

Abstract — The research in distributed artificial intelligence

has been addressing for several years the problem of designing
and building coordinated and collaborative intelligent multi-
agent systems. This interesting and advanced work can be
fruitfully exploited in the area of service-oriented computing if
agent technology is appropriately engineered and integrated with
the key technologies in this field.

To support this claim, in this paper we show how the agent
technology integrated in an Enterprise Service Bus allows the
conception and realization of real flexible, adaptive intelligent
service-oriented systems.

Index Terms — Multi-agent systems, service oriented
architecture, ESB, rule engine.

I. INTRODUCTION
ulti-agent systems and service-oriented computing are
still evolving towards a complete maturity. The quite

wide spreading of the service-orientation design paradigm and
of the related technologies is having a twofold influence on
the evolution of agent technology.

On the one hand, several researchers belonging to the agent
community are convinced that this technical area is a natural
environment in which the agent technology features can be
leveraged to obtain significant advantages. It is plain, in fact,
that service-oriented technologies cannot provide by
themselves the autonomy and social and proactive capabilities
of agents. Agents, taking advantage of their social ability,
exhibit a flexible coordination that makes them able to both
cooperate in the achievement of a global goal and compete in
the distribution of resources and tasks.

On the other hand, one of the requirements for the success
of multi-agent systems is that they have to guarantee an easy
integration with other widely used industrial technologies.

Driven by such motivations, a number of research works
have been undertaken with the aim of tackling the problem of
integrating service-oriented technologies with multi-agent

P. Mordacci is a student at DII, University of Parma, Viale Usberti 181A,

43100, Parma, Italy (e-mail: paola.mordacci@studenti.unipr.it).
A. Poggi is with DII, University of Parma, Viale Usberti 181A, 43100,

Parma, Italy (phone: +39 0521 905728; e-mail: poggi@ce.unipr.it).
C. G. Tiso is a student at DII, University of Parma, Viale Usberti 181A,

43100, Parma, Italy (e-mail: carmelo.giovanni.tiso @studenti.unipr.it).
P. Turci is with DII, University of Parma, Viale Usberti 181A, 43100,

Parma, Italy (phone: +39 0521 905708; e-mail: turci@ce.unipr.it).

systems.
The aim of this paper is in a slight different direction, that is

we try to cope with the issue of adding collaboration and
coordination capabilities in a service-oriented architecture. In
particular, we have considered an enterprise service bus (ESB)
- a software infrastructure that facilitates the realization of
SOA systems by acting as a middleware through which a set
of services are made available - and we have shown how the
integration of agent technology in an ESB may be considered
very promising.

The brief survey of the literature in the area of service-
oriented technologies, reported in the background section, has
the aim of showing the scenario in which the agent possibly
contribution should be set and at the same time to give a short
preamble acting as a motivation and rationale of the research
work that we have done. Section 3 gives an overview of the
related research. Section 4 deals with the integration of JADE
agents in ServiceMix, an open source ESB based on JBI
specifications. Section 5 describes a simple but realistic
application which shows how the powerful synergism
between agent and service-oriented technologies could be
very promising. The paper ends by drawing some conclusions
around the results of the work done.

II. BACKGROUND
The growing demand for high-levels of interoperability by

organizations that want applications to have broader reach,
have stimulated the rapid growth of novel standards,
technologies and paradigms with the aim of giving an answer
to such problem. The most appropriate response to this need
seems a service-oriented architecture (SOA), i.e. a system
assembled from a loosely coupled collection of services and in
particular of Web services - the integration technology
preferred by organizations implementing SOA (Dustdar &
Schreiner, 2005),

For the sake of clarity, it is necessary to say that there is no
one recognized definition of SOA, however a baseline of
concepts and principles and a strategic vision have emerged
and collectively characterize the service-oriented design
paradigm as an approach to defining integration architectures
based on the concept of service.

The last outcome of the SOA movement has been the ESB,
an infrastructure that can be used as a backbone upon which to
build service-oriented applications. As with SOA, there has
been no industry agreed on the definition of ESB so far. It is

Using Agent Technology as a Support for an
Enterprise Service Bus

Paola Mordacci, Agostino Poggi, Carmelo Giovanni Tiso, Paola Turci

M

still a controversial issue if it is a pattern, a product or an
architectural component. According to the authoritative
Gartner’s definition: “an ESB is a new architecture that
exploits Web services, messaging middleware, intelligent
routing and transformation”. Anyway, one thing seems to be
unquestionable; using an ESB is the quickest and most cost-
effective way to address the challenge of the enterprise
application integration. Several middleware vendors provide
or have on their roadmap an ESB.

However, a still open problem is that the information and
the research activities in this area are quite fragmented
(Papazoglou et al., 2006). What clearly emerges is that the
subject of service-oriented applications turns out to be vast
and enormously complex and more work needs to be done in
order to realize real flexible, adaptive intelligent service-
oriented systems. As a matter of fact, current SOA
implementations are still restricted in their application context
to being an in-house solution for companies (Domingue,
2008).

In the attempt to delineate an effective solution, some
researchers have envisaged as strategic the integration of SOA
with both semantic and Web technologies (Domingue, 2008).
Others have turned their eyes towards the agent technology, as
an interesting means for the realization of more effective and
reliable service-oriented systems and for SOA to be successful
on a worldwide scale. Clearly, such technologies are not
competitive but complementary and therefore someone else
has been developing systems which integrate SOA, semantic
Web and multi-agent systems (Negri, 2006).

The agents ability of operating in dynamic and uncertain
environments allows coping with the usual problems of
failures or unavailability of services and the consequent need
of finding substitute services and/or back tracking the system
in a state where execute an alternative workflow. Moreover,
the capabilities of some kinds of agent of learning from their
experience make them able to improve their performance over
the time avoiding untrusted and unreliable providers and
reusing successful solutions. These remarkable agents’
features have mainly driven the research activities of the agent
community in the area of service-oriented computing so far,
that is agents as a valuable support for realizing Web services
composition.

Other interesting features, which can be the main
ingredients for automatic cooperation between enterprise
services, are the agents’ capabilities of collaborating and
coordinating themselves. In a business environment, an
example would be a broker that has frequently to seek
providers as well as buyers dynamically, to collaborate with
them and finally to coordinate the interactions with and
between them in order to achieve its goals. An intelligent
service-oriented infrastructure could do it automatically or
semi-automatically, within the defined constraints. These
further agents’ characteristics have been considered in the
research work presented in this paper.

III. RELATED WORK
The problem of realizing service-oriented applications

exploiting agent technology has mainly concerned so far three
fundamental issues: (i) the management of the interactions
between agents and Web services; (ii) the execution of a
workflow or more in general of a plan that describes how Web
services interact; (iii) the discovery of the Web services that
perform the tasks required in the plan.

In other words, to date the efforts have been mainly devoted
to provide an effective solution to the problem of Web
services composition.

In this context, the first issue that the agent community has
had to cope with was the mapping between the different
semantic levels of the two paradigms or patterns of
communication (Greenwood & Calisti, 2004; Nguyen, 2005;
Shafiq et al., 2005).

The next step has been the implementation of prototypes of
agent based frameworks coping with the static and dynamic
composition of Web services, through the use of workflow
technologies (Buhler & Vidal, 2005). In fact, once the
infrastructure, enabling a bi-directional connectivity between
the two technologies, is in place an agent can play the role of
the orchestrator of dynamic Web service compositions. Even
if the current multi-agent solutions, aiming at realizing an
effective agent-based service composition, are still in a
preliminary phase and certainly need to be improved
(Savarimuthu et al., 2005), a lot of researchers and software
developers are really interested in giving a significant
contribution in this direction.

As far as the automatic cooperation between enterprise
services is concerned, to the best of the authors’ knowledge,
there are very few ongoing studies. The most significant is the
one reported in (Paschke et al, 2007). In this work, the authors
combine the ideas of multi-agent systems, distributed rule
management systems and service-oriented and event-driven
architectures. The work is mainly focused on the design and
implementation of a pragmatic layer above the syntactic and
semantic layers. Taking advantage of this layer, individual
agents can form virtual organizations with common
negotiation and coordination patterns. An enterprise service
bus is integrated as a communication middleware platform and
provides a highly scalable and flexible application messaging
framework to communicate synchronously and also
asynchronously with external services and internal agents. To
date, the authors have developed an interesting methodology
and an architectural design but they have only outlined a
possible implementation of the system.

IV. INTEGRATION OF JADE IN SERVICEMIX
Apache ServiceMix (ServiceMix) is an open source ESB

released under the Apache license, based on the Java Business
Integration (JBI) standard (JBI, 2005). These two factors,
open source and standard-based, allow for low entry cost,
maximum flexibility, reuse and investment protection.

ServiceMix is lightweight and easily embeddable, integrates

Spring support and can be run at the edge of the network
(inside a client or server) as a standalone ESB provider or as a
service within another ESB.

ServiceMix includes a complete JBI container supporting
all parts of the JBI specification: allows plug-in services (as
configuration of JBI components) which can be combined to
create a SOA; provides a Normalized Message Router (NMR),
as the backbone of all communication (based on the exchange
of normalized messages having an xml content) between
services within the ESB; supports the four JBI message
exchange pattern (i.e. protocols defining the messages
exchanged between a service consumer and a service
provider, involved in a service invocation); includes full
support for the JBI deployment units with hot-deployment of
JBI components.

ServiceMix distribution already includes many JBI
components that provide support for some of the most
common protocols and engines. JBI components are deployed
to the JBI container and simply run in memory waiting for
configuration. In fact, in order to make use of these
components as an application developer, one has to provide a
configuration for each component he/she intends to use.

ServiceMix therefore strongly encourages the “configure
don’t code” integration approach, that allows a faster and
simpler (but less flexible..) integration.

Configurations are implementation specific but the
packaging is defined by the JBI specifications. Each
component configuration must be packaged as a Service Unit
(SU) and each SU must be wrapped in a Service Assembly
(SA). These are simply ZIP/JAR files that contain an XML
descriptor.

According to the JBI specification, JBI components come
in two flavours: Binding Component (BC) and Service Engine
(SE).

ServiceMix BCs are used to communicate outside the JBI
environment by means of a lot of supported remote protocols:
HTTP/S, HTTP+SOAP, JMS, FTP, SMTP, XMPP, etc.

BCs are responsible for normalizing incoming (relative to
JBI environment) messages and denormalizing outcoming
messages.

ServiceMix SEs provide some type of logic inside the JBI
environment. Some examples of SE components in
ServiceMix include: rules engines, BPEL engines, XSLT
engines, Plain Old Java Object (POJO), annotated POJO,
schema validation of documents, support for Enterprise
Integration Pattern, etc.

According to the “configure don’t code” integration
approach, to integrate JADE agents in an ESB is opportune to
select the most appropriate ServiceMix component to
configure, in order to obtain a service satisfying our goal. The
basic idea is to build a service, acting as a proxy between the
NMR and the agent community, that can interact with both
services deployed in the JBI environment and JADE agents
belonging to the agent community. By means of this proxy,
services deployed in ServiceMix ESB can access capabilities
offered by agents. Services can send normalized messages to

the proxy service that can map them in ACL messages and
forward them to a specific agent within the community. On
the other hand, the proxy can receive requests from the agent
community, map them in normalized messages and forward
them to a specific service exposed in the bus. To make this
possible, each proxy needs to be in relation to an associated
agent that represents a proxy gate towards the agent
community

A possible solution is based on the ServiceMix jsr181
component: a JBI SE exposing POJO as services on the bus.

When a normalized message, addressed to one of such
services, arrives from the bus, an appropriate method of the
POJO will be called, passing the service invocation
parameters (specified as an xml content of the message) as
method parameters. The request is forwarded in some way
within such method to its associated agent (further details will
be explained below). We discarded this option because the
marshalling of the normalized message content is handled
automatically and in a quite rigid manner

The chosen solution is based on the ServiceMix bean
component, since this is a very flexible component that can
receive messages from the NMR and process them in any way
it likes. The bean component gives the developer the freedom
to create any type of message handling but as a counterpart
she/he has to hand coded all the way.

In order to configure this component one has to define a
simple XML file, where the service name, and a Java class
representing the bean are mainly defined. These two artefacts
have to be packaged as a SU.

When a normalized message, addressed to such a service,
arrives from the bus, an appropriate method of the bean will
be called, passing the message as a method parameter. The
message will be processed and the requested actions will be
taken. Using JBI API the bean, in turn, can send the message
towards other services.

The proxy service implementation is therefore
accomplished by configuring the ServiceMix bean
component, instantiating within the bean constructor its
associated JADE agent that, using JADE API, will be
executed within a new secondary container. It is therefore
necessary that first JADE main container is executed, then the
bean is initialized. The connection between the two entities is
handled by means of references; the bean holds a reference to
the agent and the agent holds a reference to the bean.

Within a bean method, invoked subsequently to the
reception of a message by the proxy service, it is so possible
to call an appropriate agent method that, in turn, can interact
with whatever agent belonging to same or other FIPA
communities.

Similarly, any agent can send an ACL message to the proxy
agent that by means of the proxy service can interact with
services exposed in the bus.

V. ON-LINE BOOK SELLING
The framework has been experimented in the realization of

an online book selling application where there are N book
sellers and one broker. The broker is responsible for providing
its users with elementary and aggregated information collected
through the collaboration with sellers.

In Figure 1, the full system architecture (with N=2) is
shown.
The sellers and the broker are distributed in the network. Each
entity, i.e. the coupling agent-service, has an associated
ServiceMix JBI container in which a number of JBI
components are deployed. The blue rectangles represent
services as configuration of a JBI component. The particular
services, that is the sellers or the broker, act as a proxy
between the NMR and the agent community. The agent
associated to each proxy (i.e. respectively agent seller or agent
broker) is linked to its proxy by a dotted line. A seller

maintains book data within a relational database that is
handled by an agent seller or possibly another agent of the
community. Finally, in the figure it is also highlighted how all
interactions between services within a JBI container are
mediated by the NMR.

Each seller entity provides its users with the following
features: (i) an easy support to obtain the complete book list
offered by the seller; (ii) the possibility, if some constraints
are met, to obtain a discounted price of a specified book; (iii)
the opportunity to add a new book to the seller’s book
database.

Users can express a request for a seller book list by means
of a web interface: the http request is received by the http-
book-list service (a configuration of ServiceMix BC
servicemix-http).

Figure 1- On-line book selling system architecture

This service maps the received http request in a message

normalized content (an XML document), that is sent to the
seller service (as already mentioned, a configuration of
ServiceMix SE servicemix-bean).

This proxy forwards the request (mapped in an ACL
message) to the agent seller, which fulfils the request or
delegates the agent acting as a database handler.

The agent seller returns the response, an XML document

containing the book list, to the proxy that, in turn, maps such
response in a normalized message, then returned to the http-
book-list service. At last, this service maps the received
message in a proper HTTP response. Once the user has
obtained the seller book list, he/she can request the final price
(i.e. the price after the discount) of a selected book, by means
of a web interface. It is necessary to specify, besides the book
title, the user nickname and the desired quantity, since in this

simple application the final price of a book is determined by a
set of business rules depending on this information.

The HTTP request, containing the user specified
parameters, is received by the http-seller service (a
configuration of ServiceMix BC servicemix-http).

Similarly to the http-book-list service, this service maps the
received http request in a message normalized content, that is
sent to the seller service. The seller service asks its linked
agent seller the book base price that subsequently will be
forwarded, together with user’s data, to the drools service, a
configuration of ServiceMix SE servicemix-drools.

Drools is a business rule management system with a
forward chaining inference based rules engine, more correctly
known as a production rule system, based on an enhanced
implementation of the Rete algorithm. Drools is a JBoss open
source project compliant to the JSR-94 standard for business
rules engine.

A rule engine is mainly based on two concepts: a set of
rules (the actual logic) and assertions (facts accessed by rules).
Rules are coded in a drl file, following the Drools syntax.
Assertions can be passed through Java.

To configure a servicemix-drools is necessary to define,
besides an xbean.xml file, a drl file containing the business
rules. Each normalized message received by a drools service
is processed by the drools service as an assertion. A drl file
can access JBIHelper class methods to interact with NMR
(e.g. it is possible to create normalized message and send them
to a specified destination).

In such way, the drools service can answer the request
received by a seller service replying with a message
containing the discount, determinate according to the codified
business rules.
To add a new book to the seller’s book database, an external
application, that publishes a JMS message (containing new
book data) on a specified JMS Topic, is used. Such message
is withdrawn by jms-seller service (a configuration of
ServiceMix BC servicemix-jms) representing a JMS
TopicSubscriber. This service maps the received message in a
new message addressed to the seller service that will forward
it to the seller agent or through it indirectly to the agent acting
as book database handler.

The broker entity provides his users with the following
features: (a) a support to obtain the complete book list, as the
union of seller book lists; (b) the possibility to know the seller
that offers a selected book at the best final price; (c)
subscription to broker’s newsletters; (d) notification by e-mail
of new books.

 Cooperating with the agent sellers in accordance with the
FIPA protocols, the agent broker can collect the information
necessary to provide the aforementioned functionalities.

Users can request the complete book list by means of a web
interface: the http request is received by the http-book-list-
broker service (a configuration of ServiceMix BC servicemix-
http). Similarly to the seller case, this service maps the
received http request in a normalized message, that is sent to
the broker service (a configuration of ServiceMix SE

servicemix-bean: the broker proxy).
This proxy forwards the request to the broker agent, that

will interact with every seller in order to collect the various
lists. The broker agent builds the union of the seller book lists,
returns it to the proxy and so on until a proper HTTP response
is sent to the requester.

Once the user has obtained the complete list, he/she can ask
the broker which seller offers the selected book at the best
final price. For the same reasons explained above in the seller
case, the user has to specify, besides the book title, the user
nickname and the desired quantity.

The HTTP request is received by the http-broker service
and then sent to the broker service. This proxy forwards the
request to the agent broker, which collects information from
every agent seller, offering the requested book. Once agent
broker receives a response from each seller or a timeout is
reached, returns the best received price, through the proxy, to
the user.

An http-register-broker service has been made available to
allow users to register with broker’s newsletter. Users need to
compile an html form specifying their name and e-mail.

As usual, this service maps the received http request in a
normalized message, which is sent to the broker service. Such
service will forward it to the agent broker, that consecutively
will delegate the agent responsible for handling users’ data to
add the new user to the database.

Finally, when agent seller receives notification about the
insertion of a new book, it sends an ACL message containing
the new book data to the agent broker and to the agent in
charge of handling the book database. By means of the broker
service, the agent broker, once it has collected user data from
the agent responsible for handling user database, sends a
normalized message to the mail service (a configuration of
ServiceMix BC servicemix-mail), responsible for sending an
e-mail to each registered users

VI. CONCLUSION
In this paper, we have addressed the integration of multi-

agent systems in an ESB, highlighting the benefits that both
communities can achieve from this solution. On the one hand,
multi-agent systems are able to interact with the key emerging
technologies in the area of service-oriented computing. On the
other hand, the interesting and advanced work carried out in
several years by the agent community can be fruitfully
exploited in the area of service-oriented computing.

Finally, we have tried to prove, by means of a simple but
realistic application, how the powerful synergism between
these technologies could be very promising.

Besides the significant role that collaboration and
coordination capabilities play in our application, another
important point that clearly emerges from our application is
that the agent technology can make successful the exploitation
of the ESB technology, based on JBI specification, on a
worldwide scale. To date, the ESB technology does not
provide a support for the federation of distributed JBI

container; each JBI container can interoperate with the others
as with remote consumers or providers, that is by means of
communication protocols supported by binding components.

REFERENCES
[1] Buhler P.A., Vidal, J.M. (2005). Towards Adaptive Workflow

Enactment Using Multiagent Systems. Information Technology
and Management, 6(1):61-87

[2] Greenwood D. & Calisti M. (2004). Engineering Web Service-
Agent Integration. In Proceedings of the IEEE International
Conference on Systems, Man and Cybernetics, pages 1918–
1925. The Hague, Netherlands.

[3] Domingue J. & Fensel D. (2008) Toward a Service Web:
Integrating the Semantic Web and Service Orientation, IEEE
Intelligent Systems January/February, 2008.

[4] Dustdar, S., & Schreiner, W. (2005). A survey on web services
composition, Int. J. Web and Grid Services, Vol. 1, No. 1, pp.1–
30

[5] JBI Java Business Integration 1.0, Final Release August, 2005.
available from
http://jcp.org/aboutJava/communityprocess/final/jsr208/index.ht
ml

[6] Negri A., Poggi A., Tomaiuolo M., Turci P. (2006). Agents for
e-Business Applications, In AAMAS ’06: Proceedings of the
fifth international joint conference on Autonomous agents and

multiagent systems. (pp. 907-914). Hakodate, Japan. ACM
Press

[7] Nguyen X. T. (2005). Demonstration of WS2JADE. In
Proceedings of the Fourth International Joint Conference on
Autonomous Agents and Multiagent Systems, pages 135–136.
Utrecht, The Netherlands

[8] Papazoglou1 M., Traverso P., Dustdar S., Leymann F. (2006).
Service-Oriented Computing Research Roadmap.

[9] Paschke, A., Boley, H., Kozlenkov, A., Craig, B. (2007). Rule
Responder: RuleML Based Agents for Distributed Collaboration
on the Pragmatic Web. 2nd International Conference on the
Pragmatic Web Oct 22-23, 2007, Tilburg, The Netherlands.

[10] Savarimuthu B. T. R., Purvis M., Purvis M. & Cranefield S.
(2005). Integrating Web Services with Agent Based Workflow
Management System (WfMS). In WI '05: Proceedings of the
2005 IEEE/WIC/ACM International Conference on Web
Intelligence. (pp. 471 – 474). Washington, DC. IEEE Computer
Society.

[11] Servicemix, available from http://servicemix.apache.org/
[12] Shafiq M. O., Ali A., Ahmad H. F., Suguri H. (2005).

AgentWeb Gateway - a Middleware for Dynamic Integration of
Multi Agent System and Web Services Framework. In
Proceedings of the 14th IEEE International Workshops on
Enabling Technologies: Infrastructure for Collaborative
Enterprise, pages 267–270, Washington, DC. IEEE Computer
Society

