanceof ManageProfitableStock)
{

ManageHoldingStock g =
(ManageHoldingStock) goal1;

return new
ManageProfitableStock(g.getUID(),

g.getSymbol());
}
return null;

}
}

Fig. 7. Agent Diagram related to theHoldingStocksManageragent.

In this snippet, the designer has just to detail some prop-
erties of the dependee goal; here the dependee goal refers to
the same user and symbol of stock of the dependent goal.

Finally, a code snippet of the HoldingStockManager agent
class is shown:

/**
* @generated
*/

protected void initialize()
{

addBeliefSet("/home/pl/holdingstockmanager.pl");

/*****************Goals*****************/
// TODO:Remember to put the goal’s parameters here
registerGoal(new ManageHoldingStock(), "");
registerGoal(new ManageProfitableStock(), "");
registerGoal(new ComputeProfitTarget(), "");

/***********Goals**Relations************/
// TODO:Remember to put the relation’s parameters here
registerRelation(new

GR_ManageHoldingStock_ManageProfitableStock(), "");
registerRelation(new

GR_ManageRiskyStocks_ComputeRisk(), "");

/*****************Plans*****************/
// TODO:Remember to put the plan’s parameters here
addPlan(ManageRiskyStock.class, "ManageRiskyStock");
addPlan(NewStockPriceHandler.class,

"NewStockPriceHandler");
}

The Fig. 7 shows a snapshot of the Agent Diagram. More
in detail, by means of such a diagram it is possible to look at
the list of all the intentional elements were modelled and to
choose that ones that the designer wants associate to an agent.

It is worth noting that the code generator of PRACTIONIST
Studiois able to produce the agent source code by putting the
entities which were designed in the previous modelling phases
together; obviously, this code should be customized according
to the designer’s needs.

VII. C ONCLUSIONS ANDFUTURE WORK

In this paper, through a running example, i.e. the PSTS, we
presented PRACTIONISTStudio, the visual modelling, design
and development environment of the PRACTIONIST suite,
which is the set of tools we have been developing to implement
agent systems according to the BDI model.

PRACTIONISTStudiosupports the development of agents
endowed with a lot of useful built-in capabilities and with

a computational model which is more flexible and adaptive
than the agent models underlying several commercial and non-
commercial frameworks.

Our tool allows the design and development of BDI agent
systems from several perspectives, including the representation
of intentional attitudes and relationships among them, theway
the agents interact with their environment, the activitieswithin
a plan. and so forth.

As part of our future work, we aim at further developing
PRACTIONIST Studioby adding editors for other diagrams
(i.e. dynamic views, such as interactions). We also intend
to improve service features of the tools, such as reverse
engineering and documentation management and automatic
generation.

Finally, we have been developing some other real-world
applications by using the PRACTIONIST framework, method-
ology andStudio.

REFERENCES

[1] J. McCarthy, “Ascribing mental qualities to machines,” Stanford Uni-
versity, Tech. Rep. STAN-CS-79-725, 1979.

[2] D. Dennett,The Intetional Stance. MIT Press, 1989.
[3] M. P. Georgeff, B. Pell, M. E. Pollack, M. Tambe, and M. Wooldridge,

“The belief-desire-intention model of agency,” inATAL ’98: Proceed-
ings of the 5th International Workshop on Intelligent Agents V, Agent
Theories, Architectures, and Languages. London, UK: Springer-Verlag,
1999, pp. 1–10.

[4] A. S. Rao and M. P. Georgeff, “Modeling rational agents within a
BDI-architecture,” inProceedings of the 2nd International Conference
on Principles of Knowledge Representation and Reasoning. Morgan
Kaufmann publishers Inc.: San Mateo, CA, USA, 1991, pp. 473–484.
[Online]. Available: http://citeseer.nj.nec.com/rao91modeling.html

[5] V. Morreale, S. Bonura, G. Francaviglia, F. Centineo, M.Puccio, and
M. Cossentino, “Developing intentional systems with the practionist
framework,” in Proceedings of the 5th IEEE International Conference
on Industrial Informatics (INDIN07), July 2007.

[6] O. J., “Objects and agents: how do they differ?”Journal of Object-
Oriented Programming, pp. 50–53, 2000.

[7] J. Pavon, C. Sansores, and J. J. Gomez-Sanz, “Modelling and simulation
of social systems with ingenias,”Int. J. Agent-Oriented Softw. Eng.,
vol. 2, no. 2, pp. 196–221, 2008.

[8] D. Bertolini, A. Perini, A. Susi, , and H. Mouratidis, “The tropos visual
modeling language. a mof 1.4 compliant meta-model.”Contribution for
the AOSE TFG meeting., 2005.

[9] H. Wang, J. Mylopoulos, and S. Liao, “Intelligent agentsand financial
risk monitoring systems,”Commun. ACM, vol. 45, no. 3, pp. 83–88,
2002.

[10] X. Feng and C.-H. Jo, “Agent-based stock trader,” inComputers and
Their Applications, 2003, pp. 275–278.

[11] D. N. Davis, Y. Luo, and K. Liu, “Combining kads with zeus to develop
a multi-agent e-commerce application,”Electronic Commerce Research,
vol. 3, no. 3-4, pp. 315–335, 2003.

[12] A. Ricci, M. Viroli, and A. Omicini, “Programming MAS with artifacts.”
in PROMAS, 2005, pp. 206–221.

[13] I. Trencansky and R. Cervenka, “Agent modelling language (aml): A
comprehensive approach to modelling mas,”Informatica, vol. 29, pp.
391–400, 2005.

[14] O. M. Group, “Unified Modeling Language, Superstructure.”
[15] E. S. K. Yu, “Towards modelling and reasoning support forearly-

phase requirements engineering,” pp. 226–235. [Online]. Available:
citeseer.ist.psu.edu/article/yu97towards.html

[16] V. Morreale, S. Bonura, G. Francaviglia, M. Cossentino, and S. Gaglio,
“PRACTIONIST: a new framework for BDI agents,” inProceedings
of the Third European Workshop on Multi-Agent Systems (EUMAS’05),
Brussels, Belgium, 2005, p. 236.

[17] V. Morreale, S. Bonura, G. Francaviglia, F. Centineo, M. Cossentino,
and S. Gaglio, “Goal-oriented development of BDI agents: thePRAC-
TIONIST approach,” inProceedings of Intelligent Agent Technology.
Hong Kong, China: IEEE Computer Society Press, 2006.

