Design and Development of Intentional Systems
with PRACTIONIST Studio

Angelo Marguglid, Giuseppe CammardtaSusanna Bonuta Giuseppe Francaviglia
Michele Pucci®, and Vito Morrealé.
*Intelligent Systemsnit - R&D Laboratory
ENGINEERING Ingegneria Informatica S.p.A.

Abstract—In this paper we present PRACTIONIST Studio, Georgeff [3] asserts thathe notions of complexity and change
which is an integrated design and development environment will have a major impact on the way we build computational
for BDI agent-based systems, providing facilities and tools to systems, and that software agents - in particular BDI agents

represent the concepts and intentional elements underlying such . . ;
a model as well as several common features offered by UML- ~ provide the essential components necessary to cope veith th

based tools. real world”.

_ PRACTIONIST Studio aims at bridging the gap between the 1o gojief.Desire-Intention (BDI) architecture [4] sugte
increasing trend of developing BDI-based multi-agent systems S .
and the availability of tools for their design. It supports de- that the development of agents should rely on the speciicati
velopers from early requirements analysis to automatic code Of some mental states, i.e. beliefs, desires, and intestion
generation. o _ _ ~Wwhich are very intuitive for people to understand. Indeed,
More in detail, we first give an overview of the modelling edi- peliefs represent information the agent has about the world
tors provided with PRACTIONIST Studio. Then some fragments desires represent state of affairs the agent wishes to atiogt

of the modelling and development approach when applied to a . - . . . N
real-world implementation are presented. Such a complex system &nd intentions are desires that it has committed to acgevin

is the PSTS (PRACTIONIST Stock Trading System), which is Ajthough BDI model has become a very attractive approach

aimed to monitor investors’ stock portfolio by managing risk - - . .
and profit and supporting decisions for on-line stock trading, on for dealing with the complexity of modern software appli

the basis of investors’ trading rules and their risk attitude. cations, enginee_ring such systems i§ still a chal!enge due t
the lack of effective tools and actual implementations afyve

interesting and fascinating theories and models.

I. INTRODUCTION
In past years we developed the PRACTONIST Framework

Recently the increasing complexity and the introduction @] \which is a set of Java libraries to develop agent-based
new Web and networking technologies are making it difficufiystems according to the BDI model. PRACTIONIST adopts
for designers to entirely model systems and for operatogSgoal-oriented approach and a clear separation between the
to handle effectively all unpredictable situations. Théoef geliperation and the means-ends reasoning, and consgquent
of scientific communities is towards the building of systemgetween the states of affairs to pursue and the way to do
where interactions among components cannot be thorougfiloreover, PRACTIONIST allows developers to implement

planned and anticipated. - . _agents able to reason about their beliefs and the othersigent
In other words an open issue is to investigate the modellipg|iefs, expressed by modal logic formulas.

of systems where the collective behavior of their parts is
related to the emergence of properties that can hardly, tif n
at all, be infered from properties of the parts. Aristotetbtexd
that "The whole is more than the sum of its partsiith this
assertion he had already, more than two thousand years
defined what complex systems are.

Several authors (e.g. McCharty [1]) have argued that
certain situations, the so-called intentional stance [2$ys-
tems can aid to efficiently predict, explain, or define the
behaviour, without having to understand how they actual
work. Therefore, some systems may be better explained
terms of mental qualities or attitudes, rather than in teofns
conventional physical phenomena or design artifacts,biye.
specifying the so-called intentional stance of systems.

In the context of the development of intentional system
the agent-oriented approach plays a central role, due to th&hus we developed the PRACTIONISStudiq which is
vast number of theories and models that have been develofieel novel visual environment to model, design and develop
for twenty years. Moreover, with regards to complex systemBRACTIONIST-based systems. The PRACTIONISEudio

Due to the differences between the objects and agents [6],
esign tools used to model object-oriented systems do not
represent the best way to design and develop agent-oriented

twares, especially BDI agent systems. In addition, reg¢ve
existing MAS modelling tools (e.g. INGENIAS Development

it [7]) suffer a too strong tie-up with specific methodolegi
or the development of MAS. Moreover, some of them cover

ell only a subset of development phases (e.g. TROPOS Tool

r Agent Oriented visual Modeling [8]). Other tools are sim

|,:|e prototypes and do provide a very limited assistance when

eveloping agents and their components. In practice, nbne o
them can be directly adopted (or extended) to design and
develop multi-agent systems according to the PRACTIONIST
g]odel.

has been developed by using several Ecligsieg-ins, such | PracTionsT swdo
as: UML2, Eclipse Modelling Framework (EMF), Graphica
Editing Framework (GEF), Graphical Modeling Framewor

I
[

PRACTIONIST

PRACTIONIST Modelling Editors Code Generator

(GMF) and other Eclipse extensibility features. It suppdhe | Eclipse
representation of the concepts underlying the BDI model aha
part of UML 2.0 meta-model as well as several features COl| PRACTIONIST Methodology PRACTIONIST Runtime & Framework

Development Process ‘ ‘ PAIT ‘ PAM ‘

mon to (commercial) well-known UML-based CASE tools
such as unified underlying model for all diagrams within a oL ‘
project, consistency check within diagrams, editing fae# i R | :

(e.g. cut and paste, unlimited undo and redo, and so forth)| | . 11 " D] s qw T

In this paper we present an overview of the modelling
editors and facilities included in PRACTIONISStudig along Fig. 1. PRACTIONIST Suite.
with some fragments of modelling and development of a real
system, i.e. the PSTS (PRACTIONIST Stock Trading System).

The paper is organized as follows: in section Il we first PSTS is @ PRACTIONIST-based system, which is able to
present the PSTS as a running examp|e_ Then we give raﬁnitor investors’ stocks pOfth”O, to monitor and manage
overview of the PRACTIONIST suite (section IIl), while infisks, to manage and optimize profit and to support decisions
section IV PRACTIONISTStudiois described in details; in regarding on-line stock trading, by taking into account in-
section 4 some of the models of the PSTS developed wigstors’ trading preferences and rules (i.e. stop losp, ftufit,
PRACTIONIST Studio are shown, while in section 5 WeprOﬁt target, tolerance, maximum budget to be inevested per
present how PRACTIONISBtudiohas supported the imple-Week) and their degree of willingness to risk.
mentation of the PSTS. Finally, we point out our intended
future work and give some conclusions. [Il. PRACTIONIST SUITE

As stated above, in order to exploit the full potential offgr
by the agent-oriented paradigm, and particularly the BDI
model, the support of efficient integrated developmentstool

Systems supporting stock markets’ operations and desisigthd methodologies is required to produce real-world (and
are an example of systems with a high complexity. Hegmetime complex) software systems.
elementary building blocks can be individual traders, eachQur solution to this issue is PRACTIONIST (PRACTIcal
making buying and selling decisions from his/her own pefeasONIng sySTem), which is an integrated suite providing
spective. the following tools (see Fig. 1):

It should be noted that systems for stock trading manage-, prACTIONIST Methodologyncluding thePRACTION-
ment have been implemented by adopting agent technology gt Agent Modelling Language (PAMyhich is a UML-
and related approaches. Among them, Wang et al. [9] have paged modelling language, and an iterative development
presented a lightweight, distributed, intelligent ageased process;
financial monitoring system that monitors and reports onsfta | prRACTIONIST runtime and framework (PRRYhich
actions within an organization. In such a prototype system, provides the APIs to develop PRACTIONIST-based agent

the intelligent agents are assisted by a formal conceptual systems by defining the execution logic and providing the
model that makes up an unambiguous understanding of the pitin components according to such a logic:

institution, the transactions, the instruments involvaakl the « PRACTIONIST Studjoa visual modelling, design and

business processes. development environment supporting the representation
In [10], Feng and Jo present a system, called AST (Agent- anq specification of the concepts underlying the BDI

based Stock Trader), which is a stock-trading expert based model as well as several features present in other UML-

on intelligent agents using the BDI model of agency. Finally p5sed tools.

Davis et al. [11] have designed a system around porthI'OThe focus of this paper is on modelling facilities provided

management tasks that include eliciting user profilesecoll o A=T10NISTStudiq which is described in details in the
ing information on the users portfolio position, monitgin following sections, while in the remaining part of this sent

the environment on behalf of the user, and making decisi% overview of the other two components of PRACTIONIST
suggestions to meet the users investment goals. is given
3 .

The existence of such implementations confirm that agen
based systems can benefit the development of complex systems
even in critical fields such as financial and stock trading. F@" Methodology
this reason we chose to use such an application domain t®®RACTIONIST Methodology is based on an iterative and
test and evaluate the PRACTIONISStudioby designing the incremental development process supporting developers fr
PRACTIONIST Stock Trading System (PSTS), which is alsearly requirements analysis to coding, debugging andngsti
used as a running examble throughout the paper. of agents and artefacts (according to the A2A approach [12])
It is the result of the following interacting tasks: (i) thretical
Lhitp:/ivww.eclipse.org/ analysis of requirements that similar processes should, mee

PRACTIONIST Packages ‘

Il. RUNNING EXAMPLE

(i) theoretical analysis of novel features introduced hwit

PRACTIONIST that need to be specified at the design time]]
and (iii) practical application of PRACTIONIST in real case <<metamocel>> <<metamodel>>
as well as its integration with other technologies, such ab W ML AML
services. N 7

It should be noted that the development process is still a \\ ,,/

work in progress and our research is going towards the defi- |
nition of a more general framework for process and software cemeLaocel>
engineers, with the aim of providing tools to define/custami |
processes as well as full support to the usage of them during Kemel
development phases.

p p]

As an important part of our methodology, PAML is a UML- anetal .

based visual modelling language for specifying, modelling [T > |
and documenting BDI multi-agent systems. Its meta-model | f|\ |
|
|
|
|

contains general metaclasses to model intentional conmp®ne 1 -
. . Planning EDIEntities
of BDI agents, such as beliefs, goals and relations among
them, plans and so forth. It also includes metaclassesfgpeci
to PRACTIONIST and the development of related systems. ”|“
|
L

[|

Interactions

PAML extends the Agent modelling Language (AML)
[13], a semi-formal visual modelling language for spedcityi -]
modelling and documenting systems that incorporate génera
concepts drawn from the Multi-Agent Systems (MAS) theory.
AML can be used to build models that consist of autonomous .

. Requirements
entities able to observe and interact with their environtmen
using complex interactions and aggregated services.

Thus rather than extending the UML and building a new
modelling language, PAML extends the AML, particularly
for the concepts underlying the Belief-Desire-Intenti@®D() Fig. 2. overall package structure of the PAML metamodel.
model. Indeed, AML already provides a Mental section, that
lets the modelling of mental attitudes of autonomous etiti
having deliberative and motivational states. MoreovetMPA g Runtime & Framework

also extends the UML [14], in order to meet specific require-
ments of for developing PRACTIONIST systems. As already mentioned, PRACTIONIST suite provides the

, . framework and the runtime environment, respectively sappo
Thg overall package structure of the PAML is depicted Ifg the coding and the execution of BDI agefifsendowed
the Figure 2. with a symbolic representation about their beliefi§), able
The detailed description of PAML is out of the scope of thi¥ proactively deliberate about their intentior{si) capable
paper. In brief, theker nel package defines the metaclasse®f performing reactive behaviours, afigf) endowed with the
to model artefacts, agents and their components as well ality to plan their activities in order to meet some obi\ezs
architectutal aspects of multi-agents systems. More inildet [16]-
the Mental Attitudes package defines the metaclasses PRACTIONIST framework supplies the required built-in
to model intentional attitudes of PRACTIONIST agents (i.eservices that define the computational model of PRACTION-
belief, desires, intentions, goals and plans), extendimg tIST agents. This includes thielief logic the deliberation
Ment al package of AML. Thel nt er acti ons package mechanisms that produce agent intentions, the way the agent
defines the metaclasses to model ways and means agentsmgkes means-ends reasoning figure out the means (i.e.
to interact with the environment where they live, includpgy- plans) to achieve its intentions [17], and the support fer th
ceptors, to listen to relevant external stimuli (i.e. petans) actual execution of such plans. Thus PRACTIONIST agents
and actions, to act over the environment and the effectarts thresent a double-layered structure: the bottom layer sepis
actually execute such actions. TReanni ng package defines the framework, which defines the execution logic and pravide
the metaclasses to model the body of plans; indeed the b&®yne built-in services implementing such a logic, whilette
represents the actual sequence of act being executed bylayer includes the specific agent components to be defined in
agent. TheBDI Enti ti es package defines the metaclasseyder to satisfy specific application requirements [5].
to model artefects and agents, which are the building blocksMore concretely, in order to design a PRACTIONIST agent
of the system. Finally, th&®equi r enent s package defines developers shall specify the following componer(i¥:Goal
the metaclasses to support the requirement analysis phiskmlel that is the set ofGoals the agent could pursue and
according to the i* notation [15] and use case model. the relations among thentii) Plan Library, that is a set of

means, to pursue such goals or to react to the stimuli coming — Goal editor. to model agent goals and the relation-

from the environment(iii) Perceptorsto receive such stimuli; ships among them;

(iv) Actionsthe agent could perform and the corresponding — Effector/Action - Perceptor/Perception editoito

Effectors and(v) Belief Basethat is a set of beliefs and rules model the means agents use to interact with their

on them to model the information about both its internalestat environment;

and the external world. — Plan editor. to model the features of plans agent can
Moreover, agents are endowed with the ability to dynami- adopt to pursue their intention;

cally build plans (i.e.Planning. Finally the management of — Plan Body editor to model the body of plans, in

perceptors and effectors is part of the agente services terms of (simple or complex) flow of acts.

infrastructure. PRACTIONIST Studio aims at bridging the gap between

The framework also includes the PRACTIONIST Agenthe increasing need of development of multi-agent systems
Introspection Tool (PAIT), a visual integrated monitoriagd and the availability of tools for their design. Indeed, inca
debugging tool, which supports the analysis of the ageti#tes pe used in the same way as other software modelling tools
during its execution. In particular, the PAIT can be suiatl to develop multi-agent systems as it supports developers fr
display, test and debug the agents’ mental attitudes @leefb, the requirements analysis to the code generation of agents.
desires, and intentions) and their execution flow, in terfns 0 As many well-known CASE tools, PRACTIONISStudio
active behaviours. Each of these components can be obsefygflide all the features that support the development of
at run-time through a set of specific tabs. complete and consistent visual models, such as:

Furthermore, the runtime and framework supplies facil- | nifieq modelall diagrams created inside a PRACTION-
ities and built-in components for autonomically manage gt project share the same model (i.e. an instance of the
PRACTIONIST-based applications and external resources. meta-model), whereas each generic GMF diagram file has
_ Finally, it is worth mentioning th_at PRACTIONIST run- usually its own mode! file.
time and framework has bgen designed on top.(-)f ‘],A% Sharing the same model file means sharing the same
widespread platform compliant to the FIPApecifications, command stack, allowing us to execute cross-checks

that prov.ides some core serviges, such as a communication among elements and consequently model more complex
support, interaction protocols, life-cycle management] ao and greater systems as a whole;
forth. « Drag and Dropsupport: a PRACTIONIST project has its
own model view, where the developed model is displayed
IV. PRACTIONIST Studio as a tree. From this view it is possible thag and
PRACTIONIST Studiois a modelling, design and develop- drop the elements into diagrams, enabling us to use the
ment tool for BDI agent systems according to the PRACTION- same elements in different diagrams as well. Thus, if an
IST mdoel. It includes a set of visual modelling editors, som element is modified in a diagram, it will be updated in
of which are based on UML 2.0 metamodel, whereas others all the other diagrams.
are based on PRACTIONIST Agent Modelling Language « Delete from diagramand delete from modeéctions: in
(PAML). More accurately, a brief description of such visual a GMF diagram thelelete from modehction is enabled
modelling editors follows: by default, so when an element is deleted in the diagram
« i* [15] based editors it is also automatically deleted from the model. Such a

_ Strategic Dependency (SD) editdo describe the bghaviqur was modified in order to get ttiele'Fe from
dependency relationships among various actors in an view action as well, and thus have a more flexible model
organizational context; management.

— Strategic Rational (SR) editorto describe stake- For the development of PRACT'ON'ﬁtUde the Support
holder interests and concerns and how they migﬁfovided by the Eclipse environment has been fully exptbite
be addressed by various configurations of systerfd§ @& consequence:
and environments; o a PRACTIONIST project, which is a custom Eclipse Java

« UML2.0 based editors project, provides several sections where developers can
create their own diagrams and the source folder that will
contain the generated source code;

« the model view of a PRACTIONIST project is a custom
Eclipse view that displays the unified model underlying

— Use Case editorto model use cases and system
funcionalities from the actor’s point of view;
— Class editor to model static structures of a system

or of its parts;]
the project;

° PRACTIOMST specific editars) .« the PRACTIONIST Java code can be generated starting
— Agent editor to model agents and specify their oy giagrams in a simple way.

components;
— Domain editor to model facts about the world the The h!erarchlcal representation of a .PRACTIOledeO
. : project is composed by several sections where developers
agent can believe or not; ; ;
can create their own diagrams and manage the source code
2http:jade.tilab.com generated; besides, the model view of the project is a custom
3http://www.fipa.org Eclipse view that presents the unified model underlying the

= Java - classExample.bcld - Eclipse SDK g@

File Edit Mavigate Search Project Diagram Run Sample Window Help

i$-0-%- BHG- (®Pi- B |§l1eva
; —i (R ¢ N - || 100% v
[£ Package Explorer 52 . Hierarchy = O | |45 dassExample.beld 62 =T
=& Palette v
I)) =] winterfaces [} Select
= &% Example = rcustomer %, Zaom
& src 2
BB, JRE System Library [re1.5.0_08] (=3 Mote

&

. practionist.jar - Ci\Programmileclipss_lastirworks| [~ Elements »
o jade.jar - CHProgrammileclpse_astitWorkspaceic

- erkComponentsview

=+ (= ClassView

45 classExample beld i

@] UMLmodsl.unl H order HepanEr seorder H Customer 53 Enumesation

i (= Earlyview * EExalpo

-G UseCaseView [EL number © String [E4 address : String

%c\nse() Edname ; String

] Class
[Interface
B Package

[Cannections >
 Assaciation
g dispatchi) " Pgwregation
o Composition
A Generalization
— A Redization
= Corporate._Custamer A e
[EL contactiame : String = Persomal_Custarer £ Assaciation Class
[E2 credlitlimit ; double

[EL creditRating : String BRtiadiCad ang

2 bilForMaonth()
42 remind()

Al i >
A Modehiew 52 A 0L 4 o 0| Problems Javadoc Declaration | = Properties 53 B

= B3 «Package> defaultPackage
Appearance
= B «class» Corporats_Customer
A <eneralization Customer LA Property valus
= & <Class> Custorer Advanced = PDT-UML
& <Interface Realization> Realizationd Name i= defaultPackage
E «class» Order Visihility Public
= & «Class> Personal_Customer # Wiew
A <Generalization > Customer
2 <Interface ICustomer
/" <hssodiation= A_order_customer
[<Profile> PDT_Profile

Fig. 3. A snapshot of the PRACTIONISStudia

project; finally, the Java code generation in a very simplarder to buy a stock at no more - or sell at no less - than a
process. specific price).

V. MODELLING WITH PRACTIONISTStudio

Throughout this section we present an overview on h
to model a PRACTIONIST system by using the facilities In order to provide a deeper level of understanding about
and functionalities offered by PRACTIONISStudio This is how the PSTS can be embedded in the organizational envi-
done by describing the design of some components of ti@ment, the relevant stakeholders of the application doma
PSTS and showing some snapshots of models developed wig¢re modelled, where also the system-to-be (the PSTS) was
PRACTIONIST Studia introduced as another actor, along with the dependencies

As a complex system should be able to select at runtiragong them in terms of goals, tasks or resoures. In other
the best behaviour on the basis of the current situation, w@rds, it was created a Strategic Dependency (SD) diagram.
believe that in the requirements analysis phase, goals eanltideed the SD model focuses on the intentional relatiosship
used as an abstraction to model the functions around whéch g&mong organizational actors.
systems can autonomously select the proper behaviour [17]. Referring to the PSTS case study, the SD diagram was

The requirements state that the goals of the PSTS (PRA@Gedelled by using the SD editor of PRACTIONISStudiq
TIONIST Stock Trading System) must be the monitoring ovhich is shown in the Figure 4, where actors, depicted as
investors’ stock portfolio in terms of risk and profit managecircles, are theé nvest or, the PSTS, Yahoo and theBank;
ment and supplying a decision support for the on line stotke dependencies among the actors are depicted as arrowed
trading, by considering investors’ trading rules (i.e.pstoss, lines connected by a graphical symbol varying according to
stop profit, profit target, tolerance, maximum budget to bbe dependum: a rectangle if the dependum is a resource, a
inevested a week) and their degree of willingness to ristectangle with rounded corners if the dependum is a hard goal
Besides, if users so wish, the PSTS has to be able to replactore in detail, thel nvestor would like to have a
orders gystem ordedswhich are too risky or profitable, askingsystem (thePSTS) that is able to provide information about
a broker to execute them. Moreover, through the PSTS usstsck market Get St ock | nf or nat i on), to provide up-
have to be allowed to placmarket orderga market order is dated and detailed data about his/her Stock Portfdlet (

a buy or sell order to be executed by the broker immediatdBport f ol i o | nf or mati on), to manage risky and prof-
at current market prices) ariit orders (a limit order is an itable stocks of the portfolidef ault Manage Ri sky

oev" Modelling the organizational environment of the PSTS

 Get stocks information || Get portiolio ...fm.am,.:] | Defauit manage risky stocks | | Do recommendation | | Manage profit || Make do trading |

Low stock price

.| Open stock price - .

Close stock price

High stock price

Trading volume

Fig. 4. Strategic Dependency model.

St ocks and Manage Profit), to give adivice on stocks More in detail, for each goal it is possible to define the
to be bought or solddo reconmendati on) and allow to success condition, the applicability condition statingettter

do trading autonomousihyMake do tradi ng). The PSTS it is possible (given current conditions) to achieve thaalgo
depends on Internet (i.e. in particuldahoo) to obtain every and the cancel condition stating in which situations thenage
day the current data about stocks (opening and closing st@tiould give up to pursue a goal.

prices, highest and lowest stock prices and volume of ttgdin Regarding the relationships among goals, PRACTIONIST
Finally, the PSTS depends on a broker (i.e. B&nk), to Studioallows to modeli) the inconsistency between two goals

Pl ace sell orders andPl ace buy order). (if the designer want to declare that if a goal succeds, therot
one fails),(ii) the entailment (if the designer want to declare
B. Modelling agents’ goals that if a goal succeeds, then also the other one succdéi)s),
Architectural analysis of the PSTS produced the entitiége fact that a goal is a precondition of another goal (that is
classified as agents. In the resulting design they are the fact that a goal must succeed in order to be possible to

. the Tr ader , the agent in charge of managing all kind®ursue another goal()i,v) the dependence (if the designer want
of order (i.e. market, limit and system orders) by askintp declare that a goal is precondition of another goal and mus

the broker (theBank) to place them: e successful while pursuing this last one). A formal deéinit
« the Anal yst , the agent liable for executing the markeff the goal relationships in PRACTIONIST can be found in
analysis; [17].

. the Advisor, the agent which interprets the For example, referring to thelol di ngSt ockMaganer,
Anal yst’s signals and does recommendations tihe properties of goals and their relationships were medell
investors; in PRACTIONIST St udi o as in Fig. 5

« the Hol di ngSt ockManager , the agent which moni- The main objective of theHol di ngSt ockMaganer is
tors investor's stock current prices and places sell ordénageHol di ngSt ock: it is applicableif the agent be-
for that stocks resulting too profitable (if they havdieves that a new current price is available for one of the
reached the profit target indicated by investor or the profiplding stocks KewSt ockPri ceRecei ved predicate), or
has descended below the stop profit of investors) or ttleat the investor has bought a new stobk\{St ockBought
risky (if their value has descended below the stop loss pfedicate); indeed in the last case, the agent has manage suc
investors). a new stock.

It is worth noting that the goal turns out to be an in- The agent monitors both the profit and the
teresting abstraction related to autonomous entities Her trisk of a stock, so the ManageHol di ngSt ock
development of software systems whose requirements are #édegpends on the ManageRi skyStock and the
entirely known at design time. Thus, the explicit repreatoh ManagePr of i t abl eSt ock goals; the agent continues to
of goals and the ability to reason about them from agengjrsue these goals until the price and the amount of a stock
plays an important role in the modelling phase. By usingo not change, otherwise both goals have to be cancelled.
PRACTIONIST Studiq a designer can specify for each agent, To manage the risk and the profit of a stock, the agent
goals it could pursue and their properties, and all relatiohas to analyze its risk and profit on the basis of investors’
among such goals. rules, so the goal€onput eRi sk and Conput ePr of i t

MewsStockPriceReceived
«slotss
&1 arrived: boolean

«constraint:

Managed
aslotss
& investor: 5tring
@ stockMame: String

«SUCcess»

«constraints

B NewPlacedOrderReceived
«slotss

& uid: long

@ stockSymbal: String

® ManageRiskyStock
«applicablex
«cancels
“ stock quantity or price is changed
«SLCCass»

«applicable» = risky stock managed

. [«depends on=
® ManageHoldingStock
«applicablex
«cancel»

«SLCCasss «depends on»

«applicable»

® ManageProfitableStock
«applicables
«cancels
= stock quantity or price is changed

«ig entailed bye

«is entailed by=

® ComputeRisk
«applicablex
«cancels

«sHCCcess™

® ComputeStapPro
«applicable»
wancel»

«SLCCess

«depends ons

® ComputeProfit
«applicable=

® ComputeStopLoss
«depends on» -
«applicable»

«cancel»

*SUCCess»

“EUCCRESY

fit Rule
«SUCCESSY
«slotse

= name: String
= value: double

«canstraints

«success>

1 pperation: String _"depends an» ® ComputeProfitTarget

=1 quantity: int
@ price: float

Lccess:
Ty wcancels

....... «applicable=
«5UCCesss

Z= profit computed

«cancels

«constraints «success»

Fig. 5. Goal Diagram related to thdoldingStocksManageagent.

entail respectively the goaldvanageR skySt ock and available or the investor has placed a new buy order for a
ManagePr of i t abl eSt ock. stock already held, or a new stock is bought. Therefore it

Finally, the dependency relationships of thevas equipped with thd&lanageProfitForNewOrderManage-
Conput eProf i t andConput eRi sk goals were modelled; ProfitForNewPrice plans, regarding the profit management,
the dependee goals have to be achieved to compute thand ManageRiskForNewOrdeand ManageRiskForNewPrice
value of some investor's trading rules, that is theofit plans, regarding the risk management; as shown in Fig. 6.
target, thestop profit, and thest op | oss. Success and cancel conditions of these plans refer to tHe goa
success and cancel conditions, whereas they have a proper
applicable condition.

Finally, other plans were also modelled, for example to han-

In the BDI agent model, another key element is the libramyle the stimuli received from the environment (i.e. a stocke
of plans, as it represents the set retipe to meet agent’s updating or a stock placed order) and to compute the investor
intentions. trading rules (that is, to manage ti@»mputeStopLosgoal,

In PRACTIONIST Studioit is possible to declare a set ofetc.).
plans an agent has to own (tipdan library), to specify the
activities it should undertake in order to achieve its ititars,
or handle incoming perceptions, or react to changes of its
beliefs.

Each plan presents five slots: fijactical, which defines the
kind of events the plan is able to manage; &pplicable to
define the formula that has to be believed as true by the ag .
in order to actually adopt a practical plan; (iipvariant, to and reI_ymg on the PRACTIONIST Framework.
define the condition to hold during the execution of the plan; In this section the source code related to n;nlfm_ageHold-
(iv) cancel to define when the plan has to be stopped WiﬂggSt_ockgoal generated by FTRACTIONISEUd'O'S shown.
failure; (v) successto define the formula has to believed a snippet of the goal follows:
true by the agent then the plan ends with success. ’:*@enerat ed

But, the way a certain event is handled has to be specified
in the body, which is an activity that can contain a set t{wb”c class ManageHol di ngStock inpl ement's Goal
acts ([17]), such as desiring to pursue some goal, adding or
removing beliefs, sending ACL messages, doing an action and/**
so forth. * @enerat ed

Thus, in order to model the plan’s body, a designer can :/ @ee org.practionist.core. Goal Profil e#applicable())
use the Plan Body editor of PRACTIONISStudio In Fig. publ i ¢ bool ean appl i cabl e()

6 it is shown the Plan Diagram where the plan library of the {
HoldingStocksManagewas modelled.

The HoldingStockManageragent has to manage the profit

and the risk of a holding stock every time a new price is

C. Modelling agents’ plans

VI. CobING WITH PRACTIONIST Studio

As stated, PRACTIONISTStudio supports the actual im-
plementation of BDI agent systems by providing an automatic
code generation facility, which produces template or pHyti
gw%d parts of source code according to the developed models

// TODO Insert the right variables val ue
return
bel i ef Base. bel (AbsPredi cat eFactory. create
("newst ockPri ceRecei ved(arrived: X)"))
|| beliefBase. bel (AbsPredi cateFactory.create

IManageProfitForNewOrder (® ManageProfitableStodk ~1ManageProftForNewPrice

«practical=

«practical =1 ComputeStoplossPlan ~ NewPlacedOrderHandler
«applicables «meansEndse «meansends» «applicables «meansEndss» «meansEnds»
«invariant» ainvariants - X
scahicele El Holdi «cancels (® ComputeStoploss & NewPlacedOrderMessage
= = =l Holdin o
% goal>cancel() = g «applicable= | = goal->cancel()
«Si0lse
walicCesss & uid: long wglCCesss
== goal->succeed() «applicablex| (= symbol: String == goak>succeed() ComputeRiskPlan TopLevelPlan
B guantity: int «meansendss «meanskEnds=
ManageRiskFarNewOrder “epiiion e oot licabl ManageRiskForNewPrice| 28
W i A= . «applicablex W, = 4 - 3 3
e Eifimes long . 55 - ® ComputeRisk & NeviPerceptionArrived
«practical» = operation: 5String «practical»
=applicable» “constraints «applicables
sinvariants & default «invariants
«cancels i scancel» | UpdateMonitoringStockListPlant |- NewStockPriceHandler
«MEeansenas=

% goal>cancel() «meansEndss % goal->cancel() «meansEndse smeansEndss

“SUCCess»
= goal->succeed()

“SUCCESS=

(® ManageRiskyStock & goal>succeed() (® UpdateMonttoringStackList © TimePerception

Fig. 6. Plan Diagram related to thdoldingStocksManageagent.
(" newPl acedOr der Recei ved(ui d: X, stockSynbol: X, }
operation: X, quantity: X, price: X)")); . .) . . .
} In this snippet, the designer just needs to detail the right
[variables of the predicates (in this example a parametrized

* @ener at ed

*

* @ee org.practionist.core. Goal Profil e#succeed())
*/
publ i c bool ean succeed()

// TODO Insert the right variables val ue
return belief Base. bel (AbsPredi cat eFactory
.create("managed(i nvestor: X, stockNane: X)"));

This general implementation produced by the code generar

form of the predicates has been adopted, using the symbol %
and then adding values). That is, in order to express the-appl
cability and success conditions of the goal, the corresipgnd
beliefs were customized by replacing the aforementioned
variables with the values that characterise the goal.

A code snippet of the dependency relation
between the ManageHol di ngSt ock and the
ManagePr of i t abl eSt ock goals follows:

| x*

* @enerated

tor of PRACTIONISTStudioshould be customized accordingPtP! ' ¢ ¢l ass GR Minagetbol di ngSt ock_ManagePr of i t abl eSt ock

to the specific requirements for this goal. An example folow{

| **
* @enerated
*/
public class ManageHol di ngSt ock i npl ements Goal

IEX:
* @enerated
* (@ee org.practionist.core. Goal Profil e#applicable())
*/
publ i c bool ean applicabl e()
{
return beliefBase. bel (AbsPredi cateFactory
. create("newSt ockPri ceRecei ved(arrived: true)"))
|| beliefBase. bel (AbsPredi cat eFactory
. create("newPl acedOr der Recei ved
(uid: % stockSynbol: %
operation: % quantity: % price: ",
ui d, stockSynbol,
operation, quantity, price));

}

| **

* @ener at ed

*

* @ee org.practionist.core. Goal Profil e#succeed())
*/

publ i ¢ bool ean succeed()

{
return beliefBase. bel (AbsPredi cat eFactory
.create("nanaged(investor: % stockNane: %",
investorl D, synbol));

i npl enent s DependencyRel

public Goal verifiesRel(SerializableGoal goall,
Seri al i zabl eGoal goal 2)

{
if (goall instanceof ManageHol di ngSt ock
&& goal 2 instanceof ManageProfitabl eSt ock)
return new ManageProfitabl eSt ock();
return null;
}

}

In this example, everyvanageHol di ngSt ock goal de-
pends on theManageProfit abl eSt ock goal, without
specifying any information about stocks. Thus, this code

should be now customized according to the designer’s needs:
| **

* @enerated NOT

*/

public class GR ManageHol di ngSt ock_ManagePr of i t abl eSt ock
i npl enents DependencyRel

public Goal verifiesRel(SerializableCGoal goall,
Seri al i zabl eGoal goal 2)

{
if (goall instanceof ManageHol di ngSt ock
&& goal 2 instanceof ManageProfitabl eStock)
{
ManageHol di ngSt ock g =
(ManageHol di ngSt ock) goal 1;
return new
ManagePr of i t abl eSt ock(g. get Ul D(),
} g. get Symbol ());
return null;
}

HoldingStocksManager

fa)

Analyst

)
Bl Agent's Properties V |Z|@@

General | Plans | Goals | ol Relations | Perceptors | Effectors Beliefs |

a computational model which is more flexible and adaptive
than the agent models underlying several commercial and non
commercial frameworks.

Our tool allows the design and development of BDI agent
systems from several perspectives, including the reptasen

Chuices Feature

| r:‘!;al“ageR‘s".c\,"Ev:“oc.}; | rrlanag.ab;:s-kvstoc-k

pdatevoniorngsicis | Gz Compuesran ce of intentional attitudes and relationships among themwthg
ot [Remeve] | Eomectesirof the agents interact with their environment, the activitiéhin
ComputeStopProfit ComputeProfit

Cumsuleprugt ."vlanangHU!d:ngSth{ a plan. and SO fOTth.

ManageProfitableStock Up CamputeProfitTarget . .
ManagetddngSiock el As part of our future work, we aim at further developing
ComputeProfitTarge own

B PRACTIONIST Studioby adding editors for other diagrams

A

Trader

(i.e. dynamic views, such as interactions). We also intend
to improve service features of the tools, such as reverse
engineering and documentation management and automatic
generation.

Finally, we have been developing some other real-world
applications by using the PRACTIONIST framework, method-

In this snippet, the designer has just to detail some prop/©9y andStudio
erties of the dependee goal; here the dependee goal refers to
the same user and symbol of stock of the dependent goal. REFERENCES

Finally, a code snippet of the HoldingStockManager agent] J. McCarthy, “Ascribing mental qualities to machines,’aford Uni-

class is shown: versity, Tech. Rep. STAN-CS-79-725, 1979.

[2] D. Dennett,The Intetional Stance MIT Press, 1989.

Ixx [3] M. P. Georgeff, B. Pell, M. E. Pollack, M. Tambe, and M. Wdntige,
* @enerated “The belief-desire-intention model of agency,” ATAL '98: Proceed-
:{)t ected void initialize() ings of the 5th International Workshop on Intelligent Agekt Agent

b Theories, Architectures, and Languagesondon, UK: Springer-Verlag,

1999, pp. 1-10.

[4] A. S. Rao and M. P. Georgeff, “Modeling rational agentsthivi a

BDl-architecture,” inProceedings of the 2nd International Conference

on Principles of Knowledge Representation and Reasonifgorgan

Kaufmann publishers Inc.: San Mateo, CA, USA, 1991, pp. 483-4

[Online]. Available: http://citeseer.nj.nec.com/raoc9Ifating.html

V. Morreale, S. Bonura, G. Francaviglia, F. Centineo, Rlccio, and

M. Cossentino, “Developing intentional systems with thecpomist

Cancel l

Fig. 7. Agent Diagram related to théoldingStocksManageagent.

addBel i ef Set ("/ hon®/ pl / hol di ngst ockmanager. pl ") ;

[*kkkhkhkkkkkkkkxx(GoA| Skrxrkrkrkkkkkkkkk k[

// TODO Rermenber to put the goal’'s paraneters here

regi st er Goal (new ManageHol di ngSt ock(), "");

regi st er Goal (new ManageProf it abl eStock(), "");

regi st er Goal (new ConputeProfitTarget(), ""); 5]

[xx*x*xxxx**xxCGoal S**Rel ati ONS**x***xxx*xx [

/] TODO Renmenber to put the relation’s paraneters here
regi sterRel ati on(new

framework,” in Proceedings of the 5th IEEE International Conference
on Industrial Informatics (INDINO7)July 2007.

GR_ManageHol di ngSt ock_ManagePr of i t abl eSt ock(), ""); [6] O. J., “Objects and agents: how do they differRurnal of Object-
regi sterRel ati on(new Oriented Programmingpp. 50-53, 2000.
GR_ManageRi skySt ocks_Conput eRi sk(), ""); [71 J. Pavon, C. Sansores, and J. J. Gomez-Sanz, “Modellidgiamulation
/ Pl ans / of social systems with ingeniasfht. J. Agent-Oriented Softw. Eng.
EE R SR SRS EEEEEEEEE] *********T******* VOI 21 no 21 pp 196_2217 2008
ggd;a;?(ﬁ:gggg ngsfgtckT Eleaglsj’:m" :/arrz:;ggtsﬁ;; 25;?); [8] D. Ber_tolini, A. Perini, A. Susi, , and H Mouratidis, “'Ehtrqpos_ visual
addPl an(Newst ockPri ceHand! er . cl ass, modeling language. a mof 1.4 compliant meta-mod@bhtribution for
" NewSt ockPri ceHandl er") ; the AOSE TFG meeting2005.
} [9] H. Wang, J. Mylopoulos, and S. Liao, “Intelligent agemtsd financial

The Fig. 7 shows a snapshot of the Agent Diagram. More
in detail, by means of such a diagram it is possible to look &P
the list of all the intentional elements were modelled and {9y

risk monitoring systems,Commun. ACMvol. 45, no. 3, pp. 83-88,
2002.

X. Feng and C.-H. Jo, “Agent-based stock trader,"domputers and
Their Applications 2003, pp. 275-278.

D. N. Dawvis, Y. Luo, and K. Liu, “Combining kads with zeus develop

choose that ones that the designer wants associate to an agen a multi-agent e-commerce applicatioElectronic Commerce Research
It is worth noting that the code generator of PRACTIONIST, _, vol- 3, no. 3-4, pp. 315-335, 2003. . o
. . 12] A.Ricci, M. Viroli, and A. Omicini, “Programming MAS with ifacts.
Stu.d.|0|s al:_)le to producg the agent source code by putting the" i, pROMAS 2005, pp. 206-221.
entities which were designed in the previous modelling phag13]

I. Trencansky and R. Cervenka, “Agent modelling langudgml): A
together; obviously, this code should be customized agogrd ~ comprehensive approach to modelling masformatica vol. 29, pp.
to the designer’s needs.

391-400, 2005.
0. M. Group, “Unified Modeling Language, Superstruettir
E. S. K. Yu, “Towards modelling and reasoning support &arly-

VII. CONCLUSIONS ANDFUTURE WORK phase requirements engineering,” pp. 226-235. [Onlinekilable:
’ citeseer.ist.psu.edu/article/yu97towards.html

In this paper, through a running example, i.e. the PSTS, \Mé&] V. Morreale, S. Bonura, G. Francaviglia, M. Cossentiand S. Gaglio,

: ; : ; “PRACTIONIST: a new framework for BDI agents,” iRroceedings
presented PRACT|ON!S$tUdIQ the visual modelling, deSIQO of the Third European Workshop on Multi-Agent Systems (ESW03),
and development environment of the PRACTIONIST suite, Brussels, Belgium, 2005, p. 236.
which is the set of tools we have been developing to implemdt] V. ('j\/lgrréale,l S. gon?ra, G. Zrznca\lliglia, F. (?entineo., ®bss§2‘t\i(r:\o,

; and S. Gaglio, “Goal-oriented development of BDI agents:Rl -
agent systems accord!ng to the BDI model. TIONIST approach,” inProceedings of Intelligent Agent Technology
PRACTIONIST Studiosupports the development of agents
endowed with a lot of useful built-in capabilities and with

[14]
[15]

Hong Kong, China: IEEE Computer Society Press, 2006.

