

A Prolog-Based MAS for
Railway Signalling Monitoring:

Implementation and Experiments

Viviana Mascardi

Daniela Briola
Gabriele Arecco

Maurizio Martelli
Riccardo Caccia

Carlo Milani

The project
 Involved DISI (CS Department of Genova

University) and Ansaldo Segnalamento Ferroviario
 Design and implementation of a MAS that:

 Monitors the Path Selection process running on different
machines of the SCC (Command and Control System for
Railway Circulation)

 Uses rules to discover if the process or the network has
problems

 Discovers the problem before it manifests to the user or it
worsens, and reports it to the SCC remote assistance

 MAS developed on JADE using DCaseLP libraries,
with Prolog based agent to monitor process

System architecture
On every client there is

 A LogReaderAgent
associated with each
process (LRA)

 A Process
MonitoringAgent (PMA)
for each process

 One Computer
MonitoringAgent
(CMA)

On the server there is
 One (the) Plant

MonitoringAgent
(PlamA)

System architecture
 Every process produces a LogFile
 The LRA can read this logfile
 The LRA sends a message to the PMA for each

event in the logfile
 The PMA stores the information and looks for

anomalies
 Can ask the CMA

 The CMA
 Monitors different processes on a machine
 Can ask the PlamA

PMA (Process Monitoring Agent)
 Parameters are of two types:

 Private to the process: not influenced by the state of
the network or by other processes

 Common: influenced by the network or by other
processes

 PMA will manage parameters
 Of type 1) locally
 Of type 2) asking further information to the CMA

 It is the only agent with the authority to kill a
process

 Can ask for more information, not for what to do

CMA (Computer Monitoring Agent)

 CMA will manage different processes and the
same parameters of PMAs

 It looks for the same problem from other PMAs
 If true, depending on the parameter, it can:

 Answer directly to the PMA
 ask PLAMA for further information

 If false: answers the PMA to manage it locally

 CMA will manage the problem depending if it is
common to more CMAs or if it has been reported
only locally

PLAMA (Plant Monitoring
Agent)

 Takes track of all the requests from the
CMAs

 Is the point of reference for all the CMAs,
the only which knows about the network

 Reports a shared problem to the SCC
remote assistance

 Does not decide about how to manage a
problem, only reports on its presence

Implementation

 Based on JADE
 LRA: pure JADE agent (JAVA)
 PMA, CMA, PLAMA: Prolog agents

integrated into a JADE agent by means of
the DCaseLP libraries

Environment model

 Agents live and act in the software Environment
consisting of the already existing processes
developed by Ansaldo plus the SCC Assistance
Centre, and interact with it in a limited way:

 LRA is the only agent able to get information
from the Environment where the MAS is situated.

 PMA can interact withthe Environment by killing
and restarting the process it monitors.

 PlaMA alerts the SCC Assistance Centre. It
interacts with the Environment by alerting the
remote assistance centre

Knowledge model
 The parameters managed are:

 Connection_to_server
 View, Errors
 Answer_to_life
 Cpu_usage, Disk_usage, Memory_usage

 The information about problems is stored as
Prolog facts of this form

 “log(time(“Mon Feb 11 21:30:43 CET 2008”),
[view(normal), cpu usage(normal), connection to
server(active), disk usage(normal), answer to
life(slow), errors(absent), memory
usage(normal)])”

Agent Architecture

 The architecture of each agent, apart LRA ones, is
a declarative architecture where the knowledge
base is modeled as a set of Prolog facts, the
behavior is determined by Prolog rules, reactivity
is implemented by allowing agents to look at their
message box and to react to incoming messages.

Behaviour

CMA, PMA and PlaMA: cyclic “observe-think-act”
behaviour (a “cyclic behaviour” in Jade) where they

 look if a new message matching a given template
has been received

 retrieve the message from their message queue and
store it in their history

 manage the message according to the rules in their
program, and to their knowledge base (that includes
all the messages received in the past)

 answer to the agent that has sent the message, and,
in case, send messages to other agents in the MAS

Rules Example 1: “cpu usage”

When the PMA receives a message from the LRA:
 1) If the value is “normal”, no action needs to be

taken.
 2) If the value is “high”, and it remains high in the

successive message sent by the LRA, the PMA kills
and restarts the process, and informs the CMA.

Rules Example 2: “answer to life”

Simple execution, with only one PMA reporting the problem,
and only one CMA

Rules Example 3: “connection to
server” with a simple configuration

Rules Example 4: “connection to server”
with 4 PMA, 2 CMA and the PLAMA

Conclusions

 MAS extensively tested on real log files provided
by Ansaldo STS, but off-line.

 Full integration of the MAS into the SCC system
still to come; it will require no changes to the
existing SCC system.

 The role of academia in providing a good support
during the design and implementation of MASs is
a key factor in the take-off of the agent technology

 The joint DISI-Ansaldo project represents a
success story in making agent technology trusted
and accepted by industry.

