
From Agents to Artifacts Back and Forth:
Operational and Doxastic use of Artifacts in MAS

Michele Piunti
Università degli studi di Bologna

DEIS - Bologna, Italy
Email: michele.piunti@unibo.it

Alessandro Ricci
Università degli studi di Bologna

DEIS - Bologna, Italy
Email: a.ricci@unibo.it

Abstract— Recent approaches in Multi-Agent Systems are
focusing on providing models and methodologies for the design
of environments and special purpose tools supposed to ease pro-
gramming in the large and scale up growing complexities. Among
others, the Agents and Artifacts (A&A) approach introduced the
notion af artifact as first class abstraction providing agents with
external facilities, services and coordination medium explicitely
conceived for promoting their activities. In this paper we analyse
A&A systems by focusing on the functional roles played by arti-
facts. In particular, we here investigate the function of artifacts
once they are employed in the context of societies of cognitve
agents, i.e. agents capable to reason about their epistemic and
motivational states. In this context, a twofold kind of interaction
is envisaged. On the one side, artifact rapresentational function
allows agent to improve epistemic states, i.e., by representing and
sharing strategic knowledge in the overall system (doxastic use).
On the other side, artifacts operational function allows agents
to improve the repertoire of actions, i.e., by providing additional
means which can be purposively triggered by agents to achieve
goals (operational use). Some of the outcomes of this approach
are discussed along with test cases showing agents engaged in
goal-oriented activities relying on the transmission of relevant
knowledge and the operations provided by artifacts.

I. INTRODUCTION

The artifact abstraction has been recently introduced in
Multi-Agent System (MAS) [13] and MAS programming
[20] as a basic building block to model and design agent
environments and, more exactly, agent work environments.
The notion of work environment used here refers to that
part of the MAS – so developed by MAS designers and
developers – which is perceived and used by agents as a
first-class entity of their world, and which provides suitable
functionalities and services that agents can exploit to ease
their individual and social activities [18]. Artifacts – as in-
troduced by the A&A conceptual model – can be conceived
as basic module to structure such work environments, rep-
resenting non-autonomous computational objects1 that agents
can dynamically instantiate, share and use as resources and
tools to support and promote their activities. Mutuating the
notion of ecosystems2 or human societies, where individuals
are supposed to behave and interact by means of shared

1The notion of object is used here in its general term, meaning a dynamic
entity with a proper identity

2Introduced by Cristopherson in [5], ecosystem has been defined as “a
natural unit consisting of all plants, animals and micro-organisms (biotic
factors) in an area functioning together with all of the non-living physical
(abiotic) factors of the environment”.

Fig. 1. A metaphorical representation of a MAS according to A&A.

knowledge, cultural transmission, memes [6], A&A states a
clear separation of concern between the entities dwelling in
a MAS: whereas agents can be considered as the proactive
actors of the systems, exhibiting a purposive and autonomous
behavior, artifacts are the non-autonomous entities, providing
agent with facilities and special purpose tools to be exploited
as external resources in order to serve a functional role [14].
According to this view, a MAS is designed and programmed in
terms of an ensemble of agents that play together in a common
(work) environment not only by communicating through some
high-level Agent Communication Languages, but also co-
constructing and co-using different kinds of artifacts, organised
in workspaces (Figure 1 shows a metaphorical picture of a
MAS in this perspective). The main source of inspiration
underlying this view comes from human societies and research
works in Activity Theory [12], remarking the fundamental role
that play artifacts in our society in mediating and supporting
human work, in particular cooperative work. Besides A&A,
CARTAGO [20] has been introduced as a platform and infras-
tructure providing a concrete computational model to program
artifacts and a distributed runtime for executing artifact-based
work environments, making it possible for agents developed on
different agent platforms to dynamically join and work inside
such environments [18].

At first, for MAS designers the usefulness of the artifact
abstraction concerns the availability of an explicit level of
abstraction and technologies – based on A&A concepts – for
modeling, design and programming work environments for
different kinds of purposes. This is the main line followed
by most of the existing work exploiting the notion of arti-
fact, where work environments are mainly devoted at ruling
and promoting complex social interactions. Recent examples
are [9], [8], where the notion of artifacts is used respectively
to conceive and design organisation infrastructures for open
MAS and to support the design of reputation mechanisms.

Then, a further – more challenging – level can be devised, in
which MAS designers conceive and design agents – typically
cognitive agents – which are capable to reason about their
work environment and dynamically decide how to exploit it
depending on their goals and tasks. This level is fundamental
when open MAS are of concerns, and introduces many inter-
esting and challenging issues, both on the artifact side and the
agent side.

On this line, in this paper we report on preliminary investi-
gation concerning the functional roles played by artifacts in the
context of cognitive agent societies, and we relate such roles
to the epistemic and motivational states of agents working
with artifacts. As a result, we identified two fundamental
general functions (described in Section III): (i) doxastic,
which allows agent to improve their epistemic states, by
representing and sharing strategic knowledge in the overall
system; (ii) purposive, which allows agents to improve the
repertoire of actions, by providing additional means which
can be purposively triggered by agents in order to achieve
their goals. Besides the conceptual aspects, in Section III
we show some practical outcomes of the work reporting
simple examples involving agents programmed with the Jason
agent platform [1] (based on the AgentSpeak BDI-based
agent language) engaged in goal-oriented activities involving
artifacts programmed with CARTAGO. In order to ground
the discussion and the examples provided in Section III,
Section II provides an overview about the computational
model of artifacts provided in CARTAGO and the repertoire
of actions provided to agents for playing within artifact-
based environments. Concluding remarks on the approach are
reported in Section IV.

II. THE CARTAGO PLATFORM

CARTAGO (Common ARtifact infrastructure for AGent
Open environment) is an infrastructure and a platform for
programming and executing artifact-based work environments
for MAS [20], implementing the A&A conceptual model. In
detail, the platform includes a Java-based API for program-
ming artifacts, defining new types of artifacts following the
A&A programming model, an agent API to be used in agent-
oriented programming platforms to play within CARTAGO
environments – including a basic set of actions for creating and
interacting with artifacts, and managing and joining workspace
– and a runtime and related tools, to execute and manage the

artifact-based environments. CARTAGO technology is open-
source3 and implemented on top of the Java platform.

A. Environment Model

A work environment in CARTAGO is conceived as col-
lection of workspaces possibly distributed on different nodes
where the infrastructure has been installed (referred in the
following as CARTAGO nodes). Agents (possibly in exe-
cution on multiple and heterogeneous agent platforms) can
dynamically join and quit the workspaces, possibly working
in multiple (and distributed) workspaces at the same time.
A Role-Based Access Control (RBAC) model is adopted for
specifying and managing security aspects at workspace level,
ruling agent entrance and exit, and agent access and interaction
with artifacts.

By default, each workspace contains a set of pre-defined
artifacts, created at the workspace creation time, which pro-
vides some fundamental functionalities and facilities for agents
working inside the workspace and for workspace(s) manage-
ment. Among the others, a factory artifact is used to instantiate
artifacts, specifying the artifact template and a name and a
registry artifact is used to keep track of the set of artifacts
actually available in the workspace. The general idea is to reify
in terms of a suitably designed artifact every infrastructure part
and functionality so as to make it observable, controllable,
adaptable by agents themselves (meaning agents that have the
permission to do that according to their role), besides human
administrators.

B. Programming Artifacts: An Example

To give a taste of artifact programming model, here we
briefly describe a simple example of artifact, a bounded-
inventory, which contains main aspects of the artifact model,
namely observable properties and a usage interface, besides
basic synchronization functionalities. The bounded-inventory
is a kind of coordination artifact designed to function as a
shared inventory mediating the exchange of some kind of items
between a possibly dynamic number of producer agents and
consumer agents [11]. The producers-consumers problem is
typical in concurrent systems, where agents are supposed to
adopt effective strategies with respect of the shared resorce
and taking into account further bounded resources like time
and space (memory). This requires some kind of coordination
strategy between agents, i.e., in order to coordinate the cyclic
production of items by producer and the activities performed
by consumer agents. To this end, the bounded-inventory pro-
vides a coordination mechanism to uncouple and – at the same
time – synchronize the activities of producers and consumers,
thus providing a locus of design (the size of the inventory) for
tuning the performance of the system.

Looking at the CARTAGO implementation in Figure 2,
the bounded-inventory artifact provides a usage interface
with two operation controls to respectively insert (put)
e consume (get) items, and two observable properties,

3Available at http://cartago.sourceforge.org.

OBSERVABLE PROPERTIES:

n_items: int+
max_items: int

Invariants:
n_items <= max_items

USAGE INTERFACE:

put(item:Item) / (n_items < max_items):
 [obs_prop_updated, op_exec_completed]

get / (n_items >= 0) :
 [obs_prop_updated, new_item(item:Item),
 op_exec_completed]

put

n_items 0
max_items 100

get

import alice.cartago.*;
import java.util.*;

public class BoundedInventory extends Artifact {
 private LinkedList<Item> items;

 @OPERATION void init(int nmax){
 items = new LinkedList<Item>();
 defineObsProperty("max_items",nmax);
 defineObsProperty("n_items",0);
 }

 @OPERATION(guard="inventoryNotFull") void put(Item obj){
 items.add(obj);
 updateObsProperty("n_items",items.size()+1);
 }

 @OPERATION(guard="itemAvailable") void get(){
 Item item = items.removeFirst();
 updateObsProperty("n_items",items.size()-1);
 signal("new_item",item);
 }

 @GUARD boolean itemAvailable(){ return items.size() > 0; }

 @GUARD boolean inventoryNotFull(Item obj){
 int maxItems = getObsProperty("max_items").intValue();
 return items.size() < maxItems;
 }
}

Fig. 2. A simple bounded-inventory artifact, exploiting operation control guards to synchronize agent use of the inventory.

max nitems, showing the maximum capacity of the inven-
tory, and n items, showing the current number of items
stored in the inventory. Internally, a simple linked list is used
to store items. The synchronization functionality provided
by the artifact is realised here by exploiting a basic feature
of the artifact programming model, which accounts for the
possibility of defining guards that specify when an operation
controls is either enabled or disabled. In the example the
put control is allowed only when the inventory is not full
(inventoryNotFull guard), and get is allowed when the
inventory is not empty (itemAvailable guard). Hence, if
an agent selects the put operation control and the inventory
is full, the action is suspended. Analogously for the get
control, if the inventory is empty. A most detailed description
of the Java-based API and of this use case, along with other
examples, can be found in [19].

C. Integration with Agent Platforms

CARTAGO is envisaged for enabling full interoperability
across heterogeneous agent platforms, hence it has been de-
signed to be orthogonal to the specific models and technologies
adopted for the agents working in it. It allows integration and
exploitation in principle of any agent programming platform,
enabling agents of heterogeneous platforms (and finally mod-
els and architectures) to interact and interoperate as part of the
same MAS, sharing common artifact-based environments [18].

To realise such integration, both from a conceptual and
engineering point of view, the notion of agent body is ex-
ploited, as that part of an agent which is belonging to a
CARTAGOworkspace. Whereas the agent mind remains in
execution externally – whithin the agent platform – an agent
body is physically running in a CARTAGOsystem. Hence,
the agent body logically and physically situates an agent
in a CARTAGOworkspace: in particular, it contains proper
effectors that make it possible essentially to act upon (use)
artifacts, and sensors to detect and perceive observable events
generated by artifacts, possibly applying filters and specific
kinds of “buffering” policies. From an architectural point of
view, to connect agent mind and agent body, platform-specific
bridges are introduced, functioning as wrappers on the agent
mind side to control the body and perceive stimuli collected
by body’s sensors. Currently, bridges exists for Jason [1], an
interpreter for an extended version of AgentSpeak, Jadex [17],
a BDI agent platform based on Java and XML as mainstream
language / technologies to develop intelligent software agent
systems, and simpA [21], a Java-based agent-oriented frame-
work based on the A&A conceptual model.

D. The Tenet of Agent-Artifact Interaction Model: Use and
Observation

To enable interactions between agents and artifacts the
repertoire of actions natively provided by the agent platforms

is extended with a new set of special-purpose actions envis-
aged for playing inside an artifact-based environment. The
overall set of new actions can be grouped in four groups, as
depicted in Table I: (i) join and leave workspaces; (ii) create,
lookup, dispose of an artifact; (iii) use an artifact; (iv) observe
an artifact without directly using it.

The core part of this set is given by actions in the last two
groups, concerning artifact use and observation. The agent
activities bleonging to artifact use and observation are the tenet
of the agent-artifact interaction model and their understanding
is the pivotal underpinning of this work.

The use action is provided to agents so as to act upon the
artifact by selecting an operation control. To use an operation
its description needs to be part of the artifact usage interface,
and eventually specifying parameters required by the control
(see Figure 3). If the use action succeeds, then a new instance
of the operation linked to the operation control starts its
execution inside the artifact. The execution of the operation
eventually generates a stream of observable events that may
be perceived both by the agent which is responsible of the
operation execution and by all the agents that are observing the
artifact. Some basic types of events are meant to be generated
by default by artifacts, in spite of their specific type, in corre-
spondence to particular situations (i.e., the completion or the
failure of an operation, the update of an observable property, or
rather the disposal of an artifact). Two aspects are important
here. First, the execution of a use action upon an operation
control involves a synchronous interaction between the agent
and the artifact: action success means that the operation linked
to the control has started its execution. Second, the execution
of the operation is completely asynchronous with respect to
agent activity. Hence, use does not involve any transfer of
control as it happens in the case of remote procedure call
or method invocation in procedure-based or object-oriented
systems.

Besides use, observation is the second main aspect concern-
ing agent-artifact interaction. To perceive the observable events
generated by the artifact two basic modalities are possible,
called here active and passive. In the active modality, the agent
doing a use explicitly indicates a sensor as a parameter. The
sensor is thus meant to collect all the observable events (which
can be reffered to the triggered operation) as soon as they
are generated; then, a further sense action is provided to
the agent to actively fetch those events as percepts, possibly
specifying filtering rules. In so doing the agent actively retrieve
the percepts from the sensor on demand, as soon as it needs
it. Sensors in this case play the role of perceptual memory
explicitly manageable by the agent, who can use them to
organise in a flexible way the processing of the events, possibly
generated by multiple different artifacts that an agent can be
using for different, even concurrent, activities.

In the passive modality events generated by an artifact
are authomatically made observable to the agent directly
as native/internal events, without the explicit mediation of
sensors. In other terms, the bridge mechanism translate the
events coming from the scrutinized artifact into events holding

the agent architecture. Besides, the agent passively receives
those events as native signals to be handled within the rea-
soning cycles. Those events are supposed to contain relevant
information about the occurrence of the originating artifact
event (i.e. , the source of the event, associated labels, contents
etc.).

As an additional interaction modality, besides perceiving
the events related to a previous use, a support for pure
observation – that is, observation without use – is provided,
concerning both observable properties and observable events.
For continuous observation of properties and events a specific
action called focus is provided (see Figure 4): by executing a
focus on a specific artifact, an agent can continuously perceive
the state of artifact observable properties and thus is notified
of all the observable events that the artifact will generate from
that moment on, even if it is not actually using it. Observable
properties are directly mapped onto agent percepts and then,
for cognitive agent architecture in particular, can be related to
percepts or beliefs indicating the situated state of the artifact.
For observable events, the two perceptive (active and passive)
modalities are available also for the focus action, either spec-
ifying or not a sensor. The semantics is the same as in the use
case: by specifying a sensor all the observable events generated
by the artifact are detected by the sensor and eventually fetched
by the agent through a sense internal action. A further action
concerning observation is observeProperty, which makes
it possible read the current value of a specific observable
property, which is returned directly as feedback of the action.

It’s worth noting that continuous observation of properties
and perception of events have different characteristics (and
then purposes, from the designer point of view). In particular,
observable properties represent the state of the environment
(structured in terms of artifacts) and, as such, it could change
with a frequency that could be beyond agent perceiving
(and related) capabilities. Instead, observable events represent
changes in the world and typically are buffered and processed
in some kind of order that could depend on event priorities
or agent actual promptness. This is true in particular for
cognitive agents which can indeed follow adaptable strategies
in allocating their attentive resources.

Agents using mental states are the ideal candidate to manage
complex interactions from agents to artifacts involving inter-
leaved operation calls performed on heterogeneous artifacts
distributed across nodes and workspaces. Based on the various
execution models employed by the various integrated agent
platforms, more complex form of loosely coupled interaction
between agents and artifacts can be suitably conceived. In
what follows we’ll provide a systematization on the functional
terms at which a complex interaction can be conceived in
cognitive terms. Whereas agents perceptive capabilities allow
to dynamically store and situate information which is relevant
for the ongoing purposes, reasoning capabilities may promote
the use of external services provided by artifacts, orchestrating
a tight composition of chained sequences of operation calls.

(1) joinWorkspace(+Workspace[,Node])
(2) quitWorkspace
(3) makeArtifact(+Artifact,+ArtifactType[,ArtifactConfig])
(4) lookupArtifact(+ArtifactDesc,?Artifact)
(5) disposeArtifact(+Artifact)
(6) use(+Artifact,+UIControl([Params])[,Sensor][,Timeout][,Filter])
(7) sense(+Sensor,?PerceivedEvent[,Filter][,Timeout])
(8) focus(+Artifact[,Sensor] [,Filter])
(9) stopFocussing(+Artifact)
(10) observeProperty(+Artifact,+Property,?PropertyValue)

TABLE I
ACTIONS INTRODUCED IN AGENT’S REPERTOIRE ALLOWS THE INTERACTION IN CARTAGOWORKING ENVIRONMENT. THEY ARE FUNCTIONALLY

DIVIDED IN FOUR MAIN GROUPS: FOR MANAGING WORKSPACES (1–2), FOR CREATING, DISPOSING AND LOOKING UP ARTIFACTS (3–5), FOR USING

ARTIFACTS (6–7), AND FOR OBSERVING ARTIFACTS (8–10). SYNTAX IS EXPRESSED IN A LOGIC-LIKE NOTATION, WHERE ITALICISED ITEMS IN SQUARE

BRACKETS ARE OPTIONAL. CONCRETE REALISATION OF THE ACTIONS DEPENDS ON THE SPECIFIC AGENT PROGRAMMING PLATFORM WHICH HAS BEEN

INTEGRATED [18], [15]

myOpControl(X)

ValuePropName

ValuePropName
......

AGENT

use
myOpControl(x)

AGENT OPERATION EXECUTION
AGENT

EVENTS
GEN OBS PROPERTIES

CHANGE

myOpControl(X)

ValuePropName

ValuePropName
...

OPERATION EXECUTION

myOpControl(X)

ValuePropName

Value
...

Fig. 3. Using an artifact: by selecting the myOpControl control belonging to the usage interface, a new operation instance starts its execution inside
the artifact. The execution of the operation will eventually generate events observable to the user agents – and to all the agents observing the artifact – and
possibly update artifact observable properties.

AGENT

focus
Belief base
(or alike)

PropName(Value).
PropName(Value).
...

myOpControl(X)

ValuePropName

ValuePropName
...

AGENT

Belief base
(or alike)

PropName(Value).
PropName(Value).
...

myOpControl(X)

ValuePropName

ValuePropName
...

USE

AGENT

myOpControl(X)

ValuePropName

Value
...

observe
property

(+PName,?Value)

Fig. 4. Observing an artifact: by focussing an artifact, an agent is (1) continuously made aware of observable properties value as percepts typically mapped
into agent belief base, and (2) receives all the observable events generated by the artifact in executing operations possibly triggered by other user agents.

III. COGNITIVE USE OF ARTIFACTS

A main aspect of cognitive system study concerns the
investigation of how information is represented and how those
representations are transformed, combined and propagated so
as to form a behavior [24]. In particular, we here refer to
a general explanation of cognitive agents built upon the two
pronged notion of epistemic and motivational states. In this
view, cognitive agents can be described as intentional systems
able to autonomously reason about their resources – mappable
upon internal representations – in order to pro-actively reach a
desired state of affairs. On the epistemic dimension, cognitive
agents are assumed to support their reasoning processes on
the basis of their internal knowledge, namely “beliefs”. Beliefs
can be viewed as those doxastic representation related on the

information agents are able to find, integrate and take into
account. Besides epistemic states, motivational states allow
agents to “pursue” a given course of actions, i.e. by committing
an intention (among the achievable ones) through the execution
of some action or plan they have in repertoire. On these bases,
in this section we refer to artifacts which can be cognitively
used, read and created by cognitive agents.

In this view, artifact are supposed to be (not only) com-
putational components structuring the environment (but also)
resources which can be interactively and cognitively exploited
by agents to attain their goals. Given the model abstractly
described in Section II the following sections provide a deeper
analysis on the cognitive terms underlying interactions from
agents to artifacts. Before detailing the operational and dox-

astic use of artifacts, the next section describes the cognitive
use of active and passive perception styles.

A. Active and Passive Interaction Styles

As seen in Subsection II-D, two basic approaches have
been envisaged for agents in order to manage their percep-
tive activities upon scrutinized artifacts, namely active and
one passive modalities. Sensors can be seen as part of an
agent body, logically situating an agent into a workspace and
containing both sensors and effectors to act upon artifacts of
that workspace. Hence, in the active modality sensors play the
role of perceptual memory or external working memory, whose
functionality accounts for keeping track of stimuli arrived
from the CARTAGO environment. Accordingly, sensors can
be programmed by defining rules, filters and specific kinds
of “buffering” policies. This allows agents to retrieve relevant
events, even interleaved and generated by multiple artifacts
that the agent may use for different, even concurrent, purposes.
This approach provides to agent developers the possibility
to customize the perceptive activities at an intentional level.
Percepts generated by artifacts can be situated in the context
of the adopted goals, and thus managed through internal
actions to be executed within the plan workflow. In so doing,
active perception makes it possible for agents developper to
organize perceptive activities – at the programming level –
as flexibly as they wish. For instance, in active modality, a
given sensor can be devoted to filter relevant events coming
from a scrutinized artifact so as to suddenly become aware on
artifact changes. Accordingly, filterd events can be proactively
and intentionally processed, i.e. in order to update beliefs or
check goal achievement.

The passive modality allows the automatic propagation of
native internal events at runtime, generated by translating
on the fly the events coming from the scrutinized artifacts.
This makes it possible for agents to react to observable
event asynchronously, as soon as they are perceived. This
functioning is supposed to ease agent’s reasoning allowing
pivotal processes as goal adoption and plan selection to be
governed by internal events, which in turns can be targeted on
the basis of the events coming from artifacts. This might be the
case when agents perform activities in a reactive fashion, for
instance when they have to check the execution of operations
wich has been externalised in artifacts, as well as a control
activity is being automated in the human case. As showed
in [15], [16], using events coming from artifacts the agent
can handle events so to trigger plans and thus decide the next
course of actions. This has a special importance once the agent
needs to manage low level and routinized interaction activities.
Besides reactive behavior, events coming from artifacts can
signal to the agent situation requiring particular servicing:
once abnormal values are encountered or exceptional situations
arrive, agents can arouse and suitably exploit such signals
for reentering the deliberation process or for reconsider their
intention. Besides, becoming aware about those relevant facts,
agents can elicit reallocation of resources, recovery policies,
exception handling etc.

B. Operational function

Artifact operations, controlled by the usage interface, encap-
sulate artifact’s intended purposes4. From the agent viewpoint,
operations can be suitably used to improve agent repertoire of
actions, providing additional means to achieve agents’ goals.
They can be targeted dynamically by agents so as to exter-
nalise and distribute (part of) their goal-oriented activities. For
doing this, operation outcomes have to be taken into account
by agents in their practical reasoning. In fact, by changing the
actions required for achieving a given goal, artifact operations
change agent means-end reasoning5 stages.

This aspect can be tackled at different conceptual levels. The
first, most obvious, solution is to integrate artifacts functional-
ities in the agent’s developing phases. In so doing artifacts use
can be defined at the language level, by defining the operation
control in an off-line fashion, at design time. Referring to the
bounded-inventory example introduced in Subsection II-B, an
agent having the goal to produce a new item and put it in the
buffer may use the following intention (agent’s specification
is provided with Jason language):
+!produceItems : nextItemToProduce(Item)
<- cartago.lookupArtifact("my-inventory", InvID)

cartago.use(InvID,put(Item),5000).

-!produceItems: true
<- cartago.use(console,

println("Insertion failed due to timeout.")).

The agent here selects the intention to store an item on the
inventory once an Item has been prepared and is available
in the belief base. Then the adopted intention first lookups
the my-inventory artifact to retrieve its system identifier
InvID and then stores the item by selecting the put control
provided by the artifact usage interface. Notice here the
presence of a 5000 milliseconds timeout, after which the action
(and the plan) is considered failed and a message is printed
on the console by the goal deletion plan -!produceItems.

Besides, a consumer agent can cyclically adopt the follow-
ing plan to attain an item on the inventory:
+!consume
: myInventory(InvID) & mySensor(S)
<- cartago.use(InvID, get, S, 1000);

cartago.sense(S, new_item(Item));
!consumeItem(Item);
!consume.

+!consumeItem(Item) : true <- ...

Notice that a sensor identified by S is explicitly used by
the consumer to detect and manage the final event of type
new item(Item) generated by the artifact at the end of the
get operation. This event represents for the agent the signal
indicating a goal achievement.

4Notice that before beeing in the intention of an agent who wants to use the
artifact, the intended purpose is in the mind of artifact designer, who conceive
it in order to serve an operation or a function.

5We here refer to the notion of cognitive agents able to find a successful
sequence of actions, between the ones he has in repertoire, in order to attain an
adopted goal. Several agent architectures founded on this reasoning principle
have been presented in the last decades, many of which can be related to the
conceptual model provided by [2]

C. Doxastic function

A secondary function, dual to operational one, is about
informational, observable and retrievable knowledge provided
by artifacts and represented by their observable properties.
In this case, from an agent point of view, artifacts are in-
formational units functioning to maintain, make it observable
and pre-process information which is exploitable in a situated
way. In other terms, by embedding machine-readable repre-
sentations, an artifact can be a target for agents epistemic
actions [10]. This entails for agents the opportunity to use, read
and observe artifacts to attain new information and possibly
update beliefs, solely with the aim to improve the knowledge
base with information which is strategic for their tasks. In
this view, artifacts are supposed to provide observable cues
in order to highlight relevant information (thus improving
agent’s situated cognition). This turns to be important for
shaping goal-supporting beliefs, i.e. those beliefs required
to agents for ruling over deliberation and practical reason-
ing [4]. Accordingly, information available with artifacts can
ease agent reasoning, for instance simplifying and improving
agent’s decision making and remarkably easing belief update
processes.

As a simple example of doxastic use, we consider here
an extension of the producer-consumer scenario in which
two bounded inventories are used instead of one (to avoid
centralisations, for instance). By continuously observing the
number of items of both the inventories, consumer agents must
dynamically decide which artifact to use to consume a new
item, choosing the one with more items so as to minimise
the probability to get stuck because of the inventory is empty.
To this end the continuous observation of artifact observable
properties is exploited:

+!consumeActivity : true
<- +min_items(-1);

cartago.lookupArtifact("my-inventory-1", InvID1);
cartago.focus(InvID1);
cartago.lookupArtifact("my-inventory-2", InvID2);
cartago.focus(InvID2);
+selectedInv(InvID1,0);
!consumeAction.

+n_items(N) [source(percept), artifact(InventoryID)] :
selectedInv(_,N1) & N > N1
<- -+selectedInv(InventoryID,N).

+!consumeAction : selectedInv(InvID,_)
<- cartago.use(InvID, get, mySensor);

cartago.sense(mySensor, new_item(Item));
cartago.use(console,println(" Consumed Item: ", Item));
!consumeAction.

The agent here uses the goal-supporting belief
selectedInv(InventoryID,NItems) to store the
identifier of the inventory with the greatest number of items,
among the observed inventories. Such a belief is initially set
for my-inventory-1 artifact in the consumeActivity
plan, then it is updated by the second plan of the agent each
time a new percept about the actual value of the observable
property n items of any observed inventory is perceived.
In the plan, the annotations [source(percept),
artifact(InventoryID)] make it possible to retrieve

the identifier of the artifact source of the percept.
So, in this case agents are aware of the current state of the

artifacts and can rule their means-end reasoning based on goal-
supporting beliefs which are read on the artifacts. A similar
strategy can be implemented for the producer agents (the code
is here omitted for brevity) that can use a twofold strategy for
choosing the inventory where to put a new item.

D. Discussion

Some final remarks are worth to be taken into account
on these cognitive aspects. A first pivotal aspect in threating
operational functionalities of artifacts relates on the motiva-
tional attitudes of agents. Actually abilities to handle goals are
variously characterized by mainstream agent platforms [22].
The procedural goal approaches can be related to agents
functioning according to transitions within the action selection
policy, where the goal is not explicit in agents specification
and where a behavioral policy is rather constructed by the pro-
grammer through procedures taking into account the intended
goal states. We refer, in the case of agents adopting procedural
goals, to a goal-oriented use of artifacts. On the contrary,
declarative goal approaches refer to agents able to process
goals explicitly represented as internal states, where declara-
tiveness stands for explicit representation of goals described
either in terms of end-states either in terms of execution states
within the reasoning process. As discussed in [15] describing
integration between the Jadex agent platform and CARTAGO,
we refer, in the case of agents dealing declarative goals, to
a stronger notion of usabilty, namely goal-directed use of
artifacts. A more advanced approach in exploiting operational
function envisages an on-line integration, by which agents
are enabled to dynamically discover and afford artifact which
are not known at design time. This approach requires the
additional capability for agents to afford artifacts and map op-
erations, learned form artifact’s machine readable descriptions,
in their planning and means-end processes. As in the human
case, once once an artifact has been acknowledged in terms of
its descriptions (i.e. through manuals), agents can learn to use
operations. In addition, by introducing planning capabilities,
an agent can switch actions of his repertoire with operations
provided by artifacts to achieve goals.

As for the doxastic function, the contribute of artifacts in
easing epistemic activities is remarkable also in the context of
Multi Agent scenario. Here the pivotal aspect is the distribution
of information in the overall society of agents. In particular,
information can be spread over several orthogonal dimensions:
(i) across agents: by organising and making available relevant
information as permanent side-effect of artifact use (modifica-
tion of artifact state); (ii) across platforms: once interactions
between agents are mediated by artifacts, heterogeneous plat-
forms can be integrated at the same domain level. Moreover
agents acquire an additional option to communicate, being
artifacts a suitable alternative to protocols based on message
exchange; (iii) across time: artifacts are designed to hold
strategic information whic can persist also over interleaved
presence of individual agents; (iv) across space: the topological

notion of work environments makes it possible for agents to
distribute their activities between many nodes and workspaces.
This entails no need for agents mutual presence within a given
location/place.

IV. CONCLUSION AND RELATED WORKS

In this work we provided a common grounding for theories
and programming approaches based on A&A interaction. In
particular, we investigated cognitive aspects of interactions
between agents and artifacts, describing the terms of the
interaction since the definition of the perceptive activities
needed for agents to cognitively operate with artifacts. By
adopting a functional approach, we described the twofold
role played by artifact once they are used by a cognitive
agent. On the one side artifacts are supposed to provide
operations, wich agents can exploit to perform activities and
attain goals (operational function). On the other side artifacts
embeds information which is readable by agents to improve
their epistemic states and can be considered as repositories
of relevant information in working environments (doxastic
function).

Nevertheless the role of the environment as first-class ab-
straction in designing complex MAS has been largely ac-
knowledged in literature (see [25] for a survey), few works
consider the issue of cognitive agents interacting in properly
designed environments. Among others, Brahms [23] is a
programming language and platform to develop and simulate
multi-agent models of human and machine behavior, based
on a theory of work practice and situated cognition. Another
approach has been developed by Holvoet and Valckenaers [7],
who introduce Delegate MAS as a mean to design environment
in BDI-based agent architectures. A further work is GOLEM
[3], that introduces a platform for modeling situated cognitive
agents in distributed environments by declaratively describing
the representation of the environment in a logic-based form.

REFERENCES

[1] Rafael Bordini, Jomi Hübner, and Mike Wooldridge. Programming
Multi-Agent Systems in AgentSpeak Using Jason. John Wiley & Sons,
Ltd, 2007.

[2] M. Bratman. Intention, Plans, and Practical Reason. Harvard University
Press, 1987.

[3] Stefano Bromuri and Kostas Stathis. Situating Cognitive Agents in
GOLEM. In Engineering Environment-Mediated Multiagent Systems
(EEMMAS’07), 2007.

[4] C. Castelfranchi and F. Paglieri. The role of beliefs in goal dynamics:
Prolegomena to a constructive theory of intentions. Synthese, 155:237–
263, 2007.

[5] R.W. Christopherson. Geosystems: An Introduction to Physical Geog-
raphy. 1996.

[6] Richard Dawkins. The Selfish Gene. Oxford University Press, 1976.
[7] Tom Holvoet and Paul Valckenaers. Beliefs, desires and intentions

through the environment. In AAMAS’06, Proceedings, pages 1052–1054,
New York, NY, USA, 2006. ACM.

[8] Jomi F. Hübner, Olivier Boissier, and Laurent Vercouter. Instrumenting
multi-agent organisations with reputation artifacts. In Virginia Dignum
and Eric Matson, editors, Coordination, Organizations, Institutions and
Norms (COIN@AAAI), held with AAAI 2008, 2008.

[9] Rosine Kitio, Olivier Boissier, Jomi Fred Hübner, and Alessandro Ricci.
Organisational artifacts and agents for open multi-agent organisations:
“giving the power back to the agents”. In J. Sichman, P. Noriega, J. Pad-
get, and S. Ossowski, editors, Coordination, Organizations, Institutions,
and Norms in Agent Systems III, LNCS. Springer, 2008.

[10] Paul P. Maglio and David Kirsh. Epistemic action increases with skill.
In 18th Annual Conference of the Cognitive Science Society, pages 391–
396. Erlbaum, 1996.

[11] Thomas Malone and Kevin Crowston. The interdisciplinary study of
coordination. ACM Computing Surveys, 26(1):87–119, 1994.

[12] B. A. Nardi. Context and Consciousness: Activity Theory and Human-
Computer Interaction. MIT Press, 1996.

[13] Andrea Omicini, Alessandro Ricci, and Mirko Viroli. Artifacts in the
A&A meta-model for multi-agent systems. Autonomous Agents and
Multi-Agent Systems, 17 (3), December 2008.

[14] Andrea Omicini, Alessandro Ricci, Mirko Viroli, Cristiano Castel-
franchi, and Luca Tummolini. Coordination Artifacts: Environment-
based Coordination for Intelligent Agents. In Proceedings of AAMAS’04,
volume 1, pages 286–293, New York, USA, 2004.

[15] M. Piunti, A. Ricci, L. Braubach, and A. Pokahr. Goal-Directed
Interactions in Artifact-Based MAS: Jadex Agents playing in CARTAGO
Environments. In 2008 IEEE/WIC/ACM Conferences on Web Intelli-
gence and Intelligent Agent Technology (IAT-2008). IEEE, 2008.

[16] Michele Piunti and Alessandro Ricci. Cognitive Artifacts for Intelligent
Agents in MAS: Exploiting Relevant Information residing in Environ-
ments. In Workshop on Knowledge Representation for Agents and Multi-
Agent Systems (KRAMAS 2008). Sydney, 2008.

[17] A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: A BDI Reasoning
Engine, chapter Chapter of Multi-Agent Programming. Kluwer Book,
2005.

[18] A. Ricci, M. Piunti, L. D. Acay, R. Bordini, J. Hubner, and M. Dastani.
Integrating Artifact-Based Environments with Heterogeneous Agent-
Programming Platforms. In AAMAS’08, Proceedings, 2008.

[19] Alessandro Ricci, Michele Piunti, Mirko Viroli, and Andrea Omicini.
Environment programming in CARTAGO. In R. H. Bordini, M. Dastani,
J. Dix, and A. El Fallah Seghrouchni, editors, Programming Multi-
Agent Systems. To appear. The draft of the chapter is available at:
http://137.204.107.188/ aricci/Drafts/chapter-mas-programming.pdf.

[20] Alessandro Ricci, Mirko Viroli, and Andrea Omicini. The A&A
programming model & technology for developing agent environments
in MAS. In ProMAS’07,Post-proceedings, volume 4908 of LNAI, pages
91–109. Springer, 2007.

[21] Alessandro Ricci, Mirko Virolil, and Giulio Piancastelli. simpA: A sim-
ple agent-oriented Java extension for developing concurrent applications.
In Mehdi Dastani, Amal El Fallah Seghrouchni, Joao Leite, and Paolo
Torroni, editors, Languages, Methodologies and Development Tools for
Multi-Agent Systems (LADS 2007, volume 5118 of LNAI, pages 176–
191. Springer-Verlag, Durham, UK, 2007.

[22] M. Birna Van Riemsdijk, Mehdi Dastani, and Michael Winikoff. Goals
in agent systems: A unifying framework. In Intern. Conf. on Autononous
agents and Multi-Agent Systems (AAMAS08), 2008.

[23] Marteen Sierhuis and William J. Clancey. Modeling and simulating work
practice: A human-centered method for work systems design. IEEE
Intelligent Systems, 17(5), 2002.

[24] Herbert Alexander Simon. The Sciences of the Artificial. MIT Press,
Cambridge, Mass., 1981.

[25] Danny Weyns and H. Van Dyke Parunak. Special issue on environments
for multi-agent systems. Autonomous Agents and Multi-Agent Systems,
14(1):1–116, February 2007.

