
Arguments and Artifacts for Dispute Resolution
Enrico Oliva
Mirko Viroli

Andrea Omicini
DEIS, ALMA MATER STUDIORUM—Università di Bologna

via Venezia 52, 47023 Cesena, Italy
E-mail:{enrico.oliva,mirko.viroli,andrea.omicini}@unibo.it

Abstract—In a social context cultural differences, individual
interests, and partial awareness are often the causes of disputes.
Alternative Dispute Resolution (ADR) is usually considered to be
alternative to litigation, and can also be used to allow disputing
parts to find an agreement. A dispute resolution is not an easy
task and usually involves more entities including mediator or
arbitrator with multiple dialogue sessions.

In the paper we focus the attention on dispute resolution
system in artificial society proposing a model and a technology to
support the persuasive processes. The persuasion is the principal
form dialogue used in an ADR system where agents exchange
arguments to support their positions.

The general architecture proposed to build an ADR system
exploits two artifacts abstractions – Co-Argumentation Artifact
and Dialogue Artifact – that provide the right abstractions
to coordinate the agents during the argumentative process.
The technological support for the artifacts is provided by the
TuCSoN infrastructure, also exploiting a meta-programming
technique in Prolog. Finally, in the paper we present a simplified
example of the execution of a persuasion dialogue ground on the
commitments.

I. ALTERNATIVE DISPUTE RESOLUTION

People develop systems and methods in order to settle
conflicts in a fair way. Human societies define norm systems,
infrastructure (such as court) and methods (such as trial) to
achieve the dispute resolution.

In a global business process scenario there is a increasing
need of speed-up the processes, and to make faster the conflict
resolution. The new systems have to support legal process
when for instance a negotiation is broken, they have to
combine mediation and legal service to avoid litigation.

Alternative Dispute Resolution (ADR) is usually consid-
ered to be alternative to litigation. It also can be used as
a colloquialism for allowing a dispute to drop or as an
alternative to violence. ADR is generally classified into at
least four subtypes: negotiation, mediation, collaborative law,
and arbitration. Walker and Daniels [1] underline that legal
negotiation is a part of traditional dispute resolution system
rather than a component of the ADR movement. The legal
negotiation directly occurs among agents that represent the
disputants in a context similar to a courtroom.

Arguments have a central role in the process of formalising
legal system, and in the trial, too. The paper [2] contains a
survey of logic in computational model on legal argument.
The authors present the main architecture of legal arguments
with a four layer architecture: 1) logical layer, 2) dialectical

layer, 3) procedural layer, and 4) strategic layer. Disputants use
arguments in order to persuade the other parts of the dispute
and also the decision makers—juries, judges, clients and
attorneys. In [3] the use of arguments in an ADR systems is
considered, and an analysis of arguments in different contexts
such as arbitration, mediation and multi-party facilitation is
presented. Argumentation plays an important role in conflict
resolution systems, where it drives the ADR to obtain a
successful solution of the dispute. The argumentation process
promotes the values of justice, equality and community that
are desirable in a dispute resolution system.

In an open agent society, the same issue as in human society
holds: it is undesirable to resolve dispute by litigation. The
development of a system for internal resolution of disputes
in virtual organisations is presented by Jeremy Pitt et al in
[3], which proposes a norm-government MAS and an ADR
protocol specification for virtual organization exploited by
intelligent agents.

ADR supplies a theoretical bases for Online Dispute Reso-
lution (ODR) as defined in [4]. ODR has the purpose to extend
the ADR process, moving it towards virtual environments
while providing computation and communication support. In
ODR, the role of technology used to facilitate the resolution
of disputes between parties is crucial. It provides a structured
communication, as well as an informed environment that helps
to the successful conclusion of the conflict.

ODR could be seen as an instance of an ADR system, with
a communication infrastructure and Artificial Intelligence (AI)
techniques aiming at supporting the parties toward agreements.
The reasoning and argumentation capabilities of the parties are
achieved by exploiting AI methods.

Walton and Godden [5] show that argument-based dialogue,
in particular persuasion dialogue, contributes to the construc-
tion of effective dispute resolution system. The main type of
dialogue usually considered by ADR is negotiation, which
could be interpreted as a particular sort of communication for
the purpose of persuasion. In argumentation theory both types
of dialogues are present: persuasion dialogue and negotiation
dialogue. These two types of dialogue have a different struc-
ture and different goals, and in the context of ODR systems
should be managed by different procedural rules.

A fundamental problem in ODR and ADR systems is that it
is difficult to structure and process the information exchanged
between negotiating parties. In order to resolve this problem

oliva
Casella di testo

oliva
Casella di testo

in this work we propose to build a ADR system based on the
A&A meta-model [6] with Co-Argumentation Artifact (CAA)
[7] and Dialogue Artifact (DA) [8] abstractions. We aim at
providing a framework for conflict resolution in an agent-
based society supplying a supporting infrastructure in order
to manage arguments, to retrieve information and to bargain.

Our framework provides structured information based on
logic tuple along with the control of dialogue processes
through a mediated form of communication over a pro-
grammable infrastructure. These two features are useful in
order to build MAS in a scalable and flexible architecture, and
also to build ADR that supports multi-party dialogue sessions.

The aim of the work is to provide a more formal (functional)
connection among the two types of argumentation artifacts
CAA and DA in order to support a dialogue for dispute res-
olution. In particular we make explicit a set of functionalities
useful during the dialogue to control the relation with the
argumentative commitment store. For the CAA we collect a
list of operations to manage a commitment store based on
the argumentation system. On the other hand for the DA
we describe by operational semantics the use of the CAA
operations during the dialogue.

The result is a powerful architecture where it is possible to
specify a dialogue grounded on the state of the commitment
store enabling a partially automate dialogue execution through
DA and CAA infrastructure. Using that dialogue specification
the DA can automatically drive the sequence of actions based
on the state of the CAA.

In Section II we introduce the architecture of the framework
with the definition of the specific CAA and DA; in Section
III we explain the argumentation and dialogue system by
introducing the new operators to describe the interaction with
the commitment store; finally in Section IV we present the
case study, implementing a persuasion dialogue protocol.

II. ARCHITECTURE

We propose our architecture for MAS based on A&A meta
model to design a ADR/ODR application. An ADR system,
especially on-line, exploits the forms of negotiation, arbitration
or mediation required to achieve a solution. There, typically,
the entities involved are more than two: at least, two partic-
ipants and a third entity to help the dispute resolution such
as in mediator and arbitrator procedure. The parties involved
choose the procedure, terms and conditions of their dispute.
For instance, in [3] an arbitration protocol is presented, along
with concepts for decision making through formation and
voting protocol.

In order to find a solution, the parties have the possibility to
share any pertinent argument, make demands and evaluate the
acceptability of an argument with respect to normative context.
To do that, a multi-party dialogue protocol is required, and also
an impartial computation over the shared knowledge. When
the dispute involves an increasing number of participants it is
necessary to introduce a mediated form of communication in
order to have a scalable system. The essential point, here, is

that in the act of mediating there are a number of evaluations
that could be done automatically.

In that scenario our architecture provides the required
abstractions: (i) Dialogue Artifact, (ii) Co-Argumentation Ar-
tifact to made a flexible system. In the DA we store the
arbitration, mediation or negotiation protocol. The parties
exploit the DA to take part of the discussion, which drives
the dialogue ground on the commitments. The advantages are:
the management of dialogue between multiple entities, and
the automatic interaction with commitment/argument store.
The CAA provides the right abstraction to made a commit-
ment/argument store where it is possible evaluate automati-
cally the argument validity respect of normative context. Also,
it provides default function to exchange information, data and
arguments, and to record their public commitments in private
or public form. For instance, in a bargain among three or more
entities handled by a CAA, the final set of arguments stored
in the CAA during the bargain represent a form of contract
among the parties.

Fig. 1. General architecture of multi-agent argumentation system

A possible architecture for a Multi-agent argumentation
system is shown in Figure 1 where A1 and A2 represent
two rational agents. The suggested architecture exploits both
local and global DA and CAA. The global CAA and DA
provide services and functionalities for the entire agent society.
Ideally, in the model, DA and CAA are separate entities with
different and orthogonal functionalities. However, in an actual
implementation, both shared artifacts could collapse in one
unique global entity without loss of generality. The local
CAA1 and CAA2 are used by agents in order to coordinate
their mental state. Classically, those functions are provided by
an internal argumentation component hidden inside the agent.

In the following, we focus our attention on the persuasion
dialogue that is among the most common and useful dialogue
in ADR. An interesting observation in [5] put in evidence the
fact that a negotiation dialogue could naturally include or shift
to persuasion dialogue in two points: 1) to follow an offer,
and 2) to follow a rejection of an offer. In both cases reasons
(by argument) are provided to prove the (un)acceptability of
an offer. A dialogue model for persuasion could be composed
of: 1) a commitment store for each participant, 2) an inference
rule to draw conclusion from commitments in the commitment
store made by the participant, and 3) practical rules that
govern the sequence of locutions and their consequence. We

foresee that our architecture provides the desired abstraction
and properties to implement the persuasion dialogue with
agreement purpose in an agent society.

A. Co-Argumentation Artifact

The CAA provides co-ordination services to agents, al-
lowing them to share, store and exchange arguments with
one another working as a commitment store. In particular,
for persuasion dialogue we exploit the ability of the CAA
to automatically calculate argument and belief acceptability
according to the agent attitudes and the argumentation seman-
tics. In [9] are introduced agent attitudes in order to provide
some acceptability criteria. An agent may have one of three
acceptance attitudes about proposition: (i) a credulous agent
can accept any formula for which there is an argument S; (ii)
a cautious agent can accept any proposition for which there
is an argument if no stronger rebutting argument exists; (iii) a
skeptical agent can accept any proposition for which there is
an acceptable argument S.

Exploiting our argument definition 1 and referring to our
argumentation system in section III-A, we resolve the argu-
ment acceptance problem following the preferred semantics
on argumentation: an argument is credulous acceptable if it
belongs to some preferred extension; an argument is skeptical
acceptable if it belongs to all preferred extensions.

The CAA validates the argument committed verifying their
correctness and also it evaluates their acceptability verifying
which of preferred sets belong to. The state of a CAA
is represented by a collection of arguments with also the
related list of conflict free sets, admissible sets and preferred
extension. These sets are update for each argument insertion
or removal.

In tuple notation these sets are expressed by a
tuple name like conflictfree, admissible and
preferred and a parameter composed by a list of lists
of argument names indicated by arg1,...,argN i.e.
conflictfree([[arg1,...,argN],...]). In partic-
ular for persuasion dialogue the CAA supports the agent
credulous and skeptical attitudes, calculating in which
argument set the reference argument belong to. Here, we list
a set of operation provided by the CAA where Arg parameter
means a generic input argument:

• acceptable(Arg,Attitude): the CAA verifies the ac-
ceptance of the argument Arg respect of state of the
commitment store with the type of acceptability specified
by Attitude

• read(ArgTemplate): the CAA returns an argument that
logically unifies with ArgTemplate

• conflict(Arg): the CAA verifies the existence of an
argument ∈ CAA in rebuttal relation with Arg (see
section III-A)

• attack(Arg):the CAA verifies that Arg is in undercut
relation with an argument ∈ CAA (see section III-A)

• defeat(Arg) the CAA verifies the existence of an argu-
ment ∈ CAA in undercut relation with Arg

• remove(Arg): the CAA removes the argument Arg

• commit(Arg): the CAA stores the argument Arg and it
recompute the conflict free sets, the admissible sets and
the preferred extensions

For further details, including an implementation and exam-
ples of this argumentation framework, we refer to the paper
[10].

B. Dialogue Artifact

The DA is the abstraction to encapsulate the rules of
dialogue and it coordinates the entities during persuasion
process. We follow the definition provided of this artifact in [8]
where the DA is composed of three components: a collection
of specifications of dialogue protocols; a collection of commit-
ments stores; and a collection of specifications of interaction
control. Basically, the function of the DA is to drive the agents
general type of dialogue keeping trace in the commitments
stores of the partial results of the communication. Moreover
the DA keep in charge to suggest of the agents the possible
right moves constrained by the state of the commitment store.
Here a list of operation provided by DA:

• nextlocutions([L]): the DA provides the list of possible
locutions

• lastlocution(L): the DA provides the last locutions
• state(S): the DA provides the protocol state
• act(L): the DA store the locution L and updates the state

of protocol
• cs(A): the DA executes an action A over the commitment

store
From a general architecture point of view the commitment

store of DA is provided by CAA correctly implemented and
the global state of the system is represented by the state of
the CAA and the state of the protocol in the DA.

III. ARGUMENTATION & DIALOGUE SYSTEM

In order to achieve agreement among agents a common dia-
logue system and a shared argumentation system are required
in the agent society. Following, we propose a formalization of
both systems.

A. Argumentation System

Our reference argumentation system is introduced in detail
in [7] as an extension of the Dung’s framework [11] with the
definition of the structure inside the arguments. Here we report
briefly the argument definition and the object language.

The object language of our system is a first-order language,
where Σ contains all well-formed formulae. The symbol
` denotes classical inference (different styles will be used
like deduction, induction and abduction) ≡ denotes logical
equivalence, and ¬ or non is used for logical negation.

Definition 1 (argument): An argument is a triple A =
〈B, I, C〉 where B = {p1, . . . , pn} ⊆ Σ is a set of beliefs,
I ∈ {`d,`i,`a} is the inference style (respectively, deduction,
induction or abduction), and C = {c1, . . . , cn} ⊆ Σ is a set
of conclusions, such that:

1) B is consistent
2) B `I C

Deductive Inference Inductive Inference
MP A A→B

B
θ-su B

R
where Rθ ⊆ B

MT ¬A B→A
¬B

Abductive Inference
MMP B1,...Bn (B1,...Bn)→C

C
Ab B A→B

A

TABLE I
DEDUCTIVE INFERENCE: (MP) MODUS PONENS, (MMP) MULTI-MODUS

PONENS AND (MT) MODUS TOLLENS. INDUCTIVE AND ABDUCTIVE
INFERENCE: (θ-SU) θ-SUBSUMPTION, (AB) ABDUCTIVE

3) B is minimal, so no subset of B satisfying both 1 and
2 exists

The types of inference I we consider for deduction, induction
and abduction are shown in Table I. Modus Ponens (MP) is
a particular case of Multi-Modus Ponens (MMP) with only
one premise. The inference process θ-subsumption derives
a general rule R from specific beliefs B, but is not a legal
inference in the strict sense.

Definition 2 (contrary): The contrary (or attack) relation R
is a binary relation over Σ that ∀p1, p2 ∈ Σ, p1Rp2 iff p1 ≡
¬p2.
For defeat of arguments there are two possible types of
attack based on the contrary relation: ‘conclusions against con-
clusions’, called rebuttals, and ‘conclusions against beliefs’,
called undercuts.

Definition 3 (undercut): Let A1 = 〈B1, I1, C1〉 and A2 =
〈B2, I2, C2〉 be two distinct arguments, A1 is an undercut for
A2 iff ∃h ∈ C1 such that hRbi where bi ∈ B2.

Definition 4 (rebuttal): Let A1 = 〈B1, I1, C1〉 and A2 =
〈B2, I2, C2〉 be two distinct arguments, A1 is a rebuttal for
A2 iff ∃h ∈ C1 such that hRci where ci ∈ C2.
The definitions of conflict-free set, admissible set, preferred
extension are the basic ones in our argumentation system.
These sets are composed of arguments that together feature
different kinds of properties like absence of conflicts or
common defence, formally introduced in [11].

We consider also important argument extensions such as
acceptability in order to determine whether a new argument
is acceptable or not. An argument is acceptable in the context
of preferred semantics if an argument is in some/all preferred
extensions (credulous/skeptical acceptance).

B. Dialogue System

Our intention here is to capture the rules that govern legal
utterance and the effect of the utterances on the commitment
store of the dialogue. We use a process algebra approach
to represent the possible paths that a dialogue may take,
and to represent explicitly the operations to and from the
commitment store. Our communication language is a set of
locutions Lc where a locution is a expression of the form
perfname(Arg1 , . . . ,Argn) in particular perfname is a perfor-
mative and Argx is either a fact or an argument. An agent per-
forming a dialogue using the communication language can ut-
ter a locution composed of facts and arguments. An argument
is represented with the tuple argument(B,I,C); also a fact
is considered an argument but with an (true) implicit premise
and it is represented by syntax argument(true,I,C).

Definition 5 (action): An action A is defined by the syntax
A ::= s : Lc|s[t1, . . . , tn] : Lc where s indicates the source,
and [t1, . . . , tn] indicates the (optional) targets of the message.
On the other, beyond this, we include additional atomic
operations K over commitment stores—many of them can
actually occur into one argumentation artifact.

Definition 6 (term action): A term action K has the
syntax K ::= commit(C,X)|read(C,X)|conflict(C,X)
|attack(C,X)| defeat(C,X)| acceptableS(C,X)|
acceptable(C,X), where C is a term representing the
commitment store identifier, and X is a term representing the
commitment.
A protocol P specifies by standard process algebra operator
(.,+, ‖) respectively sequence, parallel and choice, the set of
actions and term actions that the agents and DA might execute.
For example, an abstract dialogue protocol definition is given
by D := s : a1 ‖ s : a1 ‖ s : a1 ‖ t : a2 ‖ t : a3 where
agent s invokes a1 three times, agent t can invoke a2 and a3

only once, but in whichever order. For more detailed protocol
definition with the process algebra approach and the related
operational semantic we refer to the work [8].

Enriching the previous work we augment the set of K term
actions in order to clarify the relations with a commitment
store based on arguments. The behaviour of term actions is
defined by operational semantics. This semantics describes the
evolution over time of the dialogue state and the states of
commitment store (seen as the composition of all commitment
stores). In essence, the commitment store is the knowledge
repository of the dialogue as a whole, and it is expressed in
our framework as a multiset of arguments.

Definition 7 (commitment store): A commitment store C is
a multiset of arguments and it is defined by the syntax C ::=
0|(C|C)|X where X is a argument, and 0 is the empty set.
We use also notation t{x/y}, to mean term t after applying the
most general substitution between terms x and y—x should be
an instance of y, otherwise the substitution notation would not
make sense. Finally, we define the semantics of K operation
that describe the interaction and evolution over time of the
commitment store C in function of protocol P :

(C)commit(x).P τ→ (C ′|x)P (1)

(C|x)read(y).P τ→ (C|x)P{x/y} (2)

(C|x)remove(y).P τ→ (C)P{x/y} (3)

(C|x)conflict(y)).P τ→ (C|x)P if {x rebuttal y} (4)

(C|x)attack(y)).P τ→ (C|x)P if {y undercut x} (5)

(C|x)defeat(y)).P τ→ (C|x)P if {x undercut y} (6)

(C|E)acceptS(y).P τ→ (C|E)P if {∀E ∈ E , y ∈ E}(7)

(C|E)acceptable(y).P τ→ (C|E)P if {y ∈ E} (8)

As usual, we write s → is′ in place of 〈s, i, s′〉 ∈→, meaning
the dialogue system moves from state s to s′ due to interaction
i—either an action a, or an internal step τ (an operation over
the commitment store).

Rule (1) provides the semantic of commit operation,
expressing that x term is added to the commitment store C,

and the state of commitment store is updated recalculating
conflict free set and preferred extensions after that the process
continuation can carry on. Rules (2) and (3) to read and remove
terms from commitment store C: the use of substitution
operator guarantees that the term x in the commitment store
is an instance of the term x to be retrieved. Rules (4), (5)
and (6) provide the semantics for attack, conflict and defeat
relations using the standard definition of undercut and rebuttal.
Finally, rules (7) and (8) express the semantics for acceptable
operators for skeptical(7) and credulons(8) acceptance, where
E is the set of all preferred extension E in the commitment
store C.

IV. PERSUASION DIALOGUE APPLICATION

In persuasion dialogue the goal of a participant is to prove
his/her thesis and to rationally persuade the other parties. With
the word “persuasion” we mean not a psychological persua-
sion but rather a rational persuasion supported by arguments.
Walton & Krabbe [12] observe that disputes is a subtype of
persuasion dialog—where the parties disagree about a single
proposition ϕ. So, for instance, at the beginning of the dialogue
a party beliefs in ϕ while the other belief in ¬ϕ, so they have a
contrary opinion about a proposition. Generally the following
moves are allowed in the dialogue: asking question, answering
question, and putting forward arguments. Following Walton
[5], a proponent in a persuasion dialogue has successful
when: 1) the responded has committed all the premises of
the argument 2) each argument is corrected 3) the chain of
argument has the proponent thesis as its conclusion

In [13] is presented a survey of formal system of persuasion
dialogue that point out the crucial role of the regulating
interaction among agents rather than design of behaviour in in-
dividual agent within a dialogue. Among the main approaches
to design persuasion dialogue and communication between
agents based on arguments we draw inspiration from the Par-
son and McBurney’s [9] and Prakken’s [14] approaches; and
also from [15], where the authors show how each move of a
dialogue could be specified by rationality rules, dialogue rules
and update rules explicating the relation with the commitment
store.

The more common locutions of persuasion dialogue that can
be found in literature are well collected in [13], and briefly
listed here:

• claim ϕ (assert): The agent asserts a formula ϕ to start
the persuasion.

• why ϕ (challenge): The agent asks for reasons about the
ϕ formula.

• concede ϕ (accept): The agent accepts the validity of ϕ.
• reject ϕ(retract): The agent no commits the ϕ. In some

cases it retracts the formula from the commitment store
previously stored.

• S since ϕ (argue): The agent provides reasons for ϕ
formula by an argument.

dialog_persuasion(X,Y,P):=
X:assert(argument(true,I,P)).
dialog_response(X,Y,argument(true,I,P))

dialog_response(X,Y,argument(true,I,P)):=
Y:accept(argument(true,I,P)) +
Y:reject(argument(true,I,P)) +
Y:why(argument(true,I,P)).

X:argue(argument(B,I1,P)).
dialog_argue(X,Y,argue(argument(B,I1,P))).

% Evaluation of chain argument support of P assertion
dialog_argue(X,Y,argument(B,I,P)):=

Y:accept(argument(B,I,P)) +
Y:reject(argument(B,I,P)) +
Y:argue(argument(B1,I1,P1).(

X:retract(P) +
X:argue(argument(B2,I2,P2)).
dialog_argue(X,Y,argument(B,I,P)))).

Fig. 2. Persuasion dialogue without interaction with the CS

A. Protocol Specification

In order to make a persuasion dialogue concrete, a persua-
sion protocol is typically to be defined among two parties—
proponent and respondent. We formalise through our process
algebra a generic persuasion dialogue with and without au-
tomatic action to the commitment store. The protocol draws
inspiration from [16, 15] and adds repetition rule proposed
by [13]. The dialogue could be partially driven through the
state of commitment store by the actions listed in II-A that
are specifiable in the protocol.

Figure 2 shows a dialogue protocol for persuasion where an
agent can accept or reject an assertion P based on its attitudes
by an internal evaluation of facts and argument acceptability.
Then an argumentation phase starts that concludes with either
an acceptance or rejection of the assertion P expressed by an
argument with “true beliefs”. The relation among dialogue and
commitments is not explicitly expressed. In a dialogue, each
move could be specified by rationality rules, dialogue rules
and update rules [15]: the rationality rules specify the pre and
post conditions for playing a move; The update rules specify
the modification of commitment store; And the dialogue rules
specify the next moves. With our process algebra we have the
expressive power to cover the three types of dialogue rules.
For instance, we propose modified version of the persuasion
protocol in the figure 3 where we provide the specification of
the automatic evaluation of some preconditions (rationality)
and the consequent modification of the commitment store
(update). In that version of the dialogue specification the
DA automatically drives the sequence of action through the
state of the commitment store using the term actions: commit
and acceptable. In the choice points some locutions are
automatically chosen by preconditions based on the state of
acceptability of arguments. In particular the proponent agent
(X) is constrained to retract the proposal if its supporting
argument is not acceptable during the arguing phases. Also,
the opposer (Y) is constrained to accept the proposal if its
opposing argument is not acceptable respect to the state of
the commitment store. We exploit the ability of the CAA in
order to find argument acceptability following the credulous

argumentation semantic.
This protocol formalisation is very flexible, and opens a

number of different courses of actions. The problems could
be the termination of dialogue and the determination of the
dialogue result. The dialogue is partially automated through
DA and CAA infrastructure. Agents have the time the control
over own actions, and can decide in every moment to suspend
the dialogue.

dialog_persuasion(X,Y,P):=
X:assert(argument(true,I,P)).
dialog_response(X,Y,argument(true,I,P))

dialog_response(X,Y,argument(true,I,P)):=
Y:accept(argument(true,I,P)).commit(argument(true,I,P)) +
Y:reject(argument(true,I,P)) +
Y:why(argument(true,I,P)).

X:argue(argument(B,I1,P)).commit(argument(B,I1,P)).
dialog_argue(X,Y,argue(argument(B,I1,P)))

% Evaluation of chain argument support of P assertion
dialog_argue(X,Y,argument(B,I,P)):=
Y:accept(argument(B,I,P)).commit(argument(B,I,P)) +
Y:reject(argument(B,I,P)) +
Y:argue(argument(B1,I1,P1)).commit(argument(B1,I1,P1)).(

acceptable(argument(B1,I1,P1)).(
X:retract(argument(B,I,P)) +
X:argue(argument(B2,I2,P2)).commit(argument(B2,I2,P2)).(
acceptable(argument(B2,I2,P2)).
dialog_argue(X,Y,argument(B,I,P)) +
not(acceptable(argument(B2,I2,P2)).
X:retract(argument(B,I,P))

)
) +
not(acceptable(argument(B1,I1,P1))).

Y:accept(argument(B,I,P)).commit(argument(B,I,P))
)

Fig. 3. Persuasion dialogue with CS interaction: Automatic evaluation of
acceptability

B. Technology Support

Logic programming and meta logic programming are two
useful techniques to prototype quickly complicated software
systems with rational behavior. The technological support to
build artifacts is provided here by TuCSoN, a coordination
infrastructure for MAS introduced in [17]. TuCSoN infras-
tructure following a Linda like coordination model provides a
programmable environment based on logic tuples.

To realize CAA and DA implementing the necessary op-
erators listed in section II, an obvious choice is to exploit
a TuCSoN logic tuple centre. In fact, on the one hand a
typical argumentation process is composed of two parts: (1)
knowledge representation; and (2) computation over the set of
arguments. On the other hand, the tuple centre architecture is
also composed of two parts: an ordinary tuple space where
the information are stored in form of tuples, and a behaviour
specification that defines the computation over the tuple set.
Thus, a TuCSoN tuple centre could support the argumentation
process by representing knowledge declaratively in terms of
logic-tuple arguments, and by specifying the computation over
argument set in term of ReSpecT specification tuples.

From a practical point of view, we exploit the Prolog
language and ReSpecT to implement the meta programs
for managing the argument set with the ability to calculate:

(1) the argument validity; (2) the relations of undercut and
attack between argument; (3) the conflict-free sets; and (4)
the preferred extensions. Each argument has its own context,
where the argument is true. The context is provided in the
argument and is composed only by the set of beliefs – facts
and rules – directly declared in the tuple. The connection
between the premises and the conclusion is expressed in terms
of the corresponding inference process, which is specified in
the argument too.

The meta programs are useful also to realize the con-
trol of dialogue interaction. The engine of process al-
gebra management is implemented exploiting a transi-
tion system defined in Prolog by the predicates
transition(Currentstate, Action, Newstate).
The program has to have the ability to change dialogue state
after an agent action, to search of next admissible move after
an agent request, and also to make the automatic interaction
with the commitment store by argumentative actions. For a
more detailed explanation of the use of meta-program tech-
nique to manage argument and dialogue process we forward
the interested reader to [18].

C. Example of a Run

In this section we provide an example of run of a simpli-
fied version of persuasion dialogue exploiting the TuCSoN
infrastructure and showing its use. In order to perform the
dialogue simulation TuCSoN provides useful tools: CLIAgent
to simulate agents interaction and Inspector to inspect current
state of tuple space . The Inspector tool shown in figure 4
allows users to observe and debug the communication state
and the behaviour of a tuple centre. In particular, it makes
possible to inspect the tuple set, the pending query set, the
triggered reaction set, and the behaviour specification set.

Fig. 4. Inspector tool

The CLIAgent tool allows users to invoke the commands
of the TuCSoN coordination language. For our purpose we
exploit the CLIAgent to utter agent locution in the form
out(move(Dialog,Id,Locution)).

The rules to manage the dialogue in the DA are programmed
with the ReSpecT code in [18]; for the commitment store

the same tuple space of dialogue is considered, and the initial
dialogue state is expressed by the tuple
dialogstate(persuasion,[act(X,assert1(P)),
(act(Y,accept(P))+act(Y,reject(P)))+act(Y,assert1(non(P)))+
act(Y,why(P),act(X,argue(argument(N,bel(B),inf(I),conc(C)))),
(act(Y,accept(N))+ act(Y,reject(N)))]).

The locutions that could be uttered in that dialogue are:
assert, accept, reject, why, and argue. We start the simulation
sending a assert locution in tuple centre from agent Paul by
the CLIAgent shown in the figure 5. After that move, the
infrastructure reacts and calculates next dialogue state.

Fig. 5. CLIAgent

move(persuasion,paul,assert1(safe))
dialogstate(persuasion,
[’+’(’+’(’+’(act(_4,accept(safe)),act(_4,reject(safe))),
act(_4,assert1(non(safe)))),act(_4,why(safe))),
act(paul,argue(argument(_3,bel(_2),inf(_1),conc(_0)))),
’+’(act(_4,accept(_3)),act(_4,reject(_3)))])

The responder agent Olga can ask the pos-
sible admissible next locutions by the tuple
rd(nextlocutions(persuasion,L)), and the
tuple centre responds by new tuple nextlocution.
nextlocution(persuasion,
[act(_2,accept(safe)),act(_2,reject(safe)),
act(_1,assert1(non(safe))),act(_0,why(safe))])

At this point, the responder chooses a move either from
the state of commitment store or independently from our
knowledge base—for instance in this case the choice could be
why(safe). Figure 6 shows the state of the tuple centre after
Olga locution by the inspector tool. The new dialogstate
expresses the remaining locution constrained by previous
logical unification of paul and olga identifiers.
dialogstate(persuasion,[act(paul,
argue(argument(_3,bel(_2),inf(_1),conc(_0)))),
’+’(act(olga,accept(_3)),act(olga,reject(_3)))])

REFERENCES

[1] G. B. Walker and S. E. Daniels, “Argument and alterna-
tive dispute resolution systems,” Argumentation, vol. 9,
no. 5, pp. 693 – 704, 1995. [Online]. Available: http:
//www.springerlink.com/content/m1263hp73g344127

[2] H. Prakken and G. Sartor, Computational Logic: Logic
Programming and Beyond. Essays In Honour of Robert
A. Kowalski, Part II., 2048th ed., ser. Lecture Notes
in Computer Science 2048. Berlin: Springer, 2002,
ch. The Role of Logic in Computational Models

Fig. 6. Tuple Set

of Legal Argument: A Critical Survey, pp. 342–
380. [Online]. Available: http://www.springerlink.com/
content/e0j2bhdq8gm8cg98

[3] J. Pitt, D. Ramirez-Cano, L. Kamara, and B. Neville, “Al-
ternative Dispute Resolution in Virtual Organizations,” in
Proceedings of The Eighth Annual International Work-
shop ”Engineering Societies in the Agents World” (ESAW
07), Athens, Greece, 2007.

[4] T. Schultz, G. Kaufmann-Koheler, D. Langer, V. Bonnet,
and J. Harms, “Online dispute resolution: State of the
art, issues, and perspectives,” Faculty of Law and Centre
Universitaire Informatique, University of Geneva, Tech.
Rep., October 2001, draft Report.

[5] D. Walton and D. M. Godden, “Persuasion
dialogue in online dispute resolution,” Artificial
Intelligence and Law, vol. 13, pp. 273–295,
2005. [Online]. Available: http://www.springerlink.com/
content/k813173822154532

[6] A. Omicini, A. Ricci, and M. Viroli, “Artifacts in the
A&A meta-model for multi-agent systems,” Autonomous
Agents and Multi-Agent Systems, vol. 17, no. 3, Dec.
2008, special Issue on Foundations, Advanced Topics and
Industrial Perspectives of Multi-Agent Systems.

[7] E. Oliva, P. McBurney, and A. Omicini, “Co-
argumentation artifact for agent societies,” in
Argumentation in Multi-Agent Systems, ser. LNAI,
S. Parsons, I. Rahwan, and C. Reed, Eds.
Springer, Apr. 2008, vol. 4946, ch. 3, pp. 31–
46, 4th International Workshop (ArgMAS 2007),
Honolulu, HI, USA, 15 May 2007. Revised
Selected and Invited Papers. [Online]. Available: http:
//www.springerlink.com/content/5817w1n882861170/

[8] E. Oliva, M. Viroli, A. Omicini, and P. McBurney,
“Argumentation and artifact for dialogue support,” in 5th
International Workshop “Argumentation in Multi-Agent
Systems” (ArgMAS 2008), I. Rahwan and P. Moraitis,
Eds., AAMAS 2008, Estoril, Portugal, 12 May 2008, pp.
24–39.

[9] S. Parsons and P. McBurney, “Argumentation-based com-
munication between agents,” in Communication in Mul-
tiagent Systems, ser. LNCS, M.-P. Huget, Ed., vol. 2650.
Springer, Berlin, September 2003, pp. 164–178.

[10] E. Oliva, P. McBurney, and A. Omicini, “Co-

argumentation artifact for agent societies,” in 4th In-
ternational Workshop “Argumentation in Multi-Agent
Systems” (ArgMAS 2007), S. Parsons, I. Rahwan, and
C. Reed, Eds., AAMAS 2007, Honolulu, Hawai’i, USA,
15 May 2007, pp. 115–130.

[11] P. M. Dung, “On the acceptability of arguments
and its fundamental role in nonmonotonic reasoning,
logic programming and n-person games,” Artificial
Intelligence, vol. 77, no. 2, pp. 321–358, 1995. [Online].
Available: citeseer.ist.psu.edu/dung95acceptability.html

[12] D. N. Walton and E. C. W. Krabbe, Commitment in
Dialogue: Basic Concepts of Interpersonal Reasoning.
SUNY Press, 1996.

[13] H. Prakken, “Formal systems for persuasion dialogue,”
Knowledge Engineering Review, vol. 21, no. 2, pp. 163–
188, 2006.

[14] ——, “Coherence and flexibility in dialogue games
for argumentation,” Journal of Logic and Computation,
vol. 15, no. 6, pp. 1009–1040, 2005.

[15] L. Amgoud, N. Maudet, and S. Parsons, “An
argumentation-based semantics for agent communication
languages,” in ECAI, F. van Harmelen, Ed. IOS Press,
2002, pp. 38–42.

[16] S. Parsons, M. Wooldridge, and L. Amgoud, “Properties
and Complexity of Some Formal Inter-agent Dialogues,”
Journal of Logic and Computation, vol. 13, no. 3, pp.
347 – 376, 2003.

[17] A. Omicini and F. Zambonelli, “Coordination for Inter-
net application development,” Autonomous Agents and
Multi-Agent Systems, vol. 2, no. 3, pp. 251–269, Sep.
1999.

[18] E. Oliva, “Argumentation and artifacts for intelligent
multi-agent systems,” Ph.D. dissertation, Dottorato in
Ingegneria Elettronica, Informatica e delle Telecomuni-
cazioni, Cesena, Italy, Mar. 2008.

