

Dagli oggetti agli agenti

Evoluzione dell'agent
piattaforme e linguaggi

Nona Edizione, WOA 2008
Palermo, 17 – 18 novembre 2008
Atti del Convegno
A cura di: Matteo Baldoni, Massimo Cossentino, Flavio De Paoli,

Valeria Seidita.

Seneca Edizioni, ISBN 978-88-6122

WOA 2008 Home Page: http://www.pa.icar.cnr.it/woa08/

Dagli oggetti agli agenti

Evoluzione dell'agent development: metodologie, tool

piattaforme e linguaggi

a Edizione, WOA 2008
18 novembre 2008

A cura di: Matteo Baldoni, Massimo Cossentino, Flavio De Paoli,

-122-2

http://www.pa.icar.cnr.it/woa08/

Dagli oggetti agli agenti

development: metodologie, tool,

A cura di: Matteo Baldoni, Massimo Cossentino, Flavio De Paoli,

Editori

Matteo Baldoni
Universitá degli Studi di Torino
C.so Svizzera, 185
10149 Torino, Italy
baldoni@di.unito.it

Massimo Cossentino
ICAR-CNR
Viale delle Scienze, ed. 11
90128 - Palermo, Italy
cossentino@pa.icar.cnr.it

Flavio DePaoli
Universitá degli Studi di Milano - Bicocca
Viale Sarca, 336/14
20126 Milano, Italy
depaoli@disco.unimib.it

Valeria Seidita
Universitá degli Studi di Palermo
Viale delle Scienze, ed. 6
seidita@dinfo.unipa.it

Sponsors:

AIIA - Associazione Italiana per lIntelligenza Artificiale
TABOO - Associazione Italiana Tecnologie Avanzate Basate su concetti Orien-
tati ad Oggetti
ICAR CNR - Istituto di Calcolo e Reti ad Alte Prestazioni del Consiglio
Nazionale delle Ricerche, sede di Palermo
DINFO - Dipartimento di Ingegneria Informatica dellUniversit di Palermo
ENGINEERING INGEGNERIA INFORMATICA

Printed in November 2008
by Senecaedizioni, Strada del Drosso 22 - 10135 Torino

Prefazione

Il Workshop “WOA dagli Oggetti agli Agenti” é da alcuni anni ormai un
importante momento d’ incontro per favorire il confronto e lo scambio di idee
su un argomento oggi molto rilevanti ed oggetto di tanta ricerca: i sistemi ad
agenti. Le tecnologie ad agenti offrono modelli e tecniche per l’ingegnerizzazione
di sistemi software complessi ed il loro uso sta assumendo un ruolo sempre piú
rilevante in molti settori dall’Intelligenza Artificiale all’Ingegneria del Software.

L’edizione di quest’anno organizzata dal Gruppo di lavoro “Sistemi ad Agente
e Multiagente” dell’Associazione Italiana per l’Intelligenza Artificiale (AI*IA) e
dall’Associazione Italiana Tecnologie Avanzate Basate su concetti Orientati ad
Oggetti (TABOO) in collaborazione con l’Istituto di Calcolo e Reti ad Alte
Prestazioni del Consiglio Nazionale delle Ricerche, sede di Palermo, ed il Di-
partimento di Ingegneria Informatica dell’Universitá di Palermo, ha come tema
principale “Evoluzione dell’agent development: metodologie, tool, piattaforme e
linguaggi”.

L’obiettivo dell’evento é quindi esplorare i piú recenti risultati nel campo
dello sviluppo di sistemi ad agenti. Questo include lo studio delle tecniche di
progettazione, l’evoluzione delle piattaforme di sviluppo ed i linguaggi di codi-
fica orientati agli agenti.

In questo volume sono raccolti diciassette articoli scelti dal Comitato di Pro-
gramma per essere presentati al workshop. I contributi degli articoli coprono
argomenti estremamente attuali ed interessanti nell’area di ricerca dei sistemi
ad agenti come per esempio agenti e tecnologie di supporto alla cooperazione,
ingegneria del software orientata agli agenti, metodologie e strumenti di sviluppo,
simulazione orientata agli agenti.

Anche quest’anno é stata organizzata una miniscuola per studenti di dot-
torato e laureandi di secondo livello per discutere ed illustrare alcune tematiche
fondamentali nel campo dei sistemi ad agenti.

Il Comitato Scientifico Organizzatore esprime un vivo ringraziamento a tutti
coloro che hanno reso possibile la realizzazione dell’edizione di quest’anno: i
componenti del Comitato di Programma, l’Istituto di Calcolo e Reti ad Alte
Prestazioni del Consiglio Nazionale delle Ricerche, il Dipartimento di Informat-
ica dell’Universitá degli Studi di Palermo, gli organizzatori locali, gli organizza-
tori della sessione demo e della miniscuola, gli sponsor e tutti collaboratori che
hanno partecipato all’organizzazione.

Matteo Baldoni
Massimo Cossentino

Flavio De Paoli
Valeria Seidita

Comitato Scientifico Organizzatore

Matteo Baldoni
Massimo Cossentino
Flavio DePaoli
Valeria Seidita

Organizzatore Sessione Demo

Alfredo Garro

Cordinatori Miniscuola

Matteo Baldoni
Massimo Cossentino

Comitato Organizzatore Locale

Massimo Cossentino
Fabio Ferrara
Salvatore Gaglio
Ignazio Infantino
Roberto Pirrone
Riccardo Rizzo
Valeria Seidita
Pietro Storniolo
Alfonso Urso

Comitato di Programma

Stefania Bandini
Cristina Baroglio
Pietro Baroni
Federico Bergenti
Lorenzo Bettini
Enrico Blanzieri
Paolo Bouquet
Giacomo Cabri
Nicola Cannata
Francesco Donini
Rino Falcone
Giancarlo Fortino

Salvatore Gaglio
Alfredo Garro
Laura Giordano
Paolo Giorgini
Letizia Leonardi
Marco Mamei
Sara Manzoni
Viviana Mascardi
Ambra Molesini
Rebecca Montanari
Vito Morreale
Massimo Paolucci
Paola Quaglia
Alessandro Ricci
Giovanni Rimassa
Luca Sabatucci
Carla Simone
Emilio Tuosto
Eloisa Vargiu
Mario Verdicchio
Mirko Viroli
Giuseppe Vizzari

External Reviewers

Maciej Gawinecki

Direttivo WOA

Giuliano Armano
Matteo Baldoni
Antonio Corradi
Flavio De Paoli
Emanuela Merelli
Andrea Omicini
Agostino Poggi
Franco Zambonelli

Sponsors:

AIIA - Associazione Italiana per lIntelligenza Artificiale

TABOO - Associazione Italiana Tecnologie Avanzate Basate su concetti Orien-
tati ad Oggetti

ICAR CNR - Istituto di Calcolo e Reti ad Alte Prestazioni del Consiglio
Nazionale delle Ricerche, sede di Palermo

DINFO - Dipartimento di Ingegneria Informatica dellUniversit di Palermo

ENGINEERING INGEGNERIA INFORMATICA

Indice dei Contenuti

Agenti e Tecnologie di Sviluppo.

Multi-Agent Systems for e-Health and the CASCOM Project 1
Federico Bergenti, Agostino Poggi

Using Agent Technology as a Support for an Enterprise Service Bus 5
Paola Mordacci, Agostino Poggi, Carmelo Giovanni Tiso, Paola Turci

A Prolog-Based MAS for Railway Signalling Monitoring:
Implementation and Experiments . 11

Daniela Briola, Viviana Mascardi, Maurizio Martelli, Gabriele Arecco,
Riccardo Caccia, Carlo Milani

AgentService in a hand . 19
Andrea Passadore, Alberto Grosso, Mauro Coccoli, Antonio Boccalatte

Conservative re-use ensuring matches for service selection 28
Matteo Baldoni, Cristina Baroglio, Viviana Patti, Claudio Schifanella

Design and Development of Intentional Systems with PRACTIONIST
Studio . 37

Angelo Marguglio, Giuseppe Cammarata, Susanna Bonura, Giuseppe
Francaviglia, Michele Puccio, Vito Morreale

Fondamenti Teorici e Linguaggi.

Arguments and Artifacts for Dispute Resolution . 46
Enrico Oliva, Mirko Viroli, Andrea Omicini

Towards a New Inheritance Definition in Multi-Agent Systems 54
Antonino Ciuro, Massimo Cossentino, Giuseppe Fontana, Salvatore
Gaglio, Riccardo Rizzo, Monica Vitali

Nature-inspired Spatial Metaphors for Pervasive Service Ecosystems 61
Franco Zambonelli

Ontology Agents in FIPA-compliant Platforms: Survey and a New
Proposal . 68

Angela Locoro, Viviana Mascardi, Daniela Briola

Ingegneria del Software Orientata agli Agenti:
Metodologie e Strumenti.

From Agents to Artifacts Back and Forth: Operational and Doxastic
use of Artifacts in MAS . 76

Michele Piunti, Alessandro Ricci

powerJADE: Organizations and Roles as Primitives in the JADE
Framework . 84

Matteo Baldoni, Guido Boella, Mauro Dorni, Andrea Mugnaini, Roberto
Grenna

Supporting the Design of Self-Organizing Ambient Intelligent Systems
Through AgentâBased Simulation . 93

Stefania Bandini, Andrea Bonomi, Giuseppe Vizzari

Applying Tropos to Socio-Technical System Design and Runtime
Configuration . 101

Fabiano Dalpiaz, Raian Ali, Yudistira Asnar, Volha Bryl, Paolo Giorgini

Advancing Object-Oriented Standards Toward Agent-Oriented
Methodologies: SPEM 2.0 on SODA . 108

Ambra Molesini, Elena Nardini, Enrico Denti, Andrea Omicini

Towards filling the gap between AOSE methodologies and
infrastructures: requirements and meta-model . 115

Fabiano Dalpiaz, Ambra Molesini, Mariachiara Puviani, Valeria Sei-
dita

Using multi-coordination for the design of mobile agent interactions 122
Giancarlo Fortino, Alfredo Garro, Samuele Mascillaro, Wilma Russo

Abstract—e-Health services and applications are probably one

of the notable application fields where agent technology might act
as a main actor in the near future. Multi-agent systems have been
devised to deal with classes of problems–e.g., remote and
heterogeneous software integration, remote monitoring and
assistance–that are very typical for the large part of e-health
services and applications. This paper describes some of the main
reasons why multi-agent systems are now considered one of the
best solutions for the realization and deployment of advances e-
health software. The paper motivates this claim by addressing
very general issues that have been previously identified as key
problems of e-health. The paper is structured in two main parts.
The first introduces the technological problems that characterize
e-health and it shows how multi-agent systems tackle them. The
second part describes an important European scale project that
has recently adopted multi-agent systems to realize an e-health
application scenario, i.e., decentralized emergency assistance.

Index Terms—Agent-oriented software engineering, e-Health
systems, m-Health systems, Cooperative systems.

I. INTRODUCTION

ULTI-agent systems (MASs) are one of the most
interesting fields in software research that have been

contributing significantly in the past few years to the
development of the theory and practice of complex distributed
systems. Healthcare applications and services seem to be very
suitable for taking advantage of MASs: (i) they are composed
of loosely coupled, complex, heterogeneous, legacy systems;
(ii) they manage data and resources that are inherently
distributed; and (iii) they are often used by disperse users in
(synchronous) collaboration.

The goal of this paper is to describe the main reasons why
MASs should be considered one of the most interesting
technologies for the development of healthcare systems. The
paper also provides some guidelines to identify which kinds of
healthcare applications can truly take advantage of MASs
features. Then, the paper presents CASCOM [13], a recent
European-scale project that adopted MASs to realize and field-
trial a decentralized emergency assistance scenario.

Federico Bergenti is with Dipartimento di Matematica, Università degli

Studi di Parma, Viale G.P.Usberti, 53/A, 43100 Parma, Italy (phone: +39-
0521-096929; fax: +39-0521-906950; e-mail: federico.bergenti@ unipr.it).

Agostino Poggi is with Dipartimento di Ingegneria dell’Informazione,
Università degli Studi di Parma, Viale G.P.Usberti, 181/A, 43100 Parma,
Italy (e-mail: agostino.poggi@unipr.it).

II. AGENT TECHNOLOGY AND E-HEALTH

There is common agreement in the field that the buzzword
e-health was introduced in 1999 as a consequence of the e-*
mania to talk about the provision of healthcare services
through the Internet [11]. Notably, this buzzword was heavily
promoted by the industry and by application and service
vendors and soon the academic community started using it
instead of the over-abused telemedicine. Such a widespread
adoption of this new word was so wide and deep that anything
that had to do with technology and health was quickly
included. In order to clarify the obvious misunderstandings
that immediately arose and to support such an important idea,
the European Commission itself felt the urge to provide a
common and generally acceptable definition of the word e-
health as: “the use of modern information and communication
technologies to meet needs of citizens, patients, healthcare
professionals, healthcare providers, as well as policy
makers.” [7]

Besides the clarity–or possibly the confusion, someone may
say–that the mentioned definition created, it is common
understanding that e-health uses ICT for the provision of
health-related services to sparse users, possibly on the move.
This pushed interaction and communication as central to e-
health and it immediately promoted agents-related
technologies as ideal candidates to support next-generation e-
health services and applications.

Similarly, e-health deals naturally with mobile users, e.g., in
tele-assistance scenarios, and it is common understanding that
e-health should accommodate transparently fixed and mobile
users. So called m-health is another buzzword that has been
recently proposed to stress this fact: m-health services should
be accessible anyone, anywhere, anytime, anyhow, and any-*.
Fortunately, such characteristics are already common practice
of agent technologies; e.g., JADE [4, 9] and JADE-LEAP [5]
do take special care of transparently and dynamically
allocating fixed and mobile users and agents.

Another important issue in e-health is about supporting the
interoperability of (legacy) medical information systems in
order to enable the integrated provision of advanced services
capable of accessing information from different, remote
sources. The dream of a single, universally accepted
middleware supporting the development of new services and
the renewal of legacy services was quickly abandoned and
recent technologies that were originally intended to support the

Multi-Agent Systems for e-Health and
the CASCOM Project

Federico Bergenti and Agostino Poggi

M

1

(semantic) interoperation between heterogeneous services was
quickly adopted and now is common practice. This, again, put
agent technologies into the group of technologies capable of
providing important contributions to e-health because of the
inherent semantics-awareness of the interaction between agents
that make them ready to deliver semantic interoperability.

Another important issue that most e-health services address
regards the possibility of jointly supporting professionals in
their highly specialized work. Computer-Supported
Cooperative Work (CSCW) is already common practice in
tele-surgery and tele-assistance and it seems an important
ingredient of next-generation e-health services. Notably, the
inherent cooperative nature of agents and the very fact that
many CSCW technologies are already based on agents is
another important contribution to the view of agent
technologies as first-class citizens of e-health.

Similarly, another notable contribution of agent
technologies in the development of next-generation e-health
services and applications regards the central venue that
security and privacy-awareness have in agent technology. In
the agent realm, the issues of privacy-awareness are threaded
under the umbrella of the more expressive notion of trust.
Likewise, e-health strongly remarks the importance of
preserving confidentiality and guaranteeing a high level of
security for classified information about patients.

Even if the mentioned facts regarding the adoptability of
agent technologies for next generation e-health services and
applications can be convincing, we try to sustain our statement
by adapting the well-known grouping criteria proposed in [3].
We say that agent-technology contributes to next-generation e-
health from three points of view: (i) improving the quality of
healthcare, (ii) facilitating the access to healthcare, and (iii)
reducing costs.

The most important contribution that agent technology can
provide to the overall quality of healthcare relies essentially on
the possibility of feeding highly specialized healthcare
professionals with the right information, at the right time,
tailored to the patient. The proactive nature of agents and their
semantic interoperability support such a need with the
possibility of feeding users with information acquired from
diverse sources and tailored to the concrete patient at hand.
Thanks to the computerization of health records, that is now
common practice in Western Countries, the transfer of
complex health records globally and in real time increases the
accessibility, unifies the information at every stage of complex
healthcare processes and improves care continuity. Moreover,
the longstanding tradition of expert systems that still lives
behind the scenes of some agent technology can support
healthcare professionals in using the provided information for
taking the right decisions at the right time. Finally, the
transparent integration of mobile terminals helps collecting
data to quickly support contextualized decisions.

Notably, the scenario of allowing a quick and contextualized
access to healthcare-related information from anywhere, at
anytime and in the most convenient way can promote the long

waited universality and equality of access to healthcare,
especially for geographically or socially isolated patients. Such
cases are extreme and they may seem visionary for the current
lack of supporting infrastructures, e.g., communication
networks and power supplies, but the inherent transparent
decentralization that is always assumed in contemporary agent
technologies is vital to facilitate the access to healthcare also
in everyday scenarios. This is the case, e.g., of homecare to
elderly, disabled or chronic patients. The widespread adoption
of agent technologies at homes can help drastically reducing
medical visits and related waitlists. Moreover, the proactive
nature of agents helps creating a trusted link between agents
and patients by having agents constantly pushing valuable
information to patients with no need of explicit demands.
Agents are good tools to help patients following preventive
strategies and supporting self-care on a day-by-day basis.

The last grouping criterion that in [3] is about cost reduction
of healthcare processes. This is an issue of notable importance
for the inherent costs of quality healthcare and agent
technologies are beneficial also from this point of view. The
mentioned possibility of agents to provide the right
information, at the right time, tailored for the patient supports
efficiency the overall management of treatments. Moreover,
the semantic interoperability of agents enables instant
acquisition of information from its natural source, with
minimal (if not null) pass of information along chains of
intermediaries. Finally, the trusted and privacy-aware support
that agents provide to healthcare processes is a valuable means
to speedup and optimize many administrative procedures. All
in all, we can summarize the contribution that agent
technologies can provide to healthcare, from the point of view
of cost reductions, with an earlier assistance and a structured
prevention of the causes of further care.

III. THE CASCOM PROJECT

The EU funded project CASCOM [13] is one of the most
recent attempts to bring the notable characteristics of agents to
e-health. CASCOM is a technology-driven project that brings
together three notable new technologies: MASs, semantic Web
services and Peer-to-Peer (P2P). It finds its motivations in the
following healthcare scenario, that was ran in many occasions
throughout all Europe. The scenario involves Juha, a Finnish,
who is abroad in Austria for business. Before leaving Finland,
he loaded the CASCOM mobile agent suite on his mobile
phone so that he can access CASCOM agents anywhere,
anytime. Suddenly, he feels severe pain in his chest and he
decides to call for help via his CASCOM personal agent in
order to make his ignorance of German irrelevant. The agent
prompts a few questions on Juha’s phone screen and it
forwards such information–in parallel–to the local emergency
dispatch center and to the Finnish Emergency Medical
Assistance service center (EMA). The agent contextualizes
such information with Juha’s current location and personal
identification data. Such contextualized information allows the
dispatch center immediately sending an ambulance down to

2

Juha. On the road towards its destination, the CASCOM agent
hosted on the mobile device of the physician on the ambulance
selects and invokes the semantic Web services–physically
located in Finland–that provide access to Juha’s medical
history. Thus, the physician on the ambulance can easily get an
in-depth overview on Juha’s health state on the way to the
patient, without having seen him before. Once at destination,
the ambulance takes Juha to the selected hospital and
CASCOM agents are used to help the physician in acquiring
the needed information to support his local supervision of
Juha’s health. Finally, just if needed, CASCOM agents are
used to organize Juha’s repatriation, by contacting needed
semantic Web services for booking medically-equipped
flights, and to exchange information between healthcare
organizations in the process of his after-treatment.

From a functional point of view, CASCOM motivating
scenario addresses well-known issues of emergency
healthcare. Actually, a major challenge in emergency
healthcare is to take the best decision on the treatment of the
patient, with no background knowledge of the patient’s
medical history, e.g., known allergies and current medical
treatments. CASCOM addresses such needs by providing
physicians with contextualized information on the fly. Such
information is acquired as needed directly from its source
because CASCOM agents interact directly with the semantic
Web services that organizations provide to access needed
information in a secure and privacy-aware manner. This is by
far a visionary scenario, because many organizations (see,
e.g., [14]) are now in the process of opening their information
systems via semantic Web services to allow foreign physicians
to access patients’ data, especially in emergency situations.

From a technological point of view, the distinguishing
feature of CASCOM approach regards its openness and
dynamism. Notably, no a-priori link is set between agents
and/or semantic Web services and the pattern of
communications is structured on the fly to satisfy the goals of

agents. Similarly, the CASCOM service discovery agent
identifies all relevant services and respective providers by
means of the directory services hosted at EMA. Afterwards,
the CASCOM planner agent creates an ad-hoc plan which
composes the invocations to the services identified in the
previous step. The CASCOM execution agent finally invokes
all services specified in the plan and it applies failure handling
mechanisms, just when needed. For the case of the motivating
scenario, this includes accessing the healthcare information
system that store Juha’s medical history, which is located at
EMA. As a result of this dynamically composed ad-hoc plan,
information on Juha’s medical history is collected–potentially
from different sources–and transferred to the agent running on
physician’s device.

It is worth mentioning that CASCOM motivating scenario
heavily uses one of the distinguishing features of agents that
we mentioned in the previous section. Agents are flexibly
deployed on fixed and mobile devices and they communicate
using wired and/or wireless links on the sole basis of their
current goals. For example, the physician’s agent is initially
started on the base station of the emergency center where a
WLAN connection is available. As soon as the emergency car
leaves the base station, it also leaves the connection range of
the WLAN and the agent communication is seamlessly
migrated to UMTS.

The main delivery of CASCOM project is a general-
purpose, open-source middleware that implements a generic
architecture for agent-based coordination and execution of
semantic Web services in a so called Intelligent Peer-to-Peer
(IP2P) network, i.e., a decentralized network of loosely
coupled, proactive peers with no restriction on the actual
means of connectivity. Such architecture transparently
accommodates both mobile and fixed users into a seamless
environment. In short, the CASCOM architecture provides
easy, seamless and contextualized access to semantic Web
services anytime, anywhere and using any device. The main
ingredients of CASCOM architecture are depicted in Figure 1.

CASCOM architecture relies on a layered approach. The
four main components of this architecture link the application
layer with the underlying networks and are described in some
detail below.

The Networking Layer provides a generic, secure, and open
IP2P network infrastructure taking into account varying quality
of service of wireless communication paths, limitations of
resource-constrained mobile devices, and contextual
variability of nomadic environments. In details, it provides the
following functionality:
1) Efficient, secure, and reliable agent message transport

communication over wireless (and wired) communication
paths independently of the access technology;

2) Provision of network-related context information to the
context subsystem;

3) Low-level service discovery; and
4) Agent execution environment for resource-constrained

mobile devices.

Fig. 1. Main parts of the CASCOM technology (from [13]).

3

Setting out from the services of the Networking Layer, and
based on the functionalities offered by both the Context-
Awareness and the Security and Privacy subsystems, the
Service Coordination Layer takes an agent-based approach
towards flexible semantic Web service discovery and
coordination. Its main functionality is twofold:
1) Semantic service discovery, i.e., service discovery and

semantic matchmaking; and
2) Service coordination, i.e., service composition, execution,

and possible re-planning.
The Context subsystem, orthogonal to the layers described

above, is in charge of acquiring, storing, and providing context
information to both those layers.

The Security and Privacy subsystem, also orthogonal to the
Networking and Service Coordination layers, is responsible for
ensuring security and privacy of information throughout the
different parts of the infrastructure. One of the main things we
need to protect is the data that every node of the IP2P network
maintains. In details, data confidentiality, integrity, and
availability are topics of concern that any approach to security
must address. The security and privacy functionality was
considered at every level of the CASCOM architecture. This
enables instant take-up of the CASCOM concepts for service-
oriented business applications.

The use of agents to support nomadic computing has been
intensively studied in the past few years and CASCOM builds
on previous results by using a well-known and appreciated
agent platform, i.e., JADE-LEAP [5], as the basis for the
implementation of its architecture. Unfortunately, JADE-
LEAP did not really take into account many P2P issues and the
CASCOM project had to address them explicitly. This
concerned the realization of a novel support for
communication that does not make any assumption on the
actual physical and logical topology of the network and it does
not even require the availability of a special node acting as a
bridge to the fixed network.

IV. CONCLUSIONS

According to Altman [1], one of the ten infrastructure
challenges that Artificial Intelligence has to face to provide
valuable contribution to healthcare regards having medical
records “based on semantically clean knowledge
representation techniques.” Agents not only provide the
needed tools to turn such a challenge into reality, but they also
provide a clean way to make such records available anywhere,
at any time. This is a notable improvement of the proposed
challenge and agents are ideal means to achieve it.

Moreover, we agree with [2] and we believe that a key
component of the “smart use of computation” that authors
mention will be the use of agent technology. Agents will
improve healthcare organizations and will also support doctors
and caregivers. However, we also agree on the mentioned
issues regarding the impact of the use of agent technology with
patients, which will not only be an improvement but a radical
change in how healthcare and assistance will be provided.

Unfortunately, the adoption of agent technologies within e-
health is taking place quite slowly and, despite the number of
research projects on the topic, this by far an assessed practice.
We believe that the main reasons for this are not in the agent
technology itself, which is generally well accepted; rather they
originate from the inherent difficulties of having ICT accepted
in healthcare from the technical, social, political, legal and
economical points of view. This is a well discussed topic in the
literature and interested readers can refer to some notable
works [3, 6, 8, 10, 12, 15].

ACKNOWLEDGMENT

This work is partially supported by project CASCOM (FP6-
2003-IST-2/511632). The CASCOM consortium is formed by
DFKI (Germany), TeliaSonera AB (Sweden), EPFL
(Switzerland), ADETTI (Portugal), URJC (Spain), EMA
(Finland), UMIT (Austria), and FRAMeTech (Italy). The
authors would like to thank all partners for their contributions.

REFERENCES

[1] R. B. Altman. AI in Medicine: The Spectrum of Challenges from
Managed Care to molecular Medicine. AI Magazine, Vol. 20, No. 3, pp.
67-77, 1999.

[2] R. Annicchiarico, U. Cortés, C. Urdiales (eds.) Agent Technology and
e-Health, Birkhäuser Basel, 2007.

[3] G.A. Barnes, M. Uncapher. Getting to e-Health: The Opportunities for
Using IT in the Health Care Industry. Information Technology
Association of America (ITAA), 2000.

[4] F.L. Bellifemine, G. Caire, D. Greenwood. Developing Multi-Agent
Systems with JADE. John Wiley and Sons, 2007.

[5] F. Bergenti, A. Poggi, B. Burg, G. Caire. Deploying FIPA-Compliant
Systems on Handheld Devices. IEEE Internet Computing 5(4):20-25
2001.

[6] Deloitte Center for Health Solutions. Promoting Physician Adoption of
Advanced Clinical Information Systems: A Deloitte Point of View,
2006.

[7] European eHealth Ministerial Declaration, 22nd May 2003. Available at:
http:/ec.europa.eu

[8] A.R. Jadad, V. Goel, C. Rizo, J. Hohenadel and A. Cortinois. The
Global e-Health Innovation Network – Building a Vehicle for the
Transformation of the Health System in the Information Age. Business
Briefing: Next Generation Healthcare, 2000.

[9] JADE software Web site. Retrieved September 23rd, 2008 from
http://jade.tilab.com.

[10] S. Laxminarayan and B.H. Stamm. Technology, Telemedicine and
Telehealth, Business Briefing: Global Healthcare Issue 3, 2002.

[11] K. McLendon. E-commerce and HIM: Ready or not, here it comes.
Journal of the American Health Information Management Association,
71(1):22-23, 2000.

[12] A. Ohinmaa, D. Hailey and R. Roine. The Assessment of Telemedicine:
General principles and a systematic review. INAHTA Joint Project.
Finnish Office for Health Care Technology Assessment and Alberta
Heritage Foundation for Medical Research, 1999.

[13] M. Schumacher, H. Helin (eds.). CASCOM: Intelligent Service
Coordination in the Semantic Web, Birkhauser Boston, 2008.

[14] M. Springmann, L. Bischofs, P.M. Fischer, H.-J. Schek, H. Schuldt, U.
Steffens and R. Vogl. Management of and Access to Virtual Electronic
Health Records, in Digital Libraries: Research and Development,
Springer, Heidelberg, 2007

[15] P. Wilson, C. Leitner and A. Moussalli. Mapping the Potential of
eHealth: Empowering the Citizen through eHealth Tools and Services,
eHealth Conference, Cork, Ireland, 2004.

4

Abstract — The research in distributed artificial intelligence

has been addressing for several years the problem of designing
and building coordinated and collaborative intelligent multi-
agent systems. This interesting and advanced work can be
fruitfully exploited in the area of service-oriented computing if
agent technology is appropriately engineered and integrated with
the key technologies in this field.

To support this claim, in this paper we show how the agent
technology integrated in an Enterprise Service Bus allows the
conception and realization of real flexible, adaptive intelligent
service-oriented systems.

Index Terms — Multi-agent systems, service oriented
architecture, ESB, rule engine.

I. INTRODUCTION
ulti-agent systems and service-oriented computing are
still evolving towards a complete maturity. The quite

wide spreading of the service-orientation design paradigm and
of the related technologies is having a twofold influence on
the evolution of agent technology.

On the one hand, several researchers belonging to the agent
community are convinced that this technical area is a natural
environment in which the agent technology features can be
leveraged to obtain significant advantages. It is plain, in fact,
that service-oriented technologies cannot provide by
themselves the autonomy and social and proactive capabilities
of agents. Agents, taking advantage of their social ability,
exhibit a flexible coordination that makes them able to both
cooperate in the achievement of a global goal and compete in
the distribution of resources and tasks.

On the other hand, one of the requirements for the success
of multi-agent systems is that they have to guarantee an easy
integration with other widely used industrial technologies.

Driven by such motivations, a number of research works
have been undertaken with the aim of tackling the problem of
integrating service-oriented technologies with multi-agent

P. Mordacci is a student at DII, University of Parma, Viale Usberti 181A,

43100, Parma, Italy (e-mail: paola.mordacci@studenti.unipr.it).
A. Poggi is with DII, University of Parma, Viale Usberti 181A, 43100,

Parma, Italy (phone: +39 0521 905728; e-mail: poggi@ce.unipr.it).
C. G. Tiso is a student at DII, University of Parma, Viale Usberti 181A,

43100, Parma, Italy (e-mail: carmelo.giovanni.tiso @studenti.unipr.it).
P. Turci is with DII, University of Parma, Viale Usberti 181A, 43100,

Parma, Italy (phone: +39 0521 905708; e-mail: turci@ce.unipr.it).

systems.
The aim of this paper is in a slight different direction, that is

we try to cope with the issue of adding collaboration and
coordination capabilities in a service-oriented architecture. In
particular, we have considered an enterprise service bus (ESB)
- a software infrastructure that facilitates the realization of
SOA systems by acting as a middleware through which a set
of services are made available - and we have shown how the
integration of agent technology in an ESB may be considered
very promising.

The brief survey of the literature in the area of service-
oriented technologies, reported in the background section, has
the aim of showing the scenario in which the agent possibly
contribution should be set and at the same time to give a short
preamble acting as a motivation and rationale of the research
work that we have done. Section 3 gives an overview of the
related research. Section 4 deals with the integration of JADE
agents in ServiceMix, an open source ESB based on JBI
specifications. Section 5 describes a simple but realistic
application which shows how the powerful synergism
between agent and service-oriented technologies could be
very promising. The paper ends by drawing some conclusions
around the results of the work done.

II. BACKGROUND
The growing demand for high-levels of interoperability by

organizations that want applications to have broader reach,
have stimulated the rapid growth of novel standards,
technologies and paradigms with the aim of giving an answer
to such problem. The most appropriate response to this need
seems a service-oriented architecture (SOA), i.e. a system
assembled from a loosely coupled collection of services and in
particular of Web services - the integration technology
preferred by organizations implementing SOA (Dustdar &
Schreiner, 2005),

For the sake of clarity, it is necessary to say that there is no
one recognized definition of SOA, however a baseline of
concepts and principles and a strategic vision have emerged
and collectively characterize the service-oriented design
paradigm as an approach to defining integration architectures
based on the concept of service.

The last outcome of the SOA movement has been the ESB,
an infrastructure that can be used as a backbone upon which to
build service-oriented applications. As with SOA, there has
been no industry agreed on the definition of ESB so far. It is

Using Agent Technology as a Support for an
Enterprise Service Bus

Paola Mordacci, Agostino Poggi, Carmelo Giovanni Tiso, Paola Turci

M

5

still a controversial issue if it is a pattern, a product or an
architectural component. According to the authoritative
Gartner’s definition: “an ESB is a new architecture that
exploits Web services, messaging middleware, intelligent
routing and transformation”. Anyway, one thing seems to be
unquestionable; using an ESB is the quickest and most cost-
effective way to address the challenge of the enterprise
application integration. Several middleware vendors provide
or have on their roadmap an ESB.

However, a still open problem is that the information and
the research activities in this area are quite fragmented
(Papazoglou et al., 2006). What clearly emerges is that the
subject of service-oriented applications turns out to be vast
and enormously complex and more work needs to be done in
order to realize real flexible, adaptive intelligent service-
oriented systems. As a matter of fact, current SOA
implementations are still restricted in their application context
to being an in-house solution for companies (Domingue,
2008).

In the attempt to delineate an effective solution, some
researchers have envisaged as strategic the integration of SOA
with both semantic and Web technologies (Domingue, 2008).
Others have turned their eyes towards the agent technology, as
an interesting means for the realization of more effective and
reliable service-oriented systems and for SOA to be successful
on a worldwide scale. Clearly, such technologies are not
competitive but complementary and therefore someone else
has been developing systems which integrate SOA, semantic
Web and multi-agent systems (Negri, 2006).

The agents ability of operating in dynamic and uncertain
environments allows coping with the usual problems of
failures or unavailability of services and the consequent need
of finding substitute services and/or back tracking the system
in a state where execute an alternative workflow. Moreover,
the capabilities of some kinds of agent of learning from their
experience make them able to improve their performance over
the time avoiding untrusted and unreliable providers and
reusing successful solutions. These remarkable agents’
features have mainly driven the research activities of the agent
community in the area of service-oriented computing so far,
that is agents as a valuable support for realizing Web services
composition.

Other interesting features, which can be the main
ingredients for automatic cooperation between enterprise
services, are the agents’ capabilities of collaborating and
coordinating themselves. In a business environment, an
example would be a broker that has frequently to seek
providers as well as buyers dynamically, to collaborate with
them and finally to coordinate the interactions with and
between them in order to achieve its goals. An intelligent
service-oriented infrastructure could do it automatically or
semi-automatically, within the defined constraints. These
further agents’ characteristics have been considered in the
research work presented in this paper.

III. RELATED WORK
The problem of realizing service-oriented applications

exploiting agent technology has mainly concerned so far three
fundamental issues: (i) the management of the interactions
between agents and Web services; (ii) the execution of a
workflow or more in general of a plan that describes how Web
services interact; (iii) the discovery of the Web services that
perform the tasks required in the plan.

In other words, to date the efforts have been mainly devoted
to provide an effective solution to the problem of Web
services composition.

In this context, the first issue that the agent community has
had to cope with was the mapping between the different
semantic levels of the two paradigms or patterns of
communication (Greenwood & Calisti, 2004; Nguyen, 2005;
Shafiq et al., 2005).

The next step has been the implementation of prototypes of
agent based frameworks coping with the static and dynamic
composition of Web services, through the use of workflow
technologies (Buhler & Vidal, 2005). In fact, once the
infrastructure, enabling a bi-directional connectivity between
the two technologies, is in place an agent can play the role of
the orchestrator of dynamic Web service compositions. Even
if the current multi-agent solutions, aiming at realizing an
effective agent-based service composition, are still in a
preliminary phase and certainly need to be improved
(Savarimuthu et al., 2005), a lot of researchers and software
developers are really interested in giving a significant
contribution in this direction.

As far as the automatic cooperation between enterprise
services is concerned, to the best of the authors’ knowledge,
there are very few ongoing studies. The most significant is the
one reported in (Paschke et al, 2007). In this work, the authors
combine the ideas of multi-agent systems, distributed rule
management systems and service-oriented and event-driven
architectures. The work is mainly focused on the design and
implementation of a pragmatic layer above the syntactic and
semantic layers. Taking advantage of this layer, individual
agents can form virtual organizations with common
negotiation and coordination patterns. An enterprise service
bus is integrated as a communication middleware platform and
provides a highly scalable and flexible application messaging
framework to communicate synchronously and also
asynchronously with external services and internal agents. To
date, the authors have developed an interesting methodology
and an architectural design but they have only outlined a
possible implementation of the system.

IV. INTEGRATION OF JADE IN SERVICEMIX
Apache ServiceMix (ServiceMix) is an open source ESB

released under the Apache license, based on the Java Business
Integration (JBI) standard (JBI, 2005). These two factors,
open source and standard-based, allow for low entry cost,
maximum flexibility, reuse and investment protection.

ServiceMix is lightweight and easily embeddable, integrates

6

Spring support and can be run at the edge of the network
(inside a client or server) as a standalone ESB provider or as a
service within another ESB.

ServiceMix includes a complete JBI container supporting
all parts of the JBI specification: allows plug-in services (as
configuration of JBI components) which can be combined to
create a SOA; provides a Normalized Message Router (NMR),
as the backbone of all communication (based on the exchange
of normalized messages having an xml content) between
services within the ESB; supports the four JBI message
exchange pattern (i.e. protocols defining the messages
exchanged between a service consumer and a service
provider, involved in a service invocation); includes full
support for the JBI deployment units with hot-deployment of
JBI components.

ServiceMix distribution already includes many JBI
components that provide support for some of the most
common protocols and engines. JBI components are deployed
to the JBI container and simply run in memory waiting for
configuration. In fact, in order to make use of these
components as an application developer, one has to provide a
configuration for each component he/she intends to use.

ServiceMix therefore strongly encourages the “configure
don’t code” integration approach, that allows a faster and
simpler (but less flexible..) integration.

Configurations are implementation specific but the
packaging is defined by the JBI specifications. Each
component configuration must be packaged as a Service Unit
(SU) and each SU must be wrapped in a Service Assembly
(SA). These are simply ZIP/JAR files that contain an XML
descriptor.

According to the JBI specification, JBI components come
in two flavours: Binding Component (BC) and Service Engine
(SE).

ServiceMix BCs are used to communicate outside the JBI
environment by means of a lot of supported remote protocols:
HTTP/S, HTTP+SOAP, JMS, FTP, SMTP, XMPP, etc.

BCs are responsible for normalizing incoming (relative to
JBI environment) messages and denormalizing outcoming
messages.

ServiceMix SEs provide some type of logic inside the JBI
environment. Some examples of SE components in
ServiceMix include: rules engines, BPEL engines, XSLT
engines, Plain Old Java Object (POJO), annotated POJO,
schema validation of documents, support for Enterprise
Integration Pattern, etc.

According to the “configure don’t code” integration
approach, to integrate JADE agents in an ESB is opportune to
select the most appropriate ServiceMix component to
configure, in order to obtain a service satisfying our goal. The
basic idea is to build a service, acting as a proxy between the
NMR and the agent community, that can interact with both
services deployed in the JBI environment and JADE agents
belonging to the agent community. By means of this proxy,
services deployed in ServiceMix ESB can access capabilities
offered by agents. Services can send normalized messages to

the proxy service that can map them in ACL messages and
forward them to a specific agent within the community. On
the other hand, the proxy can receive requests from the agent
community, map them in normalized messages and forward
them to a specific service exposed in the bus. To make this
possible, each proxy needs to be in relation to an associated
agent that represents a proxy gate towards the agent
community

A possible solution is based on the ServiceMix jsr181
component: a JBI SE exposing POJO as services on the bus.

When a normalized message, addressed to one of such
services, arrives from the bus, an appropriate method of the
POJO will be called, passing the service invocation
parameters (specified as an xml content of the message) as
method parameters. The request is forwarded in some way
within such method to its associated agent (further details will
be explained below). We discarded this option because the
marshalling of the normalized message content is handled
automatically and in a quite rigid manner

The chosen solution is based on the ServiceMix bean
component, since this is a very flexible component that can
receive messages from the NMR and process them in any way
it likes. The bean component gives the developer the freedom
to create any type of message handling but as a counterpart
she/he has to hand coded all the way.

In order to configure this component one has to define a
simple XML file, where the service name, and a Java class
representing the bean are mainly defined. These two artefacts
have to be packaged as a SU.

When a normalized message, addressed to such a service,
arrives from the bus, an appropriate method of the bean will
be called, passing the message as a method parameter. The
message will be processed and the requested actions will be
taken. Using JBI API the bean, in turn, can send the message
towards other services.

The proxy service implementation is therefore
accomplished by configuring the ServiceMix bean
component, instantiating within the bean constructor its
associated JADE agent that, using JADE API, will be
executed within a new secondary container. It is therefore
necessary that first JADE main container is executed, then the
bean is initialized. The connection between the two entities is
handled by means of references; the bean holds a reference to
the agent and the agent holds a reference to the bean.

Within a bean method, invoked subsequently to the
reception of a message by the proxy service, it is so possible
to call an appropriate agent method that, in turn, can interact
with whatever agent belonging to same or other FIPA
communities.

Similarly, any agent can send an ACL message to the proxy
agent that by means of the proxy service can interact with
services exposed in the bus.

V. ON-LINE BOOK SELLING
The framework has been experimented in the realization of

7

an online book selling application where there are N book
sellers and one broker. The broker is responsible for providing
its users with elementary and aggregated information collected
through the collaboration with sellers.

In Figure 1, the full system architecture (with N=2) is
shown.
The sellers and the broker are distributed in the network. Each
entity, i.e. the coupling agent-service, has an associated
ServiceMix JBI container in which a number of JBI
components are deployed. The blue rectangles represent
services as configuration of a JBI component. The particular
services, that is the sellers or the broker, act as a proxy
between the NMR and the agent community. The agent
associated to each proxy (i.e. respectively agent seller or agent
broker) is linked to its proxy by a dotted line. A seller

maintains book data within a relational database that is
handled by an agent seller or possibly another agent of the
community. Finally, in the figure it is also highlighted how all
interactions between services within a JBI container are
mediated by the NMR.

Each seller entity provides its users with the following
features: (i) an easy support to obtain the complete book list
offered by the seller; (ii) the possibility, if some constraints
are met, to obtain a discounted price of a specified book; (iii)
the opportunity to add a new book to the seller’s book
database.

Users can express a request for a seller book list by means
of a web interface: the http request is received by the http-
book-list service (a configuration of ServiceMix BC
servicemix-http).

Figure 1- On-line book selling system architecture

This service maps the received http request in a message

normalized content (an XML document), that is sent to the
seller service (as already mentioned, a configuration of
ServiceMix SE servicemix-bean).

This proxy forwards the request (mapped in an ACL
message) to the agent seller, which fulfils the request or
delegates the agent acting as a database handler.

The agent seller returns the response, an XML document

containing the book list, to the proxy that, in turn, maps such
response in a normalized message, then returned to the http-
book-list service. At last, this service maps the received
message in a proper HTTP response. Once the user has
obtained the seller book list, he/she can request the final price
(i.e. the price after the discount) of a selected book, by means
of a web interface. It is necessary to specify, besides the book
title, the user nickname and the desired quantity, since in this

8

simple application the final price of a book is determined by a
set of business rules depending on this information.

The HTTP request, containing the user specified
parameters, is received by the http-seller service (a
configuration of ServiceMix BC servicemix-http).

Similarly to the http-book-list service, this service maps the
received http request in a message normalized content, that is
sent to the seller service. The seller service asks its linked
agent seller the book base price that subsequently will be
forwarded, together with user’s data, to the drools service, a
configuration of ServiceMix SE servicemix-drools.

Drools is a business rule management system with a
forward chaining inference based rules engine, more correctly
known as a production rule system, based on an enhanced
implementation of the Rete algorithm. Drools is a JBoss open
source project compliant to the JSR-94 standard for business
rules engine.

A rule engine is mainly based on two concepts: a set of
rules (the actual logic) and assertions (facts accessed by rules).
Rules are coded in a drl file, following the Drools syntax.
Assertions can be passed through Java.

To configure a servicemix-drools is necessary to define,
besides an xbean.xml file, a drl file containing the business
rules. Each normalized message received by a drools service
is processed by the drools service as an assertion. A drl file
can access JBIHelper class methods to interact with NMR
(e.g. it is possible to create normalized message and send them
to a specified destination).

In such way, the drools service can answer the request
received by a seller service replying with a message
containing the discount, determinate according to the codified
business rules.
To add a new book to the seller’s book database, an external
application, that publishes a JMS message (containing new
book data) on a specified JMS Topic, is used. Such message
is withdrawn by jms-seller service (a configuration of
ServiceMix BC servicemix-jms) representing a JMS
TopicSubscriber. This service maps the received message in a
new message addressed to the seller service that will forward
it to the seller agent or through it indirectly to the agent acting
as book database handler.

The broker entity provides his users with the following
features: (a) a support to obtain the complete book list, as the
union of seller book lists; (b) the possibility to know the seller
that offers a selected book at the best final price; (c)
subscription to broker’s newsletters; (d) notification by e-mail
of new books.

 Cooperating with the agent sellers in accordance with the
FIPA protocols, the agent broker can collect the information
necessary to provide the aforementioned functionalities.

Users can request the complete book list by means of a web
interface: the http request is received by the http-book-list-
broker service (a configuration of ServiceMix BC servicemix-
http). Similarly to the seller case, this service maps the
received http request in a normalized message, that is sent to
the broker service (a configuration of ServiceMix SE

servicemix-bean: the broker proxy).
This proxy forwards the request to the broker agent, that

will interact with every seller in order to collect the various
lists. The broker agent builds the union of the seller book lists,
returns it to the proxy and so on until a proper HTTP response
is sent to the requester.

Once the user has obtained the complete list, he/she can ask
the broker which seller offers the selected book at the best
final price. For the same reasons explained above in the seller
case, the user has to specify, besides the book title, the user
nickname and the desired quantity.

The HTTP request is received by the http-broker service
and then sent to the broker service. This proxy forwards the
request to the agent broker, which collects information from
every agent seller, offering the requested book. Once agent
broker receives a response from each seller or a timeout is
reached, returns the best received price, through the proxy, to
the user.

An http-register-broker service has been made available to
allow users to register with broker’s newsletter. Users need to
compile an html form specifying their name and e-mail.

As usual, this service maps the received http request in a
normalized message, which is sent to the broker service. Such
service will forward it to the agent broker, that consecutively
will delegate the agent responsible for handling users’ data to
add the new user to the database.

Finally, when agent seller receives notification about the
insertion of a new book, it sends an ACL message containing
the new book data to the agent broker and to the agent in
charge of handling the book database. By means of the broker
service, the agent broker, once it has collected user data from
the agent responsible for handling user database, sends a
normalized message to the mail service (a configuration of
ServiceMix BC servicemix-mail), responsible for sending an
e-mail to each registered users

VI. CONCLUSION
In this paper, we have addressed the integration of multi-

agent systems in an ESB, highlighting the benefits that both
communities can achieve from this solution. On the one hand,
multi-agent systems are able to interact with the key emerging
technologies in the area of service-oriented computing. On the
other hand, the interesting and advanced work carried out in
several years by the agent community can be fruitfully
exploited in the area of service-oriented computing.

Finally, we have tried to prove, by means of a simple but
realistic application, how the powerful synergism between
these technologies could be very promising.

Besides the significant role that collaboration and
coordination capabilities play in our application, another
important point that clearly emerges from our application is
that the agent technology can make successful the exploitation
of the ESB technology, based on JBI specification, on a
worldwide scale. To date, the ESB technology does not
provide a support for the federation of distributed JBI

9

container; each JBI container can interoperate with the others
as with remote consumers or providers, that is by means of
communication protocols supported by binding components.

REFERENCES
[1] Buhler P.A., Vidal, J.M. (2005). Towards Adaptive Workflow

Enactment Using Multiagent Systems. Information Technology
and Management, 6(1):61-87

[2] Greenwood D. & Calisti M. (2004). Engineering Web Service-
Agent Integration. In Proceedings of the IEEE International
Conference on Systems, Man and Cybernetics, pages 1918–
1925. The Hague, Netherlands.

[3] Domingue J. & Fensel D. (2008) Toward a Service Web:
Integrating the Semantic Web and Service Orientation, IEEE
Intelligent Systems January/February, 2008.

[4] Dustdar, S., & Schreiner, W. (2005). A survey on web services
composition, Int. J. Web and Grid Services, Vol. 1, No. 1, pp.1–
30

[5] JBI Java Business Integration 1.0, Final Release August, 2005.
available from
http://jcp.org/aboutJava/communityprocess/final/jsr208/index.ht
ml

[6] Negri A., Poggi A., Tomaiuolo M., Turci P. (2006). Agents for
e-Business Applications, In AAMAS ’06: Proceedings of the
fifth international joint conference on Autonomous agents and

multiagent systems. (pp. 907-914). Hakodate, Japan. ACM
Press

[7] Nguyen X. T. (2005). Demonstration of WS2JADE. In
Proceedings of the Fourth International Joint Conference on
Autonomous Agents and Multiagent Systems, pages 135–136.
Utrecht, The Netherlands

[8] Papazoglou1 M., Traverso P., Dustdar S., Leymann F. (2006).
Service-Oriented Computing Research Roadmap.

[9] Paschke, A., Boley, H., Kozlenkov, A., Craig, B. (2007). Rule
Responder: RuleML Based Agents for Distributed Collaboration
on the Pragmatic Web. 2nd International Conference on the
Pragmatic Web Oct 22-23, 2007, Tilburg, The Netherlands.

[10] Savarimuthu B. T. R., Purvis M., Purvis M. & Cranefield S.
(2005). Integrating Web Services with Agent Based Workflow
Management System (WfMS). In WI '05: Proceedings of the
2005 IEEE/WIC/ACM International Conference on Web
Intelligence. (pp. 471 – 474). Washington, DC. IEEE Computer
Society.

[11] Servicemix, available from http://servicemix.apache.org/
[12] Shafiq M. O., Ali A., Ahmad H. F., Suguri H. (2005).

AgentWeb Gateway - a Middleware for Dynamic Integration of
Multi Agent System and Web Services Framework. In
Proceedings of the 14th IEEE International Workshops on
Enabling Technologies: Infrastructure for Collaborative
Enterprise, pages 267–270, Washington, DC. IEEE Computer
Society

10

A Prolog-Based MAS for Railway Signalling
Monitoring: Implementation and Experiments

Daniela Briola†, Viviana Mascardi†, Maurizio Martelli†,
Gabriele Arecco†, Riccardo Caccia‡, Carlo Milani‡

† DISI, Università degli Studi di Genova,
Via Dodecaneso 35, 16146, Genova, Italy

{Daniela.Briola, Viviana.Mascardi, Maurizio.Martelli}@unige.it, gabriele.arecco@gmail.com
‡ IAG/FSW, Ansaldo Segnalamento Ferroviario S.p.A., Italy

{Caccia.Riccardo, Milani.Carlo}@asf.ansaldo.it

Abstract—This paper describes the outcomes of a project that
involved DISI, the Computer Science Department of Genoa Uni-
versity, and Ansaldo Segnalamento Ferroviario, the Italian leader
in design and construction of signalling and automation systems
for conventional and high speed railway lines. The result of the
project, started in February 2008 and ended in September 2008, is
an implemented MAS prototype that monitors processes running
in a railway signalling plant, detects functioning anomalies, and
provides support to the early notification of problems to the
Command and Control System Assistance. The MAS has been
implemented using DCaseLP, a multi-language prototyping envi-
ronment developed at DISI, that provides libraries for integrating
TuProlog agents into Jade. Due to the intrinsic rule-based nature
of monitoring agents, Prolog has been proved extremely suitable
for their implementation.

I. INTRODUCTION

Distributed diagnosis and monitoring represent one of the
oldest application fields of rule-based software agents.

ARCHON (ARchitecture for Cooperative Heterogeneous
ON-line systems [12]) was Europe’s largest ever project in
the area of Distributed Artificial Intelligence. It was em-
ployed for monitoring and controlling the cycle of generating,
transporting and distributing electrical energy to industrial
and domestic customers, for the Iberdrola company, one of
the world’s leading private energy groups [8]. ARCHON’s
Planning and Coordination Module was implemented as a rule-
based system.

In [25], Schroeder et al. describe a declarative and reactive
diagnostic agent based on extended logic programming. Both
the inference engine used for computing diagnoses and the
reactive layer that implements a meta-interpreter for the agent
were implemented in Prolog extended with communication
facilities.

Both ARCHON and Schroeder’s agent systems date back
to more than ten years ago. In the meanwhile, a large number
of MASs for diagnosis and monitoring has been developed,
many of them based on rule-based approaches.

There are many good reasons for choosing a MAS approach
to process diagnosis and monitoring. Some of them had been
clearly stated by N. Jennings1:

1N. Jennings, ARCHON: Cooperating Agents for Industrial Process Con-
trol, http://users.ecs.soton.ac.uk/nrj/download-files/archon/arch10.html

• To permit reasoning based on information of different
granularity: The MAS may be organised in a hierarchy
of agents with different competencies, starting from those
at the lowest level, directly interfaced with the processes,
and going up towards more and more sophisticated
agents, equipped with expert system-like rules for devis-
ing problems according to the information coming from
agents below in the hierarchy, and reporting aggregated
information and diagnosis to the agents higher in the
hierarchy.

• To enable a number of different problem solving
paradigms to be utilised: Rephrasing Jennings’ consid-
erations,

there is no universally best problem solving
paradigm: procedural techniques may be required
for algorithmic calculations, whereas symbolic rea-
soning based on heuristic search may be the best
approach to diagnosis. A distributed approach en-
ables each component to be encoded in the most
appropriate method.

• To meet the application’s performance criteria: The dis-
tributed nature of a MAS makes it a suitable solution for
monitoring different processes concurrently, thus gaining
in performance and responsiveness.

The motivations for choosing a Distributed Artificial Intel-
ligence approach given by [5], [1] also apply to the process
diagnosis and monitoring domain: economy, robustness, reli-
ability, natural representation of the domain.

Situational awareness, that is mandatory for the successful
monitoring and decision-making in many scenarios, is one of
the founding characteristics of intelligent software agents [13].
When combined with reactivity, situatedness may lead to the
early detection of, and reaction to, anomalies.

Last but not least, an agent-based distributed infrastructure
can be added to any existing system with minimal or no
impact over it. Agents monitor processes, be them computer
processes, business processes, chemical processes, by “looking
over their shoulders” without interfering with their activities.

The simplest and most natural form of reasoning for produc-
ing diagnoses starting from observations is rule-based. Also,

11

a monitoring activity may be profitably modelled by means
of reactive rules. If the agents employed in the MAS are
implemented in a rule-based language, the implementation of
a rule-driven reasoning mechanism is greatly simplified.

This paper describes the results of a joint academy-industry
project started at the beginning of 2008. The project involves
the Computer Science Department of Genoa University, Italy,
and Ansaldo Segnalamento Ferroviario, a company of Ansaldo
STS group controlled by Finmeccanica, the Italian leader in
design and construction of railway signalling and automation
systems.

The outcome of the project is a MAS prototype that mon-
itors an Ansaldo process, which controls railway signalling,
and reacts to anomalies either by interacting with other agents
in the MAS or by killing the process that raised the anomaly.
The MAS has been implemented in Jade [6] extended with
TuProlog [9] by means of the DCaseLP libraries [18].

At this stage of the project, the MAS is running in an
“off-line” modality: agents are not installed on machines in
Ansaldo and the MAS tests have been carried out at DISI.
Agents read original log-files provided by Ansaldo as if new
lines were added by the monitored process once every m
minutes. Agents act in accordance to the content of the last
lines read, thus simulating an “on-line” reading phase. Also the
“kill process” action is just simulated at the time of writing.
When Ansaldo will fully integrate the MAS into its system,
log-files will be read in real-time as they are produced by the
monitored process. Furthermore, the MAS will be allowed to
really kill processes and to contact the Assistance Centre of
the Command and Control System for Railway Circulation to
report the anomalies in an automatic way. When the MAS will
be installed on the Ansaldo SCC system, other ways to manage
processes, aside from the “kill process”, will be studied.

The paper is structured in the following way: Section II
describes the operating scenario and the MAS architecture,
Section III describes the rule-based implementation of the
agents, Section IV shows the potential of the system by
discussing different execution runs. Section V overviews the
related work and concludes.

II. OPERATING SCENARIO AND MAS ARCHITECTURE

The architecture of the MAS and its operating scenario have
been extensively described in [17]. In this section we briefly
recall them to allow the reader to understand the original
contribution of this paper, namely the system implementation
and execution described in Sections III and IV.

A. Operating Scenario

The Command and Control System for Railway Circulation
(“Sistema di Comando e Controllo della Circolazione Fer-
roviaria”, SCC) is a framework project for the technological
development of the Italian Railways (“Ferrovie dello Stato”,
FS). It is based on the installation of centralised Traffic
Command and Control Systems, able to remotely control the
plants located in the railway stations, and to manage the

movement of trains from the Central Plants (namely, the offices
where instances of the SCC system are installed).

The SCC can be decomposed into five subsystems
• Circulation, for remote control of traffic and for making

circulation as regular as possible;
• Synoptic Frame, for representing railway lines, nodes, and

trains, in a summarised, easily understandable way;
• Diagnosis and Upkeep, for the diagnosis of plants and

equipments of the SCC;
• Information to Customers, for providing information to

the FS customers;
• Remote surveillance, intrusion avoidance, fire detection,

emergency management, for dealing with all these situa-
tions efficiently.

The MAS we have implemented monitors and reacts to
problems of one critical process belonging to the Circulation
subsystem: Path Selection.

The Path Selection process is the front-end user interface for
the activities concerned with railway regulation. There is one
Path Selection process running on any workstation in the SCC
and each operator interacts with one instance of this process.
The Path Selection process visualises decisions made by the
Planner process and allows the operator to either confirm or
modify them.

The Planner process is the back-end elaboration process for
the activities concerned with railway regulation. There is only
one instance of the Planner process in the SCC, running on
the server. It continuously receives information on the position
of trains from sensors located in the stations along the railway
lines, checks the timetable, and formulates a plan for ensuring
that the train schedule is respected. Operators may modify the
Planner’s decisions thanks to the Path Selection process.

By integrating a monitoring MAS into the circulation sub-
system, we equip any operator of the Central Plant (any
workstation) with the means for early detecting anomalies that,
if reported to the SCC Assistance Centre in a short time, and
before their effects have propagated to the entire system, may
allow the prevention of more serious problems.

To have an idea of the dimensions of an SCC and of the area
it controls, the SCC of the node of Genoa, that we employed
as a case-study for the implementation of our MAS, controls
an area with 255 km of tracks, with 28 fully equipped stations
plus 20 stops (Figure 1).

One of the 16 user workstations of Genoa’s SCC is shown
in Figure 2. The synoptic frame can be seen in the background.

It is worth noting that our MAS does not manage problems
tightly connected with the railway domain. Indeed, it monitors
parameters which are common to many processes in many
domains, like the use of the cpu and the hard disk, the state of
the connection to the network, etc.. The aim of our project was
to develop a system able to monitor the execution of a process
characterised by the above parameters. As a consequence, the
architecture and the MAS developed are general and flexible
enough for monitoring many different processes, and not only
to the Path Selection one: our system could be easily adapted

12

Figure 1. Railway tracks controlled by Genoa’s SCC.

Figure 2. Operator and synoptic frame in Genoa’s SCC.

to monitor new processes without changing the architecture of
the MAS but just creating specific reader agents and equipping
the other agents with new rules.

B. MAS architecture

Our MAS consists of the four kinds of agent depicted in
Figure 3.

Agents are organized in a hierarchy: Log Reader Agents
are at the bottom of the hierarchy and interact with Process
Monitoring Agents, which in turn interact with Computer
Monitoring Agents. At the root of the hierarchy is the Plant
Monitoring Agent, unique in each SCC. Agents live and act
in the software Environment consisting of the already existing
processes developed by Ansaldo, and interact with it in the
limited way discussed below.

• Log Reader Agent. In our MAS, there is one Log Reader
Agent (LRA) for each process that needs to be monitored.
Thus, there may be many LRAs running on the same
computer (if there are more processes to monitor; at the
time of writing, only Path Selection is considered). Once
every m minutes the LRA reads the log-file produced
by the process P it monitors, extracts information from
it, produces a symbolic representation of the extracted
information in a format amenable of logic-based reason-
ing, and sends the symbolic representation to the Process

Figure 3. MAS architecture, from [17].

Monitoring Agent in charge of monitoring P. Relevant
information to be sent to the Process Monitoring Agent
includes loss of connection to the net and life of the
process. LRA is the only agent able to get information
from the Environment where the MAS is situated.

• Process Monitoring Agent. Process Monitoring Agents
(PMAs) are in a one-to-one correspondence with LRAs:
the PMA associated with process P receives the infor-
mation sent by the LRA associated with P, looks for
anomalies in the functioning of P, reports them to the
Computer Monitoring Agent (CMA) and asks it for more
information, and in case kills and restarts P if necessary.
It implements a sort of social, context-aware, reactive
and proactive expert system. PMA can interact with
the Environment by killing and restarting the process it
monitors.

• Computer Monitoring Agent. The CMA receives all
the messages arriving from the PMAs that run on that
computer, and monitors parameters like network avail-
ability, CPU usage, memory usage, hard disk usage. The
messages received from PMAs together with the values
of the monitored parameters allow the CMA to make
hypotheses on the functioning of the computer where it is
running. If necessary, the CMA may ask the PlaMA for
more information, to know about the state of the entire
plant and to act consequently.

• Plant Monitoring Agent. There is one Plant Monitoring
Agent (PlaMA) for each plant. The PlaMA receives
messages from all the CMAs in the plant and in case
alerts the SCC Assistance Centre. It interacts with the
Environment by alerting the remote assistance centre.

13

III. IMPLEMENTATION

All the agents of the MAS, apart from LRA that is a
pure Jade [6] agent, have been implemented in TuProlog
[9] integrated into Jade by means of an extended version of
DCaseLP libraries [18]. The extension consists in making a
blocking selective receive predicate available to the agents,
which takes three arguments: Performative, Content, Sender. It
was motivated by the need to allow our agents to retrieve only
messages respecting a given pattern (in particular, messages
arriving from a given Sender) from their message queue. Jade
offers the MessageTemplate class that provides static methods
to create filters for each attribute of the ACLMessage. The
Jade blockingReceive method can accept a message template
as argument, and retrieve only those messages that match the
template. The DCaseLP blocking selective receive predicate
creates a template that filters on the name of the Sender, and
then calls the Jade blockingReceive(mt) to return the value for
Performative and Content.

LRAs have been designed and developed as agents for
clearly separating what has been developed as part of this
project (“agents”) from what already existed (“non agents”).
We also wanted to emphasise their autonomy (although very
limited) and to separate the functionality of parsing the log-
file from the one of reasoning over facts. However, LRAs
are very trivial agents and we could have designed and
implemented them as “Artifacts” in the A&A metamodel [23]
or as “Touchpoints” in the Autonomic computing terminology
[2] as well.

The CMA, PMA and PlaMA have a cyclic “observe-think-
act” behaviour [14] (and a “cyclic behaviour” in Jade) where
they

• look if a new message matching a given template has
been received;

• retrieve the message from their message queue and store
it in their history;

• manage the message according to the rules in their
program, and to their knowledge base (that includes all
the messages received in the past);

• answer to the agent that has sent the message, and, in
case, send messages to other agents in the MAS.

The architecture of each agent, apart LRA ones, is a
declarative architecture where the knowledge base is modeled
as a set of Prolog facts, the behavior is determined by Prolog
rules, reactivity is implemented by allowing agents to look
at their message box and to react to incoming messages.
Messages arrive from the LRA to the PMA every m seconds
(where m is a configuration parameter of the MAS), and the
PMA looks for anomalies and starts the managing process if
necessary.

Agents are equipped with different rules dealing with the
different parameters to be monitored, namely:

1) parameters tightly connected to the process monitored
by the PMA; these parameters include “cpu usage” and
“errors” and are not influenced by the state of the network
or by other processes;

2) parameters influenced either by the state of the network,
or by the behaviour of other processes as those running
on the server (for example, “connection to server” and
“view”).

Parameters of the first type are treated locally by the PMA.
Parameters of the second type are dealt with by PMA asking
the CMA, which can ask the PlaMA, for more information,
since they may involve non-local problems.

An example of message sent by the LRA to the
PMA is: log(time(‘‘Mon Feb 11 21:30:43 CET
2008’’), [view(normal), cpu_usage(normal),
connection_to_server(active),
disk_usage(normal), answer_to_life(slow),
errors(absent), memory_usage(normal)]),
whose meaning is easy to understand.

Currently the agents do not use a common ontology, that is
implicitly known as the set of the monitored parameters and
their possible values.

The state of an agent consists of a set of facts representing
what happened in the past. Different agents store different
facts: PMAs store information about what local problems have
been found and when (facts reporting a timestamp and what
the problem is), CMAs keep information about the problems
of all its PMAs and the notifications of a process killing (facts
reporting the name of the process, a timestamp and what the
problem is and facts reporting why and when a process have
been killed), whereas PlaMA records facts about problems in
the network (facts reporting the name of the machine and the
process, a timestamp and what the problem is), but nothing
about the solutions that have been taken (because they are local
solutions). Messages received in previous interactions are also
stored by agents in their knowledge bases, since agents may
act in different ways if some problem is reported for the first
time or if the problem is common to other agents that recently
reported it.

This structure allows us to leave the rules that establish
how to manage a problem (kill o not, according to the CMA
advice) in the PMA, to store the intelligence to monitor a
computer and decide when more information is needed in the
CMA, and to have the PlaMA look over the whole network
and answer CMAs’ requests, but without intruding in the local
management.

In the sequel we show some schemes of interaction proto-
cols among agents aimed at managing some parameters. The
translation from these schemes into Prolog code has been done
creating and distributing rules among the agents involved in the
interaction. We did not use any standard interaction protocol:
indeed, we designed the needed interaction protocols on an
application-driven basis.

For example, in order to manage the “connection to server”
parameter, the MAS acts in the following way:

1) If the value of the “connection to server” parameter
received by the PMA from the LRA is “active”, no action
has to be taken; instead

2) if the value received by the PMA from the LRA is “lost”,
the PMA asks the CMA to know if this problem is

14

common to other processes or not.
a) If the CMA has no recent information2 about this

problem in its history, it notifies the PMA that the
problem is not a “net problem” (that is, it is not
common to other processes); in this case, the PMA
kills and restarts the process, and informs CMA of this.

b) If the CMA has other (one or more) recent notifications
of the problem, before answering to the PMA, it asks
the PlaMA to know if the problem is local to the
machine where the CMA runs, or has been reported
also on other computers.
i) If the PlaMA received no notifications of this

problem from other CMAs recently, it answers that
the problem is not common to the MAS; in this
case, the CMA answers the PMA that there are no
net problems, and the PMA kills and restarts the
process and informs CMA of this. Otherwise,

ii) if the PlaMA already received notifications of the
same problem in the last M minutes, it answers the
CMA that there are network problems; the CMA
forwards this answer to the PMA, which, in this
case, does not kill the process.

There are also situations where the PMA waits for two (or
more) consecutive messages from the LRA notifying the same
problem, before reporting it to the CMA. This situation is
shown below, for the parameter “answer to life”:

1) If the value of the “answer to life” parameter received
by the PMA from the LRA is “ready”, no action has to
be taken.

2) If the value received by the PMA from the LRA is
“absent”, the PMA kills and restarts the process (and
informs CMA).

3) If the value received by the PMA is “slow”, the PMA
must wait for the successive message arriving from the
LRA. If the successive message reports again a “slow”
answer to life, then the PMA must ask the CMA to know
if this problem is common to other processes or not.

a) If the CMA received no recent notifications of this
problem, it notifies the PMA that the problem is not
a “net problem” (that is, it is not common to other
processes). In this case, the PMA waits for two more
messages from the LRA and, if the problem persists,
kills and restarts the process and notifies it to CMA.

b) If the CMA received recent notifications of the same
problem, it asks the PlaMA if the problem is local
to the machine or had also been reported on other
computers.
i) If the PlaMA answers that the problem is not

common to the MAS, since no notifications of
the same problem have been reported in the last
M minutes, the CMA sends a “no net problem”.
The PMA waits for two next messages and kills

2By recent information, we mean information stored no later than M
minutes ago, where M is a parameter that can be set by the person in charge
of configuring the MAS.

and restarts the process (and notifies CMA), if the
problem persists.

ii) If the PlaMA was recently notified of the same
problem, it answers the CMA that there are network
problems; this answer is forwarded by the CMA to
the PMA, that does not kill the process.

The hierarchical structure of the system ensures scalability:
there will always be only one PlaMA in the MAS, but many
CMAs may be connected to it, and many PMAs can be started
on a machine and controlled by the local CMA. In case other
PMAs should be developed in the future, with rules ad hoc for
different processes, only the new PMAs and their associated
LRAs should be developed from scratch, with no impact on
the entire system.

IV. RUNNING THE SYSTEM

In order to run the developed system, Jade and tuProlog
(version 1.3, in order to be compliant with the DCaseLP
libraries) need to be installed on the machine, as well as the
extended DCaseLP libraries. The simplest configuration of the
MAS includes

• one PlaMA
• one CMA
• one PMA

but usually the MAS will consist of at least two CMAs
controlling different PMAs. At this stage of the project we
use more PMAs of the same type, which is not a problem
because the rationale is to simulate the behaviour of the CMA
with more processes, regardless of their type. The PlaMA is
one for each MAS. In the sequel we show the behaviour of
the MAS concerning the management of different parameters,
and with different configurations and history. Some figures
will not show the LRA to let the reader better understand the
interactions among the other agents.

The first example shows the behaviour of the MAS when
the value “high” of the “cpu usage” is reported by the LRA
to the PMA, with the simplest MAS configuration consisting
of just one agent of any kind.

When the PMA receives a message from the LRA:
1) If the value of the “cpu usage” parameter is “normal”,

no action needs to be taken.
2) If the value of the parameter is “high”, and it remains high

in the successive message sent by the LRA, the PMA kills
and restarts the process, and informs the CMA.

The simplest MAS configuration works well enough to
demonstrate this behaviour, because it does not depend on
how many PMAs encountered the same problem. As shown
in Figure 4, the first message notifying a high cpu usage from
the LRA does not cause the delivery of message from the
PMA. The second message with the same content, instead,
causes the PMA to send a message to the CMA, with the
content “process killed”.

Figure 5 depicts the behaviour of the PMA with respect
to the “answer to life” parameter. In this configuration we
have only one CMA. The PMA will wait for two messages

15

Figure 4. Execution run concerning the “cpu usage” parameter.

from the LRA with the value “slow” for the parameter, then it
contacts the CMA for further information: CMA received no
recent information from other PMAs, so PMA kills (after two
messages from LRA with the same problem) the monitored
process and informs of this the CMA, as described in the
previous section.

Figure 5. Execution run concerning the “answer to life” parameter.

The third example shows the behaviour of the system for
the management of the “connection to server” parameter. The
behaviour has been illustrated in Section III and is more
complex than the one dealing with the “cpu usage”. To allow a
good understanding of how it works, we will use two different
configurations and histories.

The first configuration, shown in Figure 6, involves one
PlaMA, one CMA and two PMAs, named Pma1 and Pma2.
Pma1 receives a message from its LRA with “connec-
tion to server(lost)”: Pma1 asks for more information to
CMA, that has no recent notifications of this problem from
other PMAs, and answers “no network problem” to Pma1.
Pma1 kills and restarts the process and informs CMA of
this. Later, also Pma2 receives the same message from its
LRA, and, in the same way as Pma1, asks to CMA if the
same problem has already been reported. CMA, which had
registered the problem of Pma1 in its history, needs to verify
if this is a local problem or a problem involving the entire
network. Thus, it asks the PlaMA if it is aware of other
CMAs with the same problem. For the PlaMA, this is the first
notification of the problem so it registers it into its history
and answers “no network problem”. The CMA forwards the
message to Pma2 which kills and restarts the process, and
informs CMA of it.

If we make the configuration even more complex (Figure
7), the behaviour of the MAS changes. We add another CMA
named Cma2, controlling two PMAs (Pma3 and Pma4). The

Figure 6. Execution run concerning the “connection to server” parameter.

agents shown in Figure 6 are still alive and their history
includes the events discussed before. If Pma3 receives the
notification of the “connection to server(lost)” problem, it
reacts exactly as Pma1, and Cma2 acts as Cma1. That is,
Cma2 answers to Pma3, without asking the PlaMA, that
there are no network problems. But if also Pma4 receives
the “connection to server(lost)” message from its LRA, then
Cma2 must ask the PlaMA if there are network problems.
The PlaMA’s history contains the fact that Cma1 reported the
same problem a short while ago, so PlaMA sends a message
with content “network problem” to Cma2. This answer is
propagated to Pma4 by Cma2, and, as a consequence, Pma4
does not kill the process because the problem cannot be
managed locally.

V. RELATED WORK AND CONCLUSIONS

The exploitation of intelligent agents for monitoring and
diagnosing distributed processes has a long and successful
history dating back to the early and mid nineties. Before
that, Distributed Artificial Intelligence (DAI) techniques were
adopted. Even if the first DAI systems did not integrate
“agents” as we intend them today, they were the ancestors
of MASs and deserve to be shortly mentioned in this section.

In 1990, the “Large-internetwork Observation and Diagnosis
Expert System”, LODES [29], was implemented. It represents
an interesting example of application of DAI to diagnosis. The
diagnostic system was created by reusing and unifying pre-
existing network diagnosis expert systems. Each sub-LAN had
its own LODES system, and problems were solved by their
co-operative work. In the same year, Weihmayer and Brandau
developed TEAM-CPS [30], a test bed for introducing DAI
to control and manage customer networks: in TEAM-CPS
the customers’ virtual private networks were automatically
reconfigured using links from the public network. In 1992, the
“Distributed Big Brother” was one of the earliest works where
DAI was adopted for monitoring purposes in the telecommu-
nications area [28]. The project applied DAI techniques to
Local-Area Networks, to make their management more robust
and faster.

Among the oldest applications of rule-based intelligent

16

Figure 7. Execution run concerning the “connection to server” parameter, complex configuration.

agents in the monitoring and diagnosis domain, besides
those already cited in Section I, we may mention a re-
implementation of TEAM-CPS [31] where agents used the
PRODIGY planning system [20] for local network planning,
and the well-known Agent-Orientated Programming frame-
work [27] for communication and control. In 1997, Leckie et
al. [15] developed a prototype agent-based system for perfor-
mance monitoring and fault diagnosis in a telecommunications
network, where agents were implemented using C5 [24], based
on the OPS5 rule language [11], and communicated using
KQML [10].

An architecture for a software agent operating a physical
device and capable of testing and repairing the device’s com-
ponents is described in [3]. In that work, the authors focus on
modelling the agent’s behaviour after the discovery of a fault in
a circuit: the knowledge as well the behaviours of the agent are
expressed in A-Prolog [4]. The life of the agent is an “observe-
think-act” loop where actions are quite simple, but nevertheless
able to modify the circuit in order to repair it. An industrial
application of A-Prolog to a medium size knowledge-intensive
application for controlling some functions of the Space Shuttle
is described in [21]. However, no agents are used there.

Moving to nowadays, [26] describes Space Shuttle Ground
Processing with Monitoring Agents. JESS is used to realize
a system that helps the monitoring of all the processes,
instrumentation and data flows of the Kennedy Space Center’s
Launch Processing System. The system, called NESTA, helps
to monitor and above all to discover problems concerning
the “ground process”, i.e. the set of the operations carried
out in the weeks before the Space Shuttle’s launch. NESTA
autonomously and continuously monitors shuttle telemetry

data and automatically alerts NASA shuttle engineers if it
discovers predefined situations. This system, developed and
tested in a real, safety-critical scenario, shows that an agent-
oriented solution implemented with a rule-based language
may be employed to satisfy concrete industrial needs, and
demonstrates the success of agents outside the boundaries of
academia.

Other applications of agents for diagnosis and monitoring do
not rely on a rule-based approach. For example, the paper [16]
presents a technique for monitoring the start up sequences of
gas turbine: the system uses a MAS where decisions are taken
by combining partial information possessed by individual
agents, thus obtaining a global view of the situation, and
producing an automatic fault diagnosis for the engineers. The
MAS is implemented with the ZEUS Agent Building Toolkit
[22]. In 2006, the Rockwell Automation company applied
agents to control manufacturing production [19]. The MAS
is implemented with real-time control agents, and also the
information transfer among the software agents takes place
in real-time, using a Programmable Logic Controller. A MAS
for the simulation of the environment for material handling
systems has been implemented in Jade. Finally, [7] describes
a model for managing faults in industrial processes. The
model is based on a generic framework that uses MASs for
distributed control systems; the system manages faults with
feedback control process and decides about the scheduling of
the preventive maintenance tasks, also running preventive and
corrective specific maintenance tasks.

Our project, although similar in its purposes to other ap-
plications developed in the past, demonstrates an increased
industrial interest and trust in both agent-based and rule-

17

based technologies. To the best of our understanding only few
proposals of using rule-based agents led to the development
of a MAS prototype used inside an industry ([12], [26]). The
industrial strength system described in [19], despite not using
rule-based technologies, shares with our project the choice of
Jade as the agent middleware.

In 2004, the Agent Technology Roadmap: Overview and
Consultation Report observed that “One of the most funda-
mental obstacles to the take-up of agent technology is the
lack of mature software development methodologies for agent-
based systems.”. According to the experience of DISI and
Ansaldo, agent tools, languages (rule-based ones in particular),
and methodologies are today mature enough to be adopted by
the industry. Although the competencies on how to exploit
them are still missing in many companies, companies now
know that agents exist, believe in their usefulness for coping
with the complexity of open, distributed, dynamic applications,
and are more and more keen on integrating them into their
projects. The role of academia in providing a good support
during the design and implementation of MASs for real appli-
cations is a key factor in the take-off of the agent technology,
and the joint DISI-Ansaldo project discussed in this paper
represents a success story in this direction.

ACKNOWLEDGMENTS

The authors acknowledge the “Iniziativa Software” CINI-
FINMECCANICA project that partially funded this work.

REFERENCES

[1] E. Abel, I. Laresgoiti, J. Perez J., Corera, and J. Echavarri. A multi-agent
approach to analyse disturbances in electrical networks. In International
Conference on Expert Systems Applications to Power Systems, ESAP’93,
Proceedings, 1993.

[2] B. A. Miller. http://www.ibm.com/developerworks/autonomic/library/
ac-edge5/, 2005.

[3] M. Balduccini and M. Gelfond. Diagnostic reasoning with a-prolog.
Theory Pract. Log. Program., 3(4):425–461, 2003.

[4] M. Balduccini, M. Gelfond, and M. Nogueira. A-prolog as a tool for
declarative programming. In 12th International Conference on Software
Engineering and Knowledge Engineering, SEKE’00, Proceedings, pages
63–72. Knowledge Systems Institute, 2000.

[5] J. Barandiaran, I. Laresgoiti, J. Perez, J. Corera, and J. Echavarri. Diag-
nosing faults in electrical networks. In S. Hashemi, J.P. Marciano, and
J.G. Gouarderes, editors, International Conference on Expert Systems
Applications, EXPERSYS’91, Proceedings. IITT Paris, 1991.

[6] F. L. Bellifemine, G. Caire, and D. Greenwood. Developing Multi-Agent
Systems with JADE. Wiley, 2007.

[7] M. Cerrada, J. Cardillo, J. Aguilar, and R. Faneite. Agents-based design
for fault management systems in industrial processes. Computers in
Industry, 58(4):313–328, 2007.

[8] J. M. Corera, I. Laresgoiti, and N. R. Jennings. Using Archon, part 2:
Electricity transportation management. IEEE Expert, 11(6):71–79, 1996.

[9] E. Denti, A. Omicini, and A. Ricci. tuProlog: A lightweight prolog
for internet applications and infrastructures. In I. V. Ramakrishnan,
editor, 3rd International Symposium on Practical Aspects of Declarative
Languages, PADL’01, Proceedings, pages 184–198. Springer, 2001.

[10] T. W. Finin, R. Fritzson, D. P. McKay, and R. McEntire. KQML as
an agent communication language. In 3rd International Conference on
Information and Knowledge Management, CIKM’94, Proceedings, pages
456–463. ACM, 1994.

[11] C.L. Forgy. Ops5 user’s manual. Technical Report CMU-CS-81-135,
Carnegie-Mellon University, 1981.

[12] N. R. Jennings, E. H. Mamdani, J. M. Corera, I. Laresgoiti, F. Perriollat,
P. Skarek, and L. Zsolt Varga. Using Archon to develop real-world DAI
applications, part 1. IEEE Expert, 11(6):64–70, 1996.

[13] N. R. Jennings, K. P. Sycara, and M. Wooldridge. A roadmap of
agent research and development. Autonomous Agents and Multi-Agent
Systems, 1(1):7–38, 1998.

[14] R. Kowalski and F. Sadri. From logic programming towards multi-agent
systems. Annals of Mathematics and Artificial Intelligence, 25(3-4):391–
419, 1999.

[15] C. Leckie, R. Senjen, B. Ward, and M. Zhao. Communication and
coordination for intelligent fault diagnosis agents. In 8th IFIP/IEEE
International Workshop for Distributed Systems Operations and Man-
agement, DSOM’97, Proceedings, pages 280–291, 1997.

[16] E.E. Mangina, S.D.J McArthur, J.R. Mc Donald, and A. Moyes. A multi
agent system for monitoring industrial gas turbine start-up sequences.
IEEE Transactions on Power Systems, 16(3):396–401, 2001.

[17] V. Mascardi, D. Briola, M. Martelli, R. Caccia, and C. Milani. Mon-
itoring and diagnosing railway signalling with logic-based distributed
agents. In E. Corchado and R. Zunino, editors, International Workshop
on Computational Intelligence in Security for Information Systems,
CISIS’08, Proceedings, Advances in Soft Computing Series. Springer-
Verlag, 2008.

[18] V. Mascardi, M. Martelli, and I. Gungui. DCaseLP: a prototyping
environment for multi-language agent systems. In M. Dastani, A. El-
Fallah Seghrouchni, J. Leite, and P. Torroni, editors, In Proceedings of
the First Workshop on LAnguages, methodologies and Development tools
for multi-agent systemS, LADS’007 Post-proceedings, volume 5118 of
LNCS, pages 139–155. Springer-Verlag, 2008.

[19] V. Mařı́k, P. Vrba, K. H. Hall, and F. P. Maturana. Rockwell automation
agents for manufacturing. In F. Dignum, V. Dignum, S. Koenig,
S. Kraus, M. P. Singh, and M. Wooldridge, editors, 4rd International
Joint Conference on Autonomous Agents and Multiagent Systems, AA-
MAS’05, Proceedings, pages 107–113. ACM, 2005.

[20] S. Minton, C. A. Knoblock, D. R. Kuokka, Y. Gil, R. L. Joseph, and
J. G. Carbonell. Prodigy 2.0: The manual and tutorial. Technical Report
CMU-CS-89-146, Carnegie-Mellon University, 1989.

[21] M. Nogueira, M. Balduccini, M. Gelfond, R. Watson, and M. Barry. An
a-prolog decision support system for the space shuttle. In A. Provetti
and T. Cao Son, editors, 1st International Workshop on Answer Set Pro-
gramming, Towards Efficient and Scalable Knowledge Representation
and Reasoning, ASP’01, Proceedings, 2001.

[22] H. Nwana, D. Ndumu, L. Lee, and J. Collis. ZEUS: A tool-kit for
building distributed multi-agent systems. Applied Artifical Intelligence
Journal, 13(1):129–186, 1999.

[23] A. Ricci, M.o Viroli, and A. Omicini. The A&A programming
model and technology for developing agent environments in MAS.
In M. Dastani, A. El Fallah-Seghrouchni, A. Ricci, and M. Winikoff,
editors, Programming Multi-Agent Systems, 5th International Workshop,
ProMAS 2007, volume 4908 of LNCS. Springer, 2008.

[24] J.R. Roland, G.T. Vesonder, and J.M. Wilson. C5 user manual, release
2.1. Technical report, AT&T Bell Laboratories, 1990.

[25] M. Schroeder, I. de Almeida Móra, and L. Moniz Pereira. A delib-
erative and reactive diagnosis agent based on logic programming. In
M. P. Singh, A. S. Rao, and M. Wooldridge, editors, 4th International
Workshop on Agent Theories, Architectures, and Languages, ATAL’97,
Proceedings, volume 1365 of LNCS, pages 293–307. Springer, 1998.

[26] G. S. Semmel, S. R. Davis, K. W. Leucht, D. A. Rowe, K. E. Smith,
and L. Boloni. Space shuttle ground processing with monitoring agents.
IEEE Intelligent Systems, 21(1):68–73, 2006.

[27] Y. Shoham. Agent-orientated programming. Artificial Intelligence,
60(1):51–92, 1993.

[28] Y. So and E. H. Durfee. A distributed problem-solving infrastructure for
computer network management. Int. J. Cooperative Inf. Syst., 2(2):363–
392, 1992.

[29] T. Sugawara. A cooperative lan diagnostic and observation expert
system. In 9th Annual International Phoenix Conference on Computers
and Communications, PCCC’94, Proceedings, pages 667–674. IEEE,
1990.

[30] R. Weihmayer and R. Brandau. A distributed ai architecture for customer
network control. In IEEE Global Telecommunications Conference,
Globecom’90, Proceedings, pages 656–662. IEEE, 1990.

[31] T. Weihmayer and M. Tan. Modeling cooperative agents for customer
network control using planning and agent-oriented programming. In
IEEE Global Telecommunications Conference, Globecom’92, Proceed-
ings, pages 537–543. IEEE, 1992.

18

Abstract—In this paper we present AgentService Mobile:

an infrastructure aimed to the execution of agents on devices

with limited resources. The mobile device plays the role of a

client which consumes a set of services exposed by the

AgentService platform. This is the entry of AgentService in a

SOA context, with the main goal to open the multi-agent

platform to the outside, by using the most recent service

oriented technologies.

Keywords: mobile devices, SOA, Web Services, multi-agent

systems.

I. INTRODUCTION

GENTS are often in the common imaginary a sort of
digital alter-ego of the human owners. They play the
role of secretaries, avatars, and every other

responsibility that can be delegated to a software entity
running on a computer. If in the 70’s and 80’s a computer
was a heavy box that rarely went out of offices and labs,
since 90’s the advent of notebooks allowed users to use
their software more or less everywhere.

A new frontier of mobility has been reached with
wireless networks that cut off the cables from portable
computers. At now the mobility has reached incredible
levels with concentrates of computer technology in the palm
of a hand as PDAs (Personal Digital Assistants) and cellular
phones are.

By using mobile devices we can easily access web pages
and interact with remote services, from basilar mail servers
to a plethora of web services that remotely expose functions
and data. If we hold our all-day life and work activity in a
hand, the possibility to host software agents, so close to us,
is a real opportunity of releasing them from the closed
environment of a multi-agent platform running on a
motionless computer.

It is then our goal to expand the range of the agents that
are in execution on the platform we are developing:
AgentService [1].

For this reason, in this paper we present our on-going
project with the aim of executing AgentService agents on
devices having limited resources, in terms of CPU, RAM
and display capabilities.

From a general point of view, this project introduces
AgentService in a Service Oriented Architecture (SOA)
context [2], where the platform exposes its services to the

1 A special acknowledgement to Matteo Sommariva, for his precise

work during his Master Thesis activity.

outside, in order to allow remote applications and users to
exploit them. Therefore, by using a SOA interface, we do
not open AgentService only to C# based agents on mobile
devices, but also to whatever software entity able to manage
web services. As we will see in section IV, the only other
existing solution is based on an internal protocol which
enables just compatible agents to contact the remote
platform. Our contribution is then aimed to equip the .NET
development community with a framework for integrating
handheld devices in an agent based system, without
renouncing to the flexibility and the opening to the outside.

Following the essence of AgentService, the
infrastructure of the system in question is based on the latest
technologies in the Microsoft .NET field (the framework is
compatible with the Microsoft official releases, and the
open source versions, as Mono), in particular the contracted
version of the Framework .NET 3.5 (namely the Compact

Framework) [3] and the Windows Communication

Foundation (WCF) [4]: a communication infrastructure for
building and running connected systems that offers a SOA
implementation for Windows-based programming.

We consider AgentService as an alternative to the java
based multi-agent platforms, taking into account the
absence of solutions in the .NET community. AgentService
is especially aimed to industrial applications, where the
.NET Framework has gained a conspicuous space.

Considering the limited environment of a mobile device,
the main issue of this project was the creation of a light
infrastructure for executing agents and exploiting the
services offered by a remote standard AgentService
platform. AgentService is normally based on the Framework
.NET 3.5 and exploits functionalities which have been
removed in the Compact Framework version. For this
reason, the challenge was the reduction and adaptation of
the AgentService libraries to a minimal infrastructure,
running on the mobile devices only the essential services
and masking the others by using a proxy that contacts the
main remote platform through web services. The final goal
is to execute on a mobile device an agent that is developed
for a standard AgentService application, furnishing a
context that apparently is the same of a platform running on
a heavy motionless computer.

In this paper we first introduce the main problems
related to the development of SOA mobile applications,
illustrating the state-of-the-art in relation with the Compact
Framework, the Windows Communication Foundation and
the other existing solution in the field of multi-agent
systems.

AgentService in a hand1

A. Passadore, A. Grosso, M. Coccoli, A. Boccalatte, Università degli Studi di Genova, Dipartimento

di Informatica, Sistemistica e Telematica, Via all’Opera Pia 13, 16145 Genova.

A

19

In the second part of this paper we show the architecture
of the proposed system, focusing on the two main aspects:
the runtime service proxies and the light execution
environment.

Conclusions, impressions, and a brief comparison with
the existing solution will follow.

II. MOBILE (AGENT) APPLICATIONS

A. The vivacious field of mobile applications

In the last years the software development for mobile
devices has been subject to a sudden growth due to the
massive diffusion of handheld computers. There exist
different types of portable devices whose classification is
now difficult because of the overlap of their features.
However we can outline a brief classification of such
devices, distinguishing:

• Smartphones: cellular phones with memory and
computational resources, mainly aimed to
communication features.

• PDA (Personal Digital Assistant): devices for the
management of personal information as agenda,
calendar, block-notes, etc.

• Tablet PC: denoting a touch-screen display, it is
mainly used in industrial field, but also for gaming
and multi-media player.

Smartphones and PDAs are often very similar and easily

indiscernible; this fact proves that the trend is to converge
to a multi-purpose mobile device with a heterogeneous set
of features.

The development of multi-agent mobile applications
cannot leave aside the hosting operating system. In the field
of handheld devices, there are heterogeneous solutions that
make this panorama more variegated than the desktop
computers one.

The market is dominated by Symbian OS (65% of the
market, in the fourth period of 2007), which outclasses
Windows Mobile (12%), and Blackberry OS (11%). Other
noteworthy solutions are based on iPhone OS, Palm OS,
JavaFX, OpenMoko Linux, and the incoming Google

Android. Some of them are open to third-part applications
and provide a SDK for the development in proprietary
languages, Java, C++, or C#. Several operating systems
support Java libraries (as Blackberry, Android, JavaFx,
OpenMoko, and Windows Mobile) and MIDP (Mobile
Information Device Profile): a specification for the use of
Java on mobile devices; it is part of J2ME: the micro
edition of the Java Framework. The Microsoft’s framework
for handheld devices is the Compact Framework .NET 3.5
which at the present moment is supported only by the
Windows Mobile family2.

2 Even if there exists an open source version of the Framework named

Mono, there is not yet an open source version of the Compact Framework.
The developers of Mono ensures the compatibility only for those
applications which have no GUI.

The choice of the Windows Mobile OS and the Compact
Framework for our project is bind to the fact that
AgentService is completely based on the Common
Language Infrastructure (CLI) specification [5]. Although
the most supported platform is Java, the .NET counter-party
denotes features that are in step with the former one3.

B. SOA Middleware

Mobile devices well represent the role of clients which
exploit and consume services hosted on machines with more
computational resources. In this sense, the power of a
collaborative network involving mobile clients is just the
possibility to access to a theoretically infinite set of services
from a device with a small CPU and few RAM.

The SOA philosophy embodies the approach we want to
apply to AgentService Mobile.

SOA [2] [6] is essentially a sort of style, paradigm, or
concept aimed to support services on the web, in order to
satisfy the user’s requests and consider the single
applications as coordinated components of a business
process. SOA is based on few strong principles that are
strongly relevant in agent based system too:

1) loose coupling: with a low intensity of connections
among the different components, it is possible to easily
update or modify a service without upset the rest of the
system. This feature warrants the system scalability and
decentralization.
2) Heterogeneousness: the different components of a
system can be based on different platform and different
implementation.
3) High interoperability: an easy communication
among the components of the system is a basis of each
implementation of both SOA and agent based systems.

The constitutional elements of a SOA are the services. A

service can be described by three aspects: the interface that
furnishes the signature of the exposed methods; the
contract: a formal representation of the interface
(expressed, for example, in WSDL); the implementation of
the service, in strict accordance with the contract. In this
sense, an AgentService platform will expose contracts for
the usual FIPA services, allowing our mobile agents or
other external applications (eventually based on different
platforms) to consume them.

SOA is an abstract concept that must be implemented.
At now, there exist different solutions which can be
classified, considering the way followed by users in order to
invoke services [7]: remote procedure calls (RPC) or
messages. Regarding RPC, the client obtains the service
interface and then contacts the service method by a
(generally synchronous) parametric call. Example of RPC
technologies that could be used to implement SOA are
CORBA [8], Java RMI [9], and .NET Remoting [10].

3 There are several comparisons between J2ME and Compact

Framework, but almost all are evidently prejudiced. For a equilibrated
comparison see: http://www.must.edu.my/~dwong/resources/mobile_
commerce_web/j2mevsnetcf.html

20

The second type is based on the exchange of few well-
defined (generally asynchronous) messages. The
frameworks based on messages are named Message-

Oriented Middleware (MOM) and provides a complete
management for message queuing, persistence, and security.
MOMs support different platforms, protocols, standards,
and languages. Because of their versatility and
interoperability, they are closer to the SOA concepts.
Several big enterprises invest in MOMs and deliver
powerful frameworks: IBM Websphere MQ, Sun Java

Message Service, Microsoft Message Queue Server, BEA
System Inc (now Oracle) MessageQ, etc.

A technology which matches the two styles and
represents a de facto standard for SOA system is the one
offered by Web Service standards (WS-*) [2] [11]. A web
service is based on SOAP: an XML protocol which supports
both RPC and messages. Also a Web Service has a contract
which is described by WSDL which, like SOAP, is an
XML-based language. The combined use of SOAP and
WSDL allows the definition of complex, dynamic, versatile
systems, which can be easily considered platform-agnostic.
Following this paradigm, AgentService Mobile is designed
in order to exploit the powerfulness of Web Services. The
implementation of the presented project is based on the new
framework, introduced by Microsoft, for the development
of connected services, named Windows Communication
Foundation.

C. Exploiting Windows Communication Foundation in

AgentService Mobile

With the release of the Framework 3.0, Windows
applications can be based on four sub-systems that manage
the different aspects of a software project: Windows

Presentation Foundation (the graphical layout), CardSpace
(management of digital identities), Windows Workflow

Foundation (a complete API for workflow management),
and Windows Communication Foundation.

The aim of WCF is to provide an environment for the
development of distributed applications in Windows-based
systems. It is a tool for implementing and hosting services
and it supports several industrial standards that define
interactions among services, type conversions, marshalling,
and protocol management.

A classification of the WCF features [3], which
demonstrates its adherence to SOA principles, is reported in
the following points:

1) Independent versioning: adhering to the WS-*
standards, WCF services can be developed with
different timetables in respect with consumers.
2) Asynchronous one-way messaging: it allows an
optimal use of the disposable computational resources.
3) Platform consolidation: all the different Microsoft
communication technologies (RPC, ASMX, Remoting,
COM+, and MSMQ) are now unified under WCF that
collects all the features of the single solutions.
4) Security: WCF supports several security models.
5) Reliability: it warrants the safe delivery of messages,
dividing the transport protocol from the delivery

mechanism. This approach ensures a safe
communication also on untrustworthy channels.
6) Transaction support for atomic operations.
7) Interoperability: WCF can interact with every single
past Microsoft communication technology and other
solutions that implement WS-* or REST, as Java.
8) Performance: different levels of interoperability and
performance are supported.
9) Extensibility: every aspect of the platform can be
customized, according to the application specification:
channels, bindings, codings, transports, etc.
10) Configurability, with the support of XML
configuration files.

Security and reliability are interesting features for the

AgentService Mobile architecture: secure transactions
among agents, over a reliable channel, are essential needs
for trustworthy multi-agent applications.

Interoperability does not close the AgentService
platform to contribute of external applications, eventually
based on different platforms so, a Java version of mobile
device-based agents could be developed in these languages
and then, freely interact with the AgentService .NET
platform (the Sun’s Java project named Tango ensures a
comfortable interoperability with WCF).

Even if WCF represents a good communication
infrastructure, it denotes aspects that can be ameliorated. In
the next sections we will show the architecture of the
developed system, pointing out every difficulty that the
WCF has risen. Especially in conjunction with the Compact
Framework, from the client point of view, some issues have
complicated the development of the mobile device
architecture.

In general the combination of WCF and Compact
Framework is not yet sufficiently tested and in the
developers’ community the experience about them is not so
deep. For these reasons, the practice ripened during this
project has been significant and appreciable.

D. The Compact Framework 3.5

A brief introduction of the Compact Framework is
necessary to understand the technical choices that have
guided the developers to the actual architecture of
AgentService Mobile.

With a dramatic reduction to 30% of available classes in
respect to the Framework .NET 3.5 and a physical size of 4
MB, the Compact Framework represents a typical
bottleneck for development of complex applications, as the
AgentService multi-agent platform is.

With the Compact framework, it is possible to develop
applications in C# or Visual Basic .NET. A special high-
performance, just-in-time compiler is provided with the
framework.

Figure 1 shows which features are preserved in the
Compact Framework. Server functionalities, ASP.NET,
C++ and J# Development, and Remoting are not supported.
In particular, Remoting would have been useful to create a
communication channel between the mobile client and the

21

remote platform, simply calling the remote methods of the
modules and services of AgentService.

Figure 1: differences between .NET CF and .NET Framework.

Significant restrictions concern the serialization

functions (both XML and binary), reflection, and threads.
These restrictions have a certain impact during the porting
of basic AgentService services from the usual Framework to
the Compact one.

Appreciable is the support nearly complete to the
Windows Communication Foundation that, in absence of
Remoting (and thanks to other considerations that will be
clear in the next subsection), is the chosen way to
implement a communication channel between mobile agents
and the resident platform or agents.

E. Agents on smart devices

In the multi-agent systems research and industry
communities, different applications that consider agents on
hand-held devices have been suggested. The application
domains are quite different: the tourism industry [12], home
care service [13], museum guides [14], educational [15],
tracking of goods with RFID [16], ambient intelligence
[17], industrial maintenance [18], etc.

Most of them exploit the well-known multi-agent
framework called JADE [19] along with the LEAP
extension [20], especially aimed to the execution of agents
on mobile devices. The remaining solutions implement ad-

hoc architectures essentially based on the Java framework
and J2ME. These facts induce two considerations: JADE
holds supremacy also in the management of agents on
PDAs; if AgentService is one of the very little examples of
MAS developed by using the .NET Framework, it is the
only one that supports agents on the Compact Framework
and then represents a different point of view for mobile
agent programming.

Nonetheless, JADE represents once more the state of the
art, considering the largeness of the project and the
employed resources. For this reason we consider JADE

LEAP as a basis for comparison and we report in the next
paragraph a short introduction to the architecture.

F. JADE LEAP

LEAP means Lightweight and Extensible Agent Platform.
The aim of this international project (involving some big
enterprises as Motorola, Siemens, Broadcom, British
Telecom, and TILAB) is to reduce the JADE framework in
order to execute an agent container in a device with few
resources and allow this agent to communicate with other
agents running on different containers or platforms. LEAP
is executable on every operating system supporting Java,
from a powerful server with J2EE (Enterprise Edition), to a
smart phone supporting MIDP.

A JADE platform is composed of containers: processes
that are in charge to host and execute agents, providing
runtime services. These containers must connect to a main
container that represents the bootstrap point of the platform
and hosts basic services as the Directory Facilitator and the
Agent Management System (AMS). Agents running on
different containers or even different platforms can
communicate by using the MTP (Message Transport
Protocol) furnished by JADE.

LEAP is totally inspired to the JADE architecture,
therefore the idea is to execute a LEAP container over the
handheld device, maintaining the same API of JADE. The
container is connected by a main container residing in a
desktop computer. Usually two JADE containers (which
could be deployed over a network) communicate by using
RMI; due to restrictions of J2ME this is not possible with
LEAP, then a new proprietary protocol has been developed:
the JICP (JADE inter-container protocol) which makes
incompatible JADE and LEAP containers.

An appreciable feature of LEAP is the possibility to split
the container into a front-end running on the device and a
back-end running on a remote computer. The goal is to
lighten the device, hosting almost all the runtime services on
the back-end.

III. AGENTSERVICE MOBILE EDITION

A. Overview

Leaving aside a complete introduction of AgentService (for
an exhaustive overview read [21]) we concentrate only on
those elements that are essentials for the execution of
mobile agents.

First, AgentService provides a particular model where
an agent is essentially composed of behaviours and
knowledges. Behaviours represent the business activities of
an agent and generally are managed as threads executed
concurrently. Behaviours of the same agent can share
information by using knowledge objects: a sort of
knowledge base containing data that can be persisted and
that must be accessed concurrently. AgentService Mobile
keeps the same model because is a specific requirement the
possibility of running standard agents on a mobile device.

From the agent point of view, the AgentService platform
is a sort of operating system that exposes services through a

22

runtime interface, dispatches messages, and schedules the
agent behaviours.

The runtime interface is available from any agent
behaviour. It exposes services useful during the execution
time of a behaviour:

• Yellow pages: as suggested by FIPA, it is

directory for publishing and advertising the
services managed by the agent.

• White pages service: a sort of telephone
directory for retrieving the agent addresses.

• Console: a service for monitoring the execution
of an agent through text messages.

• Context: it returns the behaviour execution
context, where it is possible to create and start
new behaviours and create new knowledge
objects.

• Logging service for the monitoring of
behaviour execution.

• Message service: it is responsible for the
forwarding of messages to the message module
(and then to the recipient queue). Moreover, it
supports the instantiation of conversations,
namely preferential communication channels
between two behaviours of different agents.

• Mobility: an infrastructure for the migration of
an agent from a platform to another one.

• Persistence: in order to preserve the agent
status following up a system crash or failure,
this service freezes the agent and saves it in a
storage facility (databases, xml file, etc...).

Considering the AgentService Mobile project, the

majority of these services should reside on the remote
platform. Agents that run on a mobile device access them
through a proxy that hides the communication channel with
the remote server. Other services, as persistence and
logging, must be local, in order to maintain the information
regarding agents on the local mobile machine. Finally, the
mobility service is unsupported due to the purpose of these
types of agent that are intimately tied with the mobile
device.

Another fundamental aspect that AgentService Mobile
must take into account is the message dispatching. Usually,
an agent which wants to send a message to a peer, contacts,
through the message client provided by the runtime, the
messaging module which delivers the message to the
message queue of the recipient agent. In case of the
recipient is running on a federated platform, the messaging
module directly contacts the other messaging module
through the .NET Remoting. Unluckily, this simple
mechanism is not allowed by the Compact Framework,
therefore a mobile agent cannot directly interact with the
remote central messaging module but must pass through a
proxy, as shown in the following.

Incidentally, a recent improvement of the messaging
module made it faster by suppressing every polling loop for
checking the message queue, in waiting for a new message.

Actually, every behaviour-thread that is waiting for a
message, is put in waiting status and released only when an
event, notified by the messaging module, occurred4. This
enhancement increases the speed up to 350 times. The use
of this approach allows also keeping down the resources
consuming in the mobile version, where this requirement is
fundamental.

Last, the scheduler is in charge of managing the agent
behaviours running them as threads. In the standard
AgentService version there are different policies to execute
behaviours:

• One behaviour, one thread: this is the preferred

way in term of performance.
• Every behaviour in a single thread: preferable

in term of resource occupation.
• A mixed approach for scenarios where some

behaviours have to be executed taking into
account the performance and others, the
resources.

Due to limitations of the Compact Framework in thread

management, we chose to implement the simplest scheduler,
namely the first. The tests we made, both on an emulator
and on physical devices gave a good response in term of
execution speed.

B. Architecture

Figure 2 shows the whole architecture involving the mobile
sub-platform and the remote, motionless AgentService
system.

Figure 2: AgentService Mobile architecture.

From the server-side, AgentService deploys a SOA

server which receives the requests from mobile agents. It is
a sort of bridge between the mobile device and the basic
services exposed by AgentService. At the communication
level it creates an http channel (the only one supported by
the Compact Framework) and sends SOAP messages. It

4 for further information, see AutoResetEvent on

http://www.developerfusion.co.uk/show/5184/3/

23

uses a bidirectional message exchange, in order to simulate
a remote calling of a method (invocation and return value).

The AgentService SOA server has been implemented to
reserve the channel for a short time, in order to avoid
pending calls. For example, the waiting for a message:
between the call of WaitForMessage method and its return,
several minutes could pass; for this reason the SOA server
does not wait for the message, leaving the call pending, but
it is the mobile client that periodically contacts the server
(See Figure 4).

Essentially, the SOA Server it is a sort of special runtime
that is able to contact the messaging module, the AMS, and
the DF, on mobile agents place.

Moreover, it manages the logging credentials for
accessing the server from a mobile device. From a
configuration file, it can be possible to set up a platform
opened to everyone, or a protected one, based on a list of
credentials.

Finally, the server periodically controls the connection
state of the mobile devices. In case of timeout (customizable
in the configuration file), it deregisters the lost mobile
agents from the AMS and DF.

Figure 3: a) the main form of AgentService Mobile; b) general settings; c)
batch for agent execution; d) the console.

On the client side, the architecture is implemented by an

executable file which instantiates and executes the agents
the user suggests in a configuration file or through the GUI.

Screenshots in Figure 3 show the settings (Figure 3.b and
Figure 3.c) the user must enter in order to connect to a
remote platform (settings that can be stored in a
configuration file). In particular, he must set the IP address
and the port through which the SOA Server is listening and
he must enter the username and password that allow him to
gain the access to the platform. An interesting setting is the
polling time which indicates how frequently the polling
thread monitors events coming from the remote platform.
These events regard, for example, the notification of a new
incoming conversation request, the presence of a new
message, etc. This polling loop is the only one running on
the mobile platform: it is an important technical solution,
because we avoid the saturation of the CPU due to a looping
thread for each behaviour. Thanks to this solution,
behaviours that are waiting for a message, notify their
request to the polling loop manager and then put their
thread in waiting status. As illustrated in Figure 4, when a
notification of an incoming message arrives to the polling
thread, the behaviour is awoken, the message is
downloaded, and the behaviour execution can continue. It is
important to mark that from the agent point of view, this
complex procedure is hidden behind a simple method call.

C. AgentService Mobile at runtime

The mobile side of the presented solution consists in a
driver object that first runs the SOA client, contacting the
SOA server and presenting the user credentials. The SOA
client also runs the aforementioned polling thread and
creates a runtime object: a sort of proxy for the remote
services hosted in the standard AgentService platform.
Second, the driver executes the mobile platform controller
which is in charge of creating agent instances, taking the
information about the types of agent templates, behaviours
and knowledge objects by using the .NET Reflection. The
platform controller also binds the runtime object to the
agent instances created by the SOA Client, granting a solid
link to the services of the remote platform, in a totally
transparent manner for the mobile agents. Finally, the
platform controller starts the agents, registering them to the
remote AMS and activating the behaviour schedulers.

Figure 5 describes in details the bootstrap process, from
the start of the driver to the agent execution. It shows the
sequences of steps that allow mobile agents to subscribe to
the remote platform services. From the UML diagram
transpires the most important feature of the driver which
eases the agent activities furnishing a runtime environment
identical to the desktop platform one.

IV. CONCLUSIONS

A. Implementing SOA with WCF

In the previous sections we shown the technical
solutions adopted to implement AgentService Mobile,
applying the SOA model to a multi-agent system
infrastructure. WCF offers a particular point of view,
largely diffused in the Windows-based programming.

24

Figure 4: how an agent gets a message.

The good points appeared clearly in the previous sections,
but during the implementation emerged some points which
can be considered as faults. In particular, the integration of
WCF and Compact Framework, although appreciable and
powerful, represent a slight difficulty in order to exploit the
real comfort of web services and WCF programming. In
particular, due to the sensible reduction operated in the
Compact Framework, the WCF support is surely complete
but free from those classes that represent a comfortable
surround. For this reason, because the WCF on the Compact
Framework does not directly support the Data Contract

serialiazer (the standard WCF serializer), we had to
manually instruct the basic xml serializer in order to
(de)serialize the messages used to invoke the WCF services.

A further issue regards not only WCF but also the SOA
paradigm. It is a usual need, among agents, to send objects
as message content. For this reason the message body is
defined in AgentService as a box which can contain
instances of every type targeting the .NET Framework (and
then which derives from the System.Object class). The
rigidity of the contract which characterizes every web

service does not permit the invocation of a method passing a
parameter which contains a generic object. This lack of
flexibility forces us to convert such generic objects in
strings containing their binary serialization, granting a solid
contract which counts strings instead of generic objects.

B. JADE LEAP and AgentService Mobile

For the two projects, the main obstacle was the porting
of the platform infrastructure on a little device. Curiously,
for both the implementations, the principal cause was the
message transport sub system. In JADE, agent containers
exchange messages by using the Java RMI RPC technology.
In AgentService does not exist a correspondence with
containers, because we consider a platform the basic
environment for circumscribed agent communities. In order
to interconnect different agent societies we use .NET
Remoting (which can be compared with Java RMI). Both
Java RMI and .NET Remoting are not supported by J2ME
and Compact Framework, here-hence the need to implement
a new way for message exchanging. In JADE LEAP they
opted for the creation of a proprietary protocol named JICP.
In AgentService we opted for a service-oriented solution.

Continuing to analyze the differences between JADE
LEAP and AgentService, because of the existence of the
container concept in JADE, LEAP developers created a
complete and autonomous infrastructure similar to a usual
container to host agents on a mobile device. In
AgentService we implement a minimal infrastructure which
essentially warrants the execution of an agent and entrusts
the implementation of each service to a remote standard

25

Figure 5: the bootstrap process.

AgentService platform. The JADE LEAP solution
guarantees a certain independence for an agent container.
On the other hand, the AgentService Mobile solution
reduces the resources consuming of the infrastructure,
leaving computational resources to the agent application.
Our approach looks like the split container option in JADE
LEAP but, while in LEAP it seems to be discouraged in the
majority of cases, in AgentService Mobile gives good
results in term of speed and performances.

A further difference between the two solutions is the fact
that LEAP is an add-on, while AgentService Mobile is
embedded in AgentService. In case the user want to add
mobile agents on a preexistent platform, in AgentService it
is sufficient to enable the SOA Server, while in JADE the
platform must be replaced with the LEAP version, because
a LEAP container and a JADE container must not live
together (the cause is the different message transport sub

system). From this point of view the AgentService solution
appears to be more flexible.

Moreover, the service oriented interface of AgentService
is not only aimed to agents on mobile devices but also to
those external applications which want to communicate with
agents and exploit the platform services.

We experienced that this requirement is fundamental for
a lot of AgentService users.

C. Future works

AgentService Mobile is an ongoing project which can be
improved in order to provide a more useful environment for
our agents. Considering the compliancy to web standards,
AgentService follows the ws-* specification, but additional
work as to be done for supporting ws-security, ws-

reliability, and ws-atomic transaction that could be
employed in the agents interaction protocol infrastructure

26

provided by AgentService in both the design and execution
phases.

In addition, we will develop a light message dispatcher
embedded in the mobile infrastructure, in order to avoid the
employ of the remote message module for those
conversations which involve agents running on the same
device. This modification could distort the essence of our
project, because every platform service is now considered
as a web service. Nonetheless, for some application the rate
of messages exchanged among agents hosted in the same
device could justify this by pass. For this reason, the local
message dispatcher will be optional.

An interesting evolution that confirms the trend to run
agents on heterogeneous and limited devices is the
development of an ultra-light infrastructure to host an agent
on an embedded device. Recently, a .NET Micro
Framework [21] has been delivered, in order to export the
.NET programming also on basic devices with ARM
processors, few RAM and no operating system. It could be
interesting to run micro agents on these small devices and
connect them to a standard AgentService platform. This
improvement could consolidate AgentService applications
in the industrial field, with agents deployed on sensors and
actuators.

REFERENCES

[1] C. Vecchiola, A. Grosso, A. Boccalatte; “AgentService: a framework
to develop distributed multi-agent systems”, Int. J. Agent-Oriented

Software Engineering, Vol. 2, No.3 pp. 290 – 323, 2008.
[2] N. Josuttis, “SOA in Practice, The Art of Distribuited System

Design”, O'Reilly, 2007.
[3] J. Smith, “Inside Microsoft Windows Communication

Foundation”,Microsoft Press 2007
[4] J. Löwy, “Programming WCF Services”, O'Reilly Media, 2007
[5] Standard ISO/IEC 23271:2003: Common Language Infrastructure,

March 28, 2003, ISO.
[6] OASIS, “Reference Architecture for Service Oriented Architecture

1.0”, Public Review Draft 1, Apr. 23, 2008, http://docs.oasis-
open.org/soa-rm/soa-ra/v1.0/soa-ra-pr-01.pdf

[7] D. Melgar, “Message-Centric Web Services vs RPC-Style
Invocations”, SOA World Magazine, March 2003.

[8] Object Management Group, CORBA 3.0 Specification
http://www.omg.org/technology/documents/formal/corba_2.htm

[9] Sun Developer Network, Remote Method Invocation (RMI)
http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp

[10] NET Framework Developer's Guide, .NET Remoting Overview
http://msdn.microsoft.com/en-us/library/kwdt6w2k.aspx

[11] W3C Working Group, Web Services Glossary, 11 February 2004
http://www.w3.org/TR/ws-gloss/

[12] J. S. Lopez and F. A. Bustos, “An Agent Application on the Tourism
Industry”, In Proceedings of the International Joint Conference

IBERAMIA/SBIA/SBRN 2006 - 1st Workshop on Industrial

Applications of Distributed Intelligent Systems (INADIS’2006),
Ribeir˜ao Preto, Brazil, October 23–28, 2006

[13] G. Itabashi, M. Chiba, K. Takahashi, Y. Kato, “A Support System
for Home Care Service Based on Multi-agent System”,In
Proceedings of Fifth International Conference on Information,

Communications and Signal Processing, 2005
[14] M. Bombara and D. Cal and C. Santoro, “Kore: A multi-agent

system to assist museum visitors”, In Proceedings of the Workshop

on Objects and Agents (WOA2003), 2003
[15] E. McGovern , B. J. Roche1 , E. Mangina and R. Collier,

“IUMELA: A Lightweight Multi-Agent Systems Based Mobile
Learning Assistant Using the ABITS Messaging Service”, Lecture
Notes in Computer Science, Springer Berlin / Heidelberg, 2007

[16] Feng Li Ying Wei, “Tracking In-Transit RFID-Tagged Goods
Using Multi-Agent Technology”, In Proceedings of International

Conference on Wireless Communications, Networking and Mobile

Computing, WiCom 2007.
[17] D. I. Tapia, J. Bajo, J. M. Sánchez and J. M. Corchado, “An

Ambient Intelligence Based Multi-Agent Architecture”, Developing

Ambient Intelligence, Springer Paris, 2008
[18] A. Passadore and G. Pezzuto, “A multi-agent platform supporting

maintenance companies on the field”, In Proceedings of the

Workshop on Objects and Agents (WOA2007), 2007
[19] F. Bellifemine, G. Caire, D. Greenwood, “Developing Multi-agent

Systems with JADE”, John Wiley & Sons, 2007.
[20] M. Berger, S. Rusitschka, D. Toropov, M. Watzke, M. Schlichte,

“Porting Distributed Agent-Middleware to Small Mobile Devices”,
In Proceedings of the Workshop on Ubiquitous Agents on

embedded, wearable, and mobile devices, Bologna, 2002.
[21] D. Thompson, R. S. Miles, “Embedded Programming with the

Microsoft .NET Micro Framework”, Microsoft Press, 2007.

27

Conservative re-use ensuring matches
for service selection

Matteo Baldoni, Cristina Baroglio, Viviana Patti, and Claudio Schifanella
Dipartimento di Informatica — Università degli Studi di Torino

C.so Svizzera, 185 — I-10149 Torino (Italy)
{baldoni,baroglio,patti,schi}@di.unito.it

Abstract—The greater and greater quantity of services that are
available over the web causes a growing attention to techniques
that facilitate their reuse. A web service specification can be quite
complex, including various operations and message exchange
patterns. In this work, we give a declarative representation of
services, and in particular of WSDL operations, that enables
the application of techniques for reasoning about actions and
change. By means of these techniques it becomes possible to
reason on the specification of choreography roles and on possible
role players, as a basis for selecting services which match in a
flexible way with the specifications. Flexible match is, indeed,
fundamental in order to enable web service reuse but it does not
guarantee the preservation of the goals, that can be proved over
the role specification itself. We show how to enrich various kinds
of match proposed in the literature so to produce substitutions
that preserve goals.

I. INTRODUCTION

One of the key ideas behind web services is that services
should be amenable to automatic retrieval, in order to allow the
direct invocation as well as the composition with other services
in order to fulfill a query. Nowadays, however, retrieval cannot
yet be accomplished automatically as well and precisely as
desired because the representations used for web services and
the discovery mechanisms are semantically poor. The need
of adding a semantic layer to service descriptions brought
to initiatives like the development of OWL-S [1] and the
development of the Web Service Modeling Ontology (WSMO)
[2]. In these approach a richer annotation, aimed at repre-
senting the so called IOPEs (inputs, outputs, preconditions
and effects of the service), is used. Inputs and outputs are
usually described in terms taken from a public ontology,
while preconditions and effects are often expressed by means
of logic representations. A similar representation, based on
preconditions and postconditions, is also typical of design
by contract, originally introduced by Meyer for the EiffelTM

language [3]. Here preconditions are the part of the contract
which is to be guaranteed by the client; if this condition is
guaranteed in the execution context of a method, then the
server commits to guaranteeing that the postcondition holds
in the state reached by the execution.

Semantic annotation allows the discovery of services, whose
descriptions do not exactly match with the corresponding
queries (e.g. [4], [5], [2]). Semantic matchmaking focuses on
the discovery of single services, in the sense that a service is
considered as corresponding to a single operation. In general,

however, the use of a web service implies the execution of
a sequence of operations in a particular order, which might
even involve other services [6]: for instance, the clients of a
supplier web service have to identify themselves, request item
prices and delivery time, and so on. In order for the interaction
to be successful, the interaction must obey some constraints:
if they are not satisfied the service will be unable to proceed
and will return an error. To allow the interaction, web services
exhibit interfaces (port-types) which gather various operations
that are logically related.

On the other hand, the need of describing compositions
of services, which have to interact according to (complex)
patterns of interaction, ruled by conversation protocols, has
lead to the development of choreography languages like WS-
CDL [7]. WS-CDL is aimed at describing collaborations
between any type of participant independently from the pro-
gramming model used by its implementation. Also a WS-CDL
specification can be seen as a sort of contract, that specifies
the ordering conditions and constraints that rule the interac-
tion. The description is done from a global point of view,
encompassing the expected behavior of all the participants.
Each participant is supposed to use the global definition to
build and test solutions that conform to it.

In this work, we focus on the problem of selecting existing
services that have to play the roles of a given choreography.
This task implies verifying two things: the conformance of the
service to the specification of a role of interest, and that the use
of that service allows the achievement of the goal, that caused
its search. Conformance guarantees the interoperability of the
service with the players of the other roles [8], [9], [10] by
guaranteeing that the message exchange will produce correct
and accepted conversations. The goal that caused the search
of a service is a condition that should hold after the whole
interaction has taken place. It is not tied to the descriptions of
some service operation but it is a global condition that should
hold in the final state, obtained after the conclusion of the
conversation/interaction. In a framework in which it is possible
to reason on operation preconditions and effects, and where
an appropriate specification of the choreography is given, it
becomes possible to design services which have a much higher
degree of autonomy w.r.t. existing ones and whose behavior
resembles more closely the behavior of autonomous agents.
In particular, a service can decide whether playing a role by
reasoning on the effects of playing the role and see whether it

28

can achieve a goal of interest by doing so. The achievement
of the goal depends on the operation sequence because each
operation can influence the executability and the outcomes of
the subsequent ones. Many of the operations, however, are
offered by the partners in the interaction which, at the time
when the service reasons about the choreography, they are
still unknown. The reasoning process must, therefore, use the
specifications of the operations that will be supplied by the
partners, specifications which are included in the choreography
(that we call unbound operations). A selection process will
link unbound operations with operations offered by existing
services, and it does so by applying some kind of (possibly
flexible) match. In [11], however, we showed that performing
a match operation by operation, by applying the definitions in
[12], does not preserve the global goal. Therefore, the match-
making process, that is applied to discover services, should
not only focus on local properties of the single operations, e.g.
IOPEs, but it should also consider constraints that derive from
the global schema of execution, which is given by the chore-
ography. In this paper we extend the results achieved in [11],
limited to the so-called plugin match, to the class of re-use
ensuring matches [13]. To this aim, inspired by [1], [2], [14],
we exploit an action-based representation of the specifications
of the operations of a service: each operation is described
in terms of its preconditions and effects, as in [15], [16],
without taking into account the ontology layer which is not
functional to the aims of the work. This representation supplies
the mechanisms and the tools for reasoning on compositions
of services, as described in choreographies; in particular, it
supplies a representation of states and an execution model that
can be reasoned about.

The paper is organized as follows. Section II sets the
representation of services and of choreographies that we adopt.
Section III discusses various kinds of match and reports
our proposal for producing conservative matches. A running
example is distributed along the pages to better explain the
proposed notions and mechanisms. Conclusions end the paper.

II. A THEORETICAL FRAMEWORK FOR REPRESENTING
AND REASONING ABOUT SERVICES

In this section, we briefly summarize the notation that we
use to represent services, introduced in [16], and we discuss
the problem of verifying a global goal. The notation is based
on a logical theory for reasoning about actions and change in
a modal logic programming setting. In this perspective, the
problem of reasoning amounts either to build or to traverse
a sequence of transitions between states. A state is a set of
fluents, i.e., properties whose truth value can change over time,
due to the application of actions. In general, we cannot assume
that the value of each fluent in a state is known: we want
to have both the possibility of representing unknown fluents
and the ability of reasoning about the execution of actions
on incomplete states. To explicitly represent unknown fluents,
we use an epistemic operator B, to represent the beliefs an
entity has about the world: Bf means that the fluent f is
known to be true, B¬f means that the fluent f is known to be

false. A fluent f is undefined when both ¬Bf and ¬B¬f hold
(¬Bf ∧ ¬B¬f). For expressing that a fluent f is undefined,
we write u(f). Thus each fluent in a state can have one of the
three values: true, false or unknown.

Services exhibit interfaces, called port-types, which make a
set of operations available to possible clients. In our proposal,
a service description is defined as a pair 〈S,P〉, where S
is a set of basic operations, and P (policy) is a description
of the complex behavior of the service. Analogously to what
happens for OWL-S composite processes, P is built upon basic
operations and tests that control the flow of execution.

A. Basic Operations

The set S contains the descriptions of a set of service
operations. According to the main languages for representing
web services, like WSDL and OWL-S, there are four basic
kinds of operations [6] (or atomic processes, when using
OWL-S terminology [1]): one-way, notify, request-response,
and solicit-response. The first two involve a single message
exchange. In a one-way operation, a client invokes an op-
eration by sending a message to the service, while by a
notification the client receives a message from the service. The
other two operations involve the exchange of two messages.
Request-response operations are initiated by the invoker of the
operation, which sends a message to the service and, after that,
waits for a response. In solicit-response operations the order of
the messages is inverted: first the invoker waits for a message
from the service and then it sends an answer.

An operation is described in terms of its executability
preconditions and effects, the former being a set of fluents
(introduced by the keyword possible if) which must be con-
tained in the service state in order for the operation to be
applicable, the latter being a set of fluents (introduced by the
keyword causes) which will be added to the service state after
the operation execution. Formalized in these terms, operations,
when executed, trigger a revision process on the actor’s beliefs.
Since we describe web services from a subjective point of
view, we distinguish between the case when the service is
either the initiator (the operation invoker) or the servant of
an operation (the operation supplier) by further decorating
the operation name with a notation inspired by [14]. With
reference to a specific service, operationÀ denotes the oper-
ation from the point of view of the invoker, while operation¿

denotes the operation from the point of view of the supplier.
The view of operations that is used by invoker is given in terms
of the operation inputs, outputs, preconditions, and effects as
usual for semantic web services [1]. In the next part of this
section, inputs and outputs are represented as single messages
for simplicity but the representation can easily be extended to
sets of exchanged data, as in Example (1). Preconditions Ps

and effects Es are respectively the conditions required by the
operation in order to be invoked, and the expected effects that
result from the execution of the operation. For what concerns
the view of the supplier, also in this case the operation is
described in terms of its inputs and outputs. Moreover, we
also represent a set of conditions that enable the executability

29

of the operation (Rs, requirements) and that constitute the side
effects, Ss. For example, a buy operation of a selling service
has as a precondition the fact that the invoker has a valid
credit card, as inputs the credit card number of the buyer and
its expiration date, as output it generates a receipt, and as
effect the credit card is charged. From the point of view of
the supplier, the requirement to the execution is to have an
active connection to the bank, and the side effect is that the
store availability is decreased while the service bank account
is increased of the perceived amount.

Let us now introduce the formal representation of the four
kinds of basic operations. For each operation we report both
views.

One-Way, invoker point of view:
(a) operationÀow(min) possible if BInvokermin ∧ Ps

(b) operationÀow(min) causes BInvokersent(min)
(c) operationÀow(min) causes Es

In one-way operations, the invoker requests an execution
which involves sending an information min to the supplier; the
invoker must obviously know the information to send before
the invocation (a). The invoker can execute the operation only
if the preconditions to the operations are satisfied in its current
state (a). The execution of the invocation brings about the
effects Es of the operation (c), and the invoker will know that
it has sent an information to the supplier (b). Using OWL-
S terminology, min represents the input of the operation,
while Ps and Es are its preconditions and effects. One-way
operations have no output.

One-Way, supplier point of view:
(a) operation¿ow(min) possible if Rs

(b) operation¿ow(min) causes BOfferermin

(c) operation¿ow(min) causes Ss

On the other hand, the supplier, which exhibits the one-way
operation as one of the services that it can execute, has the
requirements Rs (a). The execution of the operation causes
the fact that the supplier will know the information sent by
the invoker (b). We also allow the possibility of having some
side effects on the supplier’s state. These effects are not to be
confused with the operation effects described by IOPE, and
have been added for the sake of completeness.

Notify, invoker point of view:
(a) operationÀn (mout) possible if Ps

(b) operationÀn (mout) causes BInvokermout

(c) operationÀn (mout) causes Es

In notify operations, the invoker requests an execution which
involves receiving an information mout from the supplier. The
invoker can invoke the execution of the operation only if
the preconditions to the operations are satisfied in its current
state (a). The execution of the invocation brings about the
effects Es of the operation (c), and the invoker will know
the received information (b). Using OWL-S terminology, mout

represents the output of the operation, while Ps and Es are
its preconditions and effects. Notify operations have no input.

Notify, supplier point of view:
(a) operation¿n (mout) possible if BOfferermout ∧ Rs

(b) operation¿n (mout) causes BOfferersent(mout)
(c) operation¿n (mout) causes Ss

The supplier must know the information to send and must
meet the requirements Rs (a). The execution of the operation
simply causes the fact that the supplier will know that it has
sent some information to the invoker (b). As above, we allow
the possibility of having some side effects on the supplier’s
state (c).

Request-response, invoker point of view:
(a) operationÀrr(min,mout) possible if BInvokermin ∧ Ps

(b) operationÀrr(min,mout) causes BInvokersent(min)
(c) operationÀrr(min,mout) causes BInvokermout

(d) operationÀrr(min,mout) causes Es

In request-response operations, the invoker requests an execu-
tion which involves sending an information min (the input,
according to OWL-S terminology) and then receiving an
answer mout from the supplier (the output in OWL-S). The
invoker can execute the operation only if the preconditions Ps

are satisfied in its current state and if it owns the information
to send (a). The execution of the invocation brings about the
effects Es (d), and the fact that the invoker knows that it has
sent the input min to the supplier (b). One further effect of
the execution is that the invoker knows the answer returned by
the operation (c). This representation abstracts away from the
actual message exchange mechanism, which is implemented.
Our aim is to reason on the effects of the execution on the
mental state of the parties [15].

Request-response, supplier point of view:
(a) operation¿rr(min,mout) possible if Rs

(b) operation¿rr(min,mout) causes BOfferermin

(c) operation¿rr(min,mout) causes BOfferermout

(d) operation¿rr(min,mout) causes BOfferersent(mout)
(e) operation¿rr(min,mout) causes Ss

As for one-way operations, the supplier has the requirements
Rs to the operation execution (a). It receives an input min

from the invoker (b). The execution of the operation produces
an answer mout (c), which is sent to the invoker (d). As usual,
we allow the possibility of having some side effects on the
supplier’s state. On the supplier’s side, we can notice more
evidently the abstraction of the representation from the actual
execution process. In fact, we do not model how the answer
is produced but only the fact that it is produced.

Solicit-response, invoker point of view:
(a) operationÀsr(min,mout) possible if Ps

(b) operationÀsr(min,mout) causes BInvokermout

(c) operationÀsr(min,mout) causes BInvokermin

(d) operationÀsr(min,mout) causes BInvokersent(min)
(e) operationÀsr(min,mout) causes Es

In solicit-response operations, the invoker requests an execu-
tion which involves receiving an information mout (the output,

30

Fig. 1. An example of a simple interaction protocol, for reserving a flight,
expressed as a UML sequence diagram.

according to OWL-S terminology) and then sending a message
min to the supplier (the input in OWL-S). The invoker can
execute the invocation only if the preconditions Ps are satisfied
in its current state (a). The execution of the invocation brings
about the effects Es (e). The invoker receives a message mout

from the supplier (b) then, it produces the input information
min which is sent to the supplier, see (c) and (d).

Solicit-response, supplier point of view:
(a) operation¿sr(min, mout) possible if BOfferermout ∧ Rs

(b) operation¿sr(min, mout) causes BOfferersent(mout)
(c) operation¿sr(min, mout) causes BOfferermin

(d) operation¿sr(min, mout) causes Ss

As for notify operations, the supplier must know the infor-
mation to send and to fulfill the requirements Rs (a). The
execution of the operation causes the fact that the supplier
will know that it has sent some information to the invoker (b).
Moreover, it produces also the knowledge of the information
min received by the invoker (c). As above, we allow the
possibility of having some side effects on the supplier’s state
(d).

Example 1: As an example, let’s consider the searchFlight
operation of the flight reservation protocol depicted in Figure
1, which is offered by a seller and can be invoked by a buyer
to search information about flights with given departure (dep)
and arrival locations (arr) plus the date of departure (date).
From the point of view of the buyer, the operation, which is
of kind request-response, is:
(a) searchFlightÀrr((dep, arr, date), f lightList) possible if

Bbuyerdep ∧ Bbuyerarr ∧ Bbuyerdate∧
Bbuyer¬sellingStarted

(b) searchFlightÀrr((dep, arr, date), f lightList) causes
Bbuyersent(dep) ∧ Bbuyersent(arr)∧
Bbuyersent(date)

(d) searchFlightÀrr((dep, arr, date), f lightList) causes
BbuyerflightList

(c) searchFlightÀrr((dep, arr, date), f lightList) causes
BbuyersellingStarted

The inputs of the operation are dep, arr, and date, while the
output is flightList. In this case the set Ps contains only the
belief Bbuyer¬sellingStarted (in bold text above) while the
set Es of effects contains the belief BbuyersellingStarted (in
bold text as well).

From the point of view of the supplier, instead, the operation
is represented as:
(a) searchFlight¿rr((dep, arr, date), f lightList) possible if

true
(b) searchFlight¿rr((dep, arr, date), f lightList) causes

Bsellerdep ∧ Bsellerarr ∧ Bsellerdate
(c) searchFlight¿rr((dep, arr, date), f lightList) causes

BsellerflightList
(d) searchFlight¿rr((dep, arr, date), f lightList) causes

Bsellersent(flightList)
In this case the sets Rs and Ss of requirements and side effects
are empty. The operation expects as input the departure and
arrival locations and the date of the flight, and it produces
a flightList, which it sends to its customer, so after the
operation the belief Bsellersent(flightList) will be in its
belief state. ¤

Last but not least, a service can also have internal opera-
tions, which can be included in its policy but are not visible
from outside. Each operation is represented again as an atomic
action, specified by its preconditions and its effects. Formally,
it is defined as:

operation(content) causes Es

operation(content) possible if Ps

where Es and Ps, denote respectively the fluents, which are
expected as effect of the execution of an operation and the
precondition to its execution, while content denotes possible
additional data that is required by the operation. Notice that
such operations can also be implemented as invocations to
other services.

B. Composite operations

P encodes the complex behavior of the service; it is a
collection of clauses of the kind:

p0 is p1, . . . , pn

where p0 is the name of the procedure and pi, i = 1, . . . , n, is
either an atomic action (operation), a test action (denoted by
the symbol ?), or a procedure call. Procedures can be recursive
and are executed in a goal-directed way, similarly to standard
logic programs, and their definitions can be non-deterministic
as in Prolog.

A choreography is made of a set of interacting roles, a
role being a subjective view of the interaction that is encoded.
When a service plays a role in a choreography, its policy will
contain some operations which are not of the service itself but
belong to some other role of the choreography, with which it
interacts. In other words, S can be partitioned in two sets: a
set of bound operations and a set of unbound operations, that
must be supplied by some counterpart(s). Until the counterpart
service(s) is (are) not defined, such operations will be those

31

specified in the choreography. Such operations will be offered
by the interlocutors as À operations. We assume that they are
represented in a way that is homogeneous with the representa-
tion of operations, i.e. by means of preconditions and effects.
The binding will be possible only when the partners in the
interaction will be found.

The fact that a service is taking a given role in the
choreography is due, in our proposal, to the fact that it knows
that a certain goal condition will be true after the execution of
the role. When a possible partner is identified for the latter role,
after the binding has taken place, it is necessary to check if the
goal condition is preserved. The reasons for which this could
not happen are explained in the following section; hereafter,
we formalize the notion of substitution that we interpret as the
binding.

Let Sd = 〈S,P〉 be a service description, and let Su be
a subset of S, containing unbound operations that are to be
supplied by a same counterpart Si. Let SSi be the set of
operations in Si that we want Sd to use, binding them to Su.
We represent the binding by the substitution θ = [SSi/Su]
applied to Sd, i.e.: Sdθ = 〈Sθ,Pθ〉, where every element of
Su is substituted by/bound to an element of SSi . Notice that
not all elements of SSi

are, instead, necessarily bound. An
example is reported in Example 2.

Example 2: As an instance, here we report the definition
of the buyTicket procedure of the flight company example.
The procedure will encode a role in a choreography if all of
the involved operations are unbound. It will, instead, encode a
service behavior when all of its operations are bound to those
offered by one or more services that act as interlocutors.

(a) buyTicket is
searchFlightÀrr((dep, arr, date), f lightList);
evaluateAndBuy

(b) evaluateAndBuy is
noBusinessÀow(reason)

(c) evaluateAndBuy is
selectFlightÀow(flight);
payMethods¿sr(payMethods, credentials);
doPaymentÀrr((chosenMethod, payInfo), resNum);
getMilesÀn (miles)

This procedure encodes the behaviour of the buyer
of a flight ticket, be it a role or a specific service.
First, it invokes an operation for searchig a flight
(searchFlightÀrr((dep, arr, date), f lightList)), and it
evaluates the result (evaluateAndBuy). The evaluation
can give either a negative outcome, hence the interaction
is interrupted (noBusinessÀow(reason)) or the interaction
continues with the flight selection (selectFlightÀow(flight)),
the payment (payMethods¿sr(payMethods, credentials) and
doPaymentÀrr((chosenMethod, payInfo), resNum)) and,
at the end, the client is notified about the obtained miles
(getMilesÀn (miles)). ¤

C. Reasoning on goals

In the outlined framework, it is possible to reason about
goals by means of queries of the form:

Fs after p

where Fs is the goal (represented as a conjunction of fluents),
that we wish to hold after the execution of a policy p.
Checking if a formula of this kind holds corresponds to
answering the query: “Is it possible to execute p in such a
way that the condition Fs is true in the final state?”. When
the answer is positive, the reasoning process returns a sequence
of atomic actions that allows the achievement of the desired
condition. This sequence corresponds to an execution trace of
the procedure and can be seen as a plan to bring about the goal
Fs. This form of reasoning is known as temporal projection.
Temporal projection fits our needs because, as mentioned in
the introduction, in order to perform the selection we need
a mechanism that verifies if a goal condition holds after the
interaction with the service has taken place. Fs is the set of
facts that we would like to hold “after” p.

Let Sd = 〈S,P〉 be a service description. The application
of temporal projection to P returns, if any, an execution
trace, that makes a goal of interest become true. Let us, then,
consider a procedure p belonging to P , and denote by G the
query Fs after p. Given a state S0, containing all the fluents
that we know as being true in the beginning, we denote the
fact that G is successful in Sd by:

(〈S,P〉, S0) ` G

The execution of the above query returns as a side-effect an
execution trace σ of p. The execution trace σ is linear, i.e. a
terminating sequence a1, . . . , an of atomic actions.

Example 3 (Flight-purchase, second part): Let
us suppose that the initial state of the service
b1 is S0 = {Bbuyerdep,Bbuyerarr,Bbuyerdate,
BbuyerdeferredPaymentPossible,Bbuyer¬sellingStarted},
(all the other fluents truth value is “unknown”). This means
that b1 assumes a date, a departure location, an arrival location,
the fact that it is possible to defer the payment to the departure
(at a desk at the airport), and that no selling process has started
yet. The goal of b1 is to achieve the following condition: G =
{BbuyersellingComplete,BbuyerresNum} after buyTicket
Intuitively, the buyer expects that, after the interaction, it will
have a reservation number as a result.

By reasoning on its policy and by using the definitions of
the unbound operations that are given by the choreography, b1
can identify an execution trace, that leads to a state where G
holds:

σ = searchFlightÀrr((dep, arr, date), f lightList);
selectFlightÀow(flight);

payMethods¿sr(payMethods, credentials);
doPaymentÀrr((chosenMethod, payInfo), resNum);

getMilesÀn (miles)
This is possible because in a declarative representation spec-
ifications are executable. Moreover notice that this execution

32

Fig. 2. The lattice of the local matches: on top the strongest; names in a box
are re-use ensuring matches; SM and GGP are in same box because logically
equivalent.

does not influence the belief about the deferred payment,
which persists from the initial through the final state and is
not contradicted. ¤

III. CONSERVATIVE, RE-USE ENSURING MATCHES

When the matching process is applied for selecting a
service that should play a role in a (partially instantiated)
choreography, the desire is that the substitution (of the service
operations to the specifications contained in the choreography)
preserves the properties of interest. In [11] we have formalized
this notion in the following way:

Definition 1 (Conservative substitution): Let us consider a
service Si = 〈S, P〉 playing a role Ri in a given choreography,
and a query G such that, given an initial state S0,

(〈S,P〉, S0) ` G w.a. σ

Consider a substitution θ = [SSj /Sσ
u(Rj)

], where Sσ
u(Rj)

=
{ou ∈ S | o occurs in σ} is the set of all unbound operations
that refer to another role Rj , j 6= i, of the same choreography,
that are used in the execution trace σ. θ is conservative when
the following holds:

(〈Sθ,Pθ〉, S0) ` G w.a. σθ

¤
In the above definition, θ can be any kind of association

between the operations of a service with the unbound opera-
tions described in a choreography. In practice it is the result
of a matching process. In the literature it is possible to find
many match algorithms, mostly based on the seminal work
by Zaremski and Wing [12] on software components, and
surveyed in [17].

Given a software component S, with precondition Spre

and postcondition Spost, and a specification (or query, in
the match-making community) Q, with precondition Qpre

and postcondition Qpost, the most important kinds of relaxed
match between Q and S are:

• EM (Exact Pre/Post Match): Qpre ⇔ Spre ∧ Qpost ⇔
Spost

• EPREM (Exact Pre Match): Qpre ⇔ Spre ∧ Spost ⇒
Qpost

• EPOM (Exact Post Match): Qpre ⇒ Spre ∧ Qpost ⇔
Spost

• PIM (Plugin Match): Qpre ⇒ Spre ∧ Spost ⇒ Qpost

• POM (Plugin Post Match): Spost ⇒ Qpost

• GPIM (Guarded Plugin Match, a.k.a. Weak-Plugin [18]):
Qpre ⇒ Spre ∧ ((Spre ∧ Spost) ⇒ Qpost)

• SM (Satisfies Match, a.k.a. relaxed plug-in in [13], plug-
in compatibility [19]): Qpre ⇒ Spre ∧ (Qpre ∧ Spost ⇒
Qpost)

• GPOM (Guarded Post Match, a.k.a. Weak-Post [18]):
((Spre ∧ Spost) ⇒ Qpost)

• GGP (Guarded-Generalized Predicate): (Qpre ⇒ Spre)∧
((Spre ⇒ Spost) ⇒ (Qpre ⇒ Qpost))

The different matches can be organized according to a lattice
[17], that we have reported in Fig. 2. On top, there is Exact
pre/post match, which states the equivalence of Q and S.
Moving down in the lattice weaker and weaker match con-
ditions are found. For instance, in Plugin match S must only
be behaviorally equivalent to Q when plugged-in to replace Q.
Plugin post match relaxes the former: only the postcondition
is considered. Guarded matches focus on guaranteeing that the
desired postcondition holds when the precondition of S holds,
not necessarily in general.

In our application domain, Q is an unbound operation, while
S is an operation. For short, we decorate substitutions with an
acronym denoting the applied match (e.g. θEM is a substitu-
tion obtained by applying the exact match, θPIM by applying
the plugin match, etc.). All these matches have been defined
for the retrieval of single components, and have a local nature,
i.e. they compare a requirement to a software specification (in
our case, an unbound operation) independently of the context
of usage (in our work, the choreography role). On the other
hand, a choreography defines the global execution context, in
which unbound operations are immersed.

In [11] we have proved that, in general, flexible matches do
not satisfy Definition 1. In other words, it is not guaranteed
that after the substitution of a set of operations, which were
selected by applying one of the local flexible matches, to a set
of unbound operations in a role, a goal that could previously be
achieved is still achievable. In fact, besides a few special cases
(EM and EPOM are the only matches which, by their own
nature are conservative), the identified operation can produce
additional effects w.r.t. Qpost. This is not a problem when
the operation is to be used alone but when it is inserted in
the context of a role execution, the additional effects may
inhibit the preconditions of operations that follow. This is a
problem because the choice of playing a role bases on the
proof that the adoption of that role allows the achievement of
a goal of interest for the player. The substitution is necessary
in order to make the role executable but this transformation
should not affect the possibility of reaching the goal, that
was demonstrated for the role specification. In [11] we also
showed how to enrich the plugin match so to guarantee that the
built substitutions are conservative. This is done by taking into

33

account the overall structure, encoded by the choreography.
In the following we extend this result to a wider class of

matches; in particular, we show that all matches which are
re-use ensuring, according to the definition given by Chen
and Cheng in [13], can be enriched in order to guarantee
the production of conservative matches. Once again, we do
this by exploiting only constraints that can be inferred from
the choreography, without modifying the local nature of the
considered matches.

Definition 2 (Re-use ensuring match [13]): A specification
match M is re-use ensuring iff for any S and Q, M(S,Q) ∧
{Spre}S{Spost} ⇒ {Qpre}S{Qpost}.

In the above definition, {Cpre}C{Cpost} denotes a Hoare
triple and is informally interpreted as the truth of “program
C started with Cpre satisfied will terminate in a state such
that Cpost holds” [20]. Considering the lattice in Figure 2, re-
use ensuring matches are all those in a box, while POM and
GPOM are not re-use ensuring.

In order to extend the results in [11] to all re-use ensuring
matches, we need to recall a few notions given in that paper.
Intuitively, we take into account the dependencies between
operations, which produce as effects fluents, that are used as
preconditions by subsequent operations. The idea is to verify
that the “causal chains” which allow the execution of the
sequence of operations, are not broken after the substitution.
The obvious hypothesis is that we have a choreography and
that we know that it allows to achieve the goal of interest, i.e.
that there is an execution σ, which allows the achievement of
the goal. We will use this trace for defining a set of constraints
that, whenever satisfied by a substitution obtained by a re-
use ensuring match, guarantee that the substitution is also
conservative. This is a “sufficient” condition because there
might exist conservative substitutions that do not satisfy this
set of constraints.

Let us start with the notions of dependencies between
operations and dependency sets for fluents. Consider a service
description S = 〈S,P〉, and suppose that, given the initial
state S0, the goal G = Fs after p succeeds, thus obtaining
as answer the successful sequence of operations σ = a1; a2;
. . . ; an, which is an execution trace of p. We denote by
σ the sequence of operations a0; a1; a2; . . . ; an; an+1, where
a0 and an+1 are two fictitious operations that will be used
respectively to represent the initial state S0 and the set of
fluents Fs, which must hold after σ. That is, we assume a0

has no precondition and Es(a0) = S0, and that an+1 has no
effect but Psan+1 = Fs.

Consider two indexes i and j, such that j < i, i, j =
0, . . . , n+1. We say that in σ the operation ai depends on aj

for the fluent Bl, written aj Ã〈Bl,σ〉 ai, iff Bl ∈ Es(aj),
Bl ∈ Psai, and there is not a k, j < k < i, such that
Bl ∈ Es(ak). Given a fluent Bl and a sequence of operations
σ, we can, therefore, define the dependency set of Bl as
Deps(Bl, σ) = {(j, i) | aj Ã〈Bl,σ〉 ai}.

Let [s/ou] be a specific substitution of a service operation
s to an unbound operation ou, that is contained in θ, we say
that a fluent Bl ∈ Es(s)−Es(ou) (i.e. an additional effect of

s w.r.t. the effects of ou) is an uninfluential fluent w.r.t. the
sequence σθ iff for all pairs (j, i) ∈ Deps(B¬l, σ), identifying
by k the position of ou in σ, we have that k < j or i ≤
k. Intuitively, this means that the fluent will not break any
dependency between the operations which involve the inverse
fluent because either it will be overwritten or it will appear
after its inverse has already been used. Note that σ and σθ have
the same length and are identical as sequences of operations
but for the fact that in the latter the selected service operations
substitute unbound operations. For this reason, we can reduce
to reasoning on σ for what concerns the operation positions.

Definition 3: A substitution θ is called uninfluential iff for
any substitution [s/ou] in θ, all beliefs in Es(s)−Es(ou) are
uninfluential fluents w.r.t. σ.

Proposition 1: Let M be a re-use ensuring match, any
substitution θM that is uninfluential is also conservative.

Proof: The proof is by absurd and it uses the
proof theory introduced in [21]. Let us assume that
(〈S,P〉, S0) ` G w.a. σ but (〈SθM , θM ,PθM 〉, S0) 6`
G w.a. σθM . Therefore, there exists a fluent F such that
a0, a1, . . . , ai−1 ` F but (a0, a1, . . . , ai−1)θM 6` F , where
σ = a0, a1, . . . , ai−1, ai, . . . , an and F ∈ Ps(ai), i.e. ai

is not executable because one of its preconditions does not
hold. Now, since a0, a1, . . . , ai−1 ` F , there exists j ≤
i − 1, such that a0, a1, . . . , aj ` F and F ∈ Es(aj) but
(a0, a1, . . . , aj)θM 6` F . Let us assume that j is the last
operation to produce F before ai. There are two possible
cases, either F 6∈ Es(ajθM) or there is another operation
akθM , with j < k < i, such that ¬F is one of its effects.
The first case is absurd since by hypothesis the match is re-
use ensuring, therefore (a0, a1, . . . , ai−1, ai)θM ` F , for any
fluent F in Es(ai). The second is absurd as well, since j is
the last operation to produce F , the effect ¬F of akθM should
be one of its additional effects but this is absurd because by
hypothesis θM is an uninfluential substitution.

From the above proposition and the construction of depen-
dency sets, it is easy to show that the following theorem holds.

Theorem 1: Let M be a re-use ensuring match, Si = 〈S,
P〉 be a service which plays a role Ri in a given choreography,
and G a query such that, (〈S,P〉, S0) ` G w.a. σ, where SO

is the initial state. Let θM be a substitution for all unbound
operations of Si that refer to another role Rj played by the
service Sj , j 6= i. The problem of determining whether θM is
conservative w.r.t. G is decidable.

Example 4: Let us now consider the goal and the service
description specified in the previous examples, and suppose
that the operation payMethod is defined in this way:
(a) payMethods¿sr(payMethods, credentials) possible if

Bbuyercredentials∧
BbuyermustPay(flight)
∧BbuyerdeferredPaymentPossible

(b) payMethods¿sr(payMethods, credentials) causes
Bbuyersent(credentials)

(c) payMethods¿sr(payMethods, credentials) causes
BbuyerpayMethods

(d) payMethods¿sr(payMethods, credentials) causes

34

>
In particular, the operation has, as a precondition, the
possibility of pay the ticket directly at the airport desk
(BbuyerdeferredPaymentPossible).

Let us now consider a service, that is a candidate to play
the role of Seller, which is equivalent to the role specification
but for the operation that implements searchFlight, which is
specified as:
(a) searchFlight¿rr((dep, arr, date), f lightList) possible if

true
(b) searchFlight¿rr((dep, arr, date), f lightList) causes

Bsellerdep ∧ Bsellerarr ∧ Bsellerdate
(c) searchFlight¿rr((dep, arr, date), f lightList) causes

BsellerflightList
(d) searchFlight¿rr((dep, arr, date), f lightList) causes

Bsellersent(flightList)
(e) searchFlight¿rr((dep, arr, date), f lightList) causes
¬BbuyerdeferredPaymentPossible
This operation has an additional effect, w.r.t. to the
corresponding unbound operation, that is it negates
the possibility of paying the ticket at the airport
(¬BbuyerdeferredPaymentPossible). Despite this, the
service matches with the unbound operation according to
many of the re-use ensuring matches (e.g. EPREM, PIM,
GPIM, SM). This additional effect is not uninfluential because
it prevents the executability of the operation payMethod, as
defined above.

If the additional effect were, for instance, that Bveg meals,
supplying an additional information concerning the availability
of vegetarian meals, the achievement of the goal would not be
compromised and the selection would be allowed. ¤

IV. CONCLUSIONS

In this work we extended the proposal in [11] by proving
that for any re-use ensuring match, as defined in [13], it is
decidable to verify that the obtained substitutions are conser-
vative w.r.t. a goal that is proved by using for the unbound
operations the specifications provided by the choreogrpahy.
This result allows the enrichment of the matches with a test
that can be applied at the match execution time, locally, i.e.
operation by operation. This is done by taking into account
the execution context given by the choreography.

The literature related to matchmaking is wide and it is
really difficult to be exhaustive. The matches proposed in
[12] have inspired most of the semantic matches for web
service discovery. Amongst them, Paolucci et al. [4] propose
four degrees of match (exact, plugin, subsumes, and fail).
Differently than in our proposal, these matches are computed
on the ontological relations of the outputs of an advertisement
for a service and a query and are orthogonal to our work. This
approach tackles DAML-S representations, in which services
are described by means of inputs and outputs. This approach
is refined in [5], a work that describes a service matchmaking
prototype, which uses a DAML-S based ontology and a
Description Logic reasoner to compare ontology-based service
descriptions, given in terms of input and output parameters.

The matchmaking process, like in [4], produces a discrete scale
of degrees of match (Exact, PlugIn, Subsume, Intersection,
Disjoint).

WSMO (Web Service Modeling Ontology) [2] is an orga-
nizational framework for semantic web services. As such, it
does not suggest a specific matching rule, which is up to the
specific implementations. However, the authors propose in [22]
an approach that is based on [12] and on [5], hence it suffers
of the same limits that we have mentioned.

Works like [23], [24] propose approaches for goal-driven
service composition based on planning. However, the task
is accomplished without reference to any choreography. In
particular, in [23] the composition and the semantic reasoning
phases (carried on on inputs and outputs) are separated and
the latter is performed on a local basis only. In [25], [26]
web services are composed by composing their interaction
protocols in a social framework, by means of a temporal logic.

REFERENCES

[1] OWL-S Coalition, “http://www.daml.org/services/owl-s/.”
[2] D. Fensel, H. Lausen, J. de Bruijn, M. Stollberg, D. Roman, and

A. Polleres, Enabling Semantic Web Services : The Web Service Mod-
eling Ontology. Springer.

[3] B. Meyer, “Applying ”design by contract”,” Computer, vol. 25, no. 10,
pp. 40–51, 1992.

[4] M. Paolucci, T. Kawamura, T. Payne, and K. Sycara, “Semantic match-
ing of web services capabilities,” in Proc. of ISWC ’02. Springer, 2002,
pp. 333–347.

[5] L. Li and I. Horrocks, “A software framework for matchmaking based
on semantic technology,” in Proc. of WWW Conference. ACM Press,
2003.

[6] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web Services.
Springer, 2004.

[7] WS-CDL, “http://www.w3.org/tr/ws-cdl-10/.”
[8] S. K. Rajamani and J. Rehof, “Conformance checking for models of

asynchronous message passing software,” in Proc. of 14th International
Conference on Computer Aided Verification, CAV 2002, ser. LNCS, vol.
2404. Springer, 2002, pp. 166–179.

[9] H. Foster, S. Uchitel, J. Magee, and J. Kramer, “Model-based analysis of
obligations in web service choreography,” in Proc. of IEEE International
Conference on Internet&Web Applications and Services 2006, 2006.

[10] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro, “Chore-
ography and orchestration: a synergic approach for system design,” in
Proc. of ICSOC 2005, 2005.

[11] M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and C. Schifanella,
“Service selection by choreography-driven matching,” in Emerging Web
Services Technology, ser. Whitestein Series in Software Agent Technolo-
gies and Autonomic Computing, T. Gschwind and C. Pautasso, Eds.
Birkhäuser, September 2008, vol. II, ch. 1, pp. 5–22.

[12] A. M. Zaremski and J. M. Wing, “Specification matching of software
components,” ACM Transactions on SEM, vol. 6, no. 4, pp. 333–369,
1997.

[13] Y. Chen and B. H. C. Cheng, Foundations of Component-Based Sys-
tems. Cambridge Univ. Press, 2000, ch. A Semantic Foundation for
Specification Matching, pp. 91–109.

[14] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Me-
cella, “Synthesis of Underspecified Composite e-Service bases on Ato-
mated Reasoning,” in Proc. of ICSOC04. ACM, 2004, pp. 105–114.

[15] M. Baldoni, L. Giordano, A. Martelli, and V. Patti, “Programming
Rational Agents in a Modal Action Logic,” Annals of Mathematics
and Artificial Intelligence, Special issue on Logic-Based Agent
Implementation, vol. 41, no. 2-4, pp. 207–257, 2004. [Online].
Available: http://www.kluweronline.com/issn/1012-2443

[16] M. Baldoni, C. Baroglio, A. Martelli, and V. Patti, “Reasoning about
interaction protocols for customizing web service selection and com-
position,” JLAP, special issue on Web Services and Formal Methods,
vol. 70, no. 1, pp. 53–73, 2007.

35

[17] H. Toth, “On theory and practice of assertion based software develop-
ment,” Journal of Object Technology, vol. 4, no. 2, pp. 109–129, 2005.

[18] J. Penix and P. Alexander, “Efficient specification-based component
retrieval,” Automated Software Engg., vol. 6, no. 2, pp. 139–170, 1999.

[19] B. Fischer and G. Snelting, “Reuse by contract,” in ESEC/FSE-Workshop
on Foundations of Component-Based Systems, 1997.

[20] C. A. R. Hoare, “An axiomatic basis for computer programming,”
Commun. ACM, vol. 12, no. 10, pp. 576–580, 1969.

[21] M. Baldoni, L. Giordano, A. Martelli, and V. Patti,
“Programming Rational Agents in a Modal Action Logic,”
AMAI, vol. 41, no. 2-4, pp. 207–257, 2004. [Online]. Available:
http://www.kluweronline.com/issn/1012-2443

[22] U. Keller, R. L. A. Polleres, I. Toma, M. Kifer, and D. Fensel, “D5.1 v0.1
wsmo web service discovery,” WSML deliverable, Tech. Rep., 2004.

[23] M. Pistore, L. Spalazzi, and P. Traverso, “A minimalist approach to
semantic annotations for web processes compositions.” in ESWC, 2006,
pp. 620–634.

[24] J. Bryson, D. Martin, S. McIlraith, and L. A. Stein, “Agent-based
composite services in DAML-S: The behavior-oriented design of an
intelligent semantic web,” in Web Intelligence. Springer, 2003.

[25] L. Giordano and A. Martelli, “Web Service Composition in a Temporal
Action Logic,” in Proc. of 4th International Workshop on AI for Service
Composition (held in conjunction with ECAI 2006), Riva del Garda,
August 2006.

[26] A. Martelli and L. Giordano, “Reasoning About Web Services in a
Temporal Action Logic,” in Reasoning, Action and Interaction in AI
Theories and System, ser. LNAI. Springer, 2006, no. 4155, pp. 229–
246.

36

Design and Development of Intentional Systems
with PRACTIONISTStudio

Angelo Marguglio∗, Giuseppe Cammarata∗, Susanna Bonura∗, Giuseppe Francaviglia∗

Michele Puccio∗, and Vito Morreale∗.
∗Intelligent Systemsunit - R&D Laboratory

ENGINEERING Ingegneria Informatica S.p.A.

Abstract— In this paper we present PRACTIONIST Studio,
which is an integrated design and development environment
for BDI agent-based systems, providing facilities and tools to
represent the concepts and intentional elements underlying such
a model as well as several common features offered by UML-
based tools.

PRACTIONIST Studio aims at bridging the gap between the
increasing trend of developing BDI-based multi-agent systems
and the availability of tools for their design. It supports de-
velopers from early requirements analysis to automatic code
generation.

More in detail, we first give an overview of the modelling edi-
tors provided with PRACTIONIST Studio. Then some fragments
of the modelling and development approach when applied to a
real-world implementation are presented. Such a complex system
is the PSTS (PRACTIONIST Stock Trading System), which is
aimed to monitor investors’ stock portfolio by managing risk
and profit and supporting decisions for on-line stock trading, on
the basis of investors’ trading rules and their risk attitude.

I. I NTRODUCTION

Recently the increasing complexity and the introduction of
new Web and networking technologies are making it difficult
for designers to entirely model systems and for operators
to handle effectively all unpredictable situations. The effort
of scientific communities is towards the building of systems
where interactions among components cannot be thoroughly
planned and anticipated.

In other words an open issue is to investigate the modelling
of systems where the collective behavior of their parts is
related to the emergence of properties that can hardly, if not
at all, be infered from properties of the parts. Aristotele stated
that ”The whole is more than the sum of its parts”; with this
assertion he had already, more than two thousand years ago,
defined what complex systems are.

Several authors (e.g. McCharty [1]) have argued that in
certain situations, the so-called intentional stance [2] of sys-
tems can aid to efficiently predict, explain, or define their
behaviour, without having to understand how they actually
work. Therefore, some systems may be better explained in
terms of mental qualities or attitudes, rather than in terms of
conventional physical phenomena or design artifacts, i.e. by
specifying the so-called intentional stance of systems.

In the context of the development of intentional systems,
the agent-oriented approach plays a central role, due to the
vast number of theories and models that have been developed
for twenty years. Moreover, with regards to complex systems,

Georgeff [3] asserts that”the notions of complexity and change
will have a major impact on the way we build computational
systems, and that software agents - in particular BDI agents
- provide the essential components necessary to cope with the
real world”.

The Belief-Desire-Intention (BDI) architecture [4] suggests
that the development of agents should rely on the specification
of some mental states, i.e. beliefs, desires, and intentions,
which are very intuitive for people to understand. Indeed,
beliefs represent information the agent has about the world;
desires represent state of affairs the agent wishes to bring about
and intentions are desires that it has committed to achieving.

Although BDI model has become a very attractive approach
for dealing with the complexity of modern software appli-
cations, engineering such systems is still a challenge due to
the lack of effective tools and actual implementations of very
interesting and fascinating theories and models.

In past years we developed the PRACTONIST Framework
[5], which is a set of Java libraries to develop agent-based
systems according to the BDI model. PRACTIONIST adopts
a goal-oriented approach and a clear separation between the
deliberation and the means-ends reasoning, and consequently
between the states of affairs to pursue and the way to do
it. Moreover, PRACTIONIST allows developers to implement
agents able to reason about their beliefs and the other agents’
beliefs, expressed by modal logic formulas.

Due to the differences between the objects and agents [6],
design tools used to model object-oriented systems do not
represent the best way to design and develop agent-oriented
softwares, especially BDI agent systems. In addition, several
existing MAS modelling tools (e.g. INGENIAS Development
Kit [7]) suffer a too strong tie-up with specific methodologies
for the development of MAS. Moreover, some of them cover
well only a subset of development phases (e.g. TROPOS Tool
for Agent Oriented visual Modeling [8]). Other tools are sim-
ple prototypes and do provide a very limited assistance when
developing agents and their components. In practice, none of
them can be directly adopted (or extended) to design and
develop multi-agent systems according to the PRACTIONIST
model.

Thus we developed the PRACTIONISTStudio, which is
the novel visual environment to model, design and develop
PRACTIONIST-based systems. The PRACTIONISTStudio

37

has been developed by using several Eclipse1 plug-ins, such
as: UML2, Eclipse Modelling Framework (EMF), Graphical
Editing Framework (GEF), Graphical Modeling Framework
(GMF) and other Eclipse extensibility features. It supports the
representation of the concepts underlying the BDI model and
part of UML 2.0 meta-model as well as several features com-
mon to (commercial) well-known UML-based CASE tools,
such as unified underlying model for all diagrams within an
project, consistency check within diagrams, editing facilities
(e.g. cut and paste, unlimited undo and redo, and so forth).

In this paper we present an overview of the modelling
editors and facilities included in PRACTIONISTStudio, along
with some fragments of modelling and development of a real
system, i.e. the PSTS (PRACTIONIST Stock Trading System).

The paper is organized as follows: in section II we first
present the PSTS as a running example. Then we give an
overview of the PRACTIONIST suite (section III), while in
section IV PRACTIONISTStudio is described in details; in
section 4 some of the models of the PSTS developed with
PRACTIONIST Studio are shown, while in section 5 we
present how PRACTIONISTStudiohas supported the imple-
mentation of the PSTS. Finally, we point out our intended
future work and give some conclusions.

II. RUNNING EXAMPLE

Systems supporting stock markets’ operations and decisions
are an example of systems with a high complexity. Here
elementary building blocks can be individual traders, each
making buying and selling decisions from his/her own per-
spective.

It should be noted that systems for stock trading manage-
ment have been implemented by adopting agent technology
and related approaches. Among them, Wang et al. [9] have
presented a lightweight, distributed, intelligent agent-based
financial monitoring system that monitors and reports on trans-
actions within an organization. In such a prototype system,
the intelligent agents are assisted by a formal conceptual
model that makes up an unambiguous understanding of the
institution, the transactions, the instruments involved, and the
business processes.

In [10], Feng and Jo present a system, called AST (Agent-
based Stock Trader), which is a stock-trading expert based
on intelligent agents using the BDI model of agency. Finally,
Davis et al. [11] have designed a system around portfolio
management tasks that include eliciting user profiles, collect-
ing information on the users portfolio position, monitoring
the environment on behalf of the user, and making decision
suggestions to meet the users investment goals.

The existence of such implementations confirm that agent-
based systems can benefit the development of complex systems
even in critical fields such as financial and stock trading. For
this reason we chose to use such an application domain to
test and evaluate the PRACTIONISTStudioby designing the
PRACTIONIST Stock Trading System (PSTS), which is also
used as a running examble throughout the paper.

1http://www.eclipse.org/

Development Process

UML i* notation

PAML

PRACTIONIST Methodology

Eclipse

PRACTIONIST Studio

PRACTIONIST

Code Generator

PRACTIONIST Packages

Java
Prolog

(SWI, TuProlog)

PRACTIONIST Runtime & Framework

PAIT PAM

PRACTIONIST Modelling Editors

Fig. 1. PRACTIONIST Suite.

PSTS is a PRACTIONIST-based system, which is able to
monitor investors’ stocks portfolio, to monitor and manage
risks, to manage and optimize profit and to support decisions
regarding on-line stock trading, by taking into account in-
vestors’ trading preferences and rules (i.e. stop loss, stop profit,
profit target, tolerance, maximum budget to be inevested per
week) and their degree of willingness to risk.

III. PRACTIONIST SUITE

As stated above, in order to exploit the full potential offered
by the agent-oriented paradigm, and particularly the BDI
model, the support of efficient integrated development tools
and methodologies is required to produce real-world (and
sometime complex) software systems.

Our solution to this issue is PRACTIONIST (PRACTIcal
reasONIng sySTem), which is an integrated suite providing
the following tools (see Fig. 1):

• PRACTIONIST Methodology, including thePRACTION-
IST Agent Modelling Language (PAML), which is a UML-
based modelling language, and an iterative development
process;

• PRACTIONIST runtime and framework (PRF), which
provides the APIs to develop PRACTIONIST-based agent
systems by defining the execution logic and providing the
builtin components according to such a logic;

• PRACTIONIST Studio, a visual modelling, design and
development environment supporting the representation
and specification of the concepts underlying the BDI
model as well as several features present in other UML-
based tools.

The focus of this paper is on modelling facilities provided
by PRACTIONISTStudio, which is described in details in the
following sections, while in the remaining part of this section
an overview of the other two components of PRACTIONIST
is given.

A. Methodology

PRACTIONIST Methodology is based on an iterative and
incremental development process supporting developers from
early requirements analysis to coding, debugging and testing
of agents and artefacts (according to the A2A approach [12]).
It is the result of the following interacting tasks: (i) theoretical
analysis of requirements that similar processes should meet,

38

(ii) theoretical analysis of novel features introduced with
PRACTIONIST that need to be specified at the design time
and (iii) practical application of PRACTIONIST in real cases
as well as its integration with other technologies, such as Web
services.

It should be noted that the development process is still a
work in progress and our research is going towards the defi-
nition of a more general framework for process and software
engineers, with the aim of providing tools to define/customize
processes as well as full support to the usage of them during
development phases.

As an important part of our methodology, PAML is a UML-
based visual modelling language for specifying, modelling
and documenting BDI multi-agent systems. Its meta-model
contains general metaclasses to model intentional components
of BDI agents, such as beliefs, goals and relations among
them, plans and so forth. It also includes metaclasses specific
to PRACTIONIST and the development of related systems.

PAML extends the Agent modelling Language (AML)
[13], a semi-formal visual modelling language for specifying,
modelling and documenting systems that incorporate general
concepts drawn from the Multi-Agent Systems (MAS) theory.
AML can be used to build models that consist of autonomous
entities able to observe and interact with their environment
using complex interactions and aggregated services.

Thus rather than extending the UML and building a new
modelling language, PAML extends the AML, particularly
for the concepts underlying the Belief-Desire-Intention (BDI)
model. Indeed, AML already provides a Mental section, that
lets the modelling of mental attitudes of autonomous entities
having deliberative and motivational states. Moreover, PAML
also extends the UML [14], in order to meet specific require-
ments of for developing PRACTIONIST systems.

The overall package structure of the PAML is depicted in
the Figure 2.

The detailed description of PAML is out of the scope of this
paper. In brief, theKernel package defines the metaclasses
to model artefacts, agents and their components as well as
architectutal aspects of multi-agents systems. More in detail,
the Mental Attitudes package defines the metaclasses
to model intentional attitudes of PRACTIONIST agents (i.e.
belief, desires, intentions, goals and plans), extending the
Mental package of AML. TheInteractions package
defines the metaclasses to model ways and means agents use
to interact with the environment where they live, including per-
ceptors, to listen to relevant external stimuli (i.e. perceptions)
and actions, to act over the environment and the effectors that
actually execute such actions. ThePlanning package defines
the metaclasses to model the body of plans; indeed the body
represents the actual sequence of act being executed by the
agent. TheBDIEntities package defines the metaclasses
to model artefects and agents, which are the building blocks
of the system. Finally, theRequirements package defines
the metaclasses to support the requirement analysis phase
according to the i* notation [15] and use case model.

Fig. 2. Overall package structure of the PAML metamodel.

B. Runtime & Framework

As already mentioned, PRACTIONIST suite provides the
framework and the runtime environment, respectively support-
ing the coding and the execution of BDI agents(i) endowed
with a symbolic representation about their beliefs,(ii) able
to proactively deliberate about their intentions,(iii) capable
of performing reactive behaviours, and(iv) endowed with the
ability to plan their activities in order to meet some objectives
[16].

PRACTIONIST framework supplies the required built-in
services that define the computational model of PRACTION-
IST agents. This includes thebelief logic, thedeliberation
mechanisms that produce agent intentions, the way the agent
makes means-ends reasoningto figure out the means (i.e.
plans) to achieve its intentions [17], and the support for the
actual execution of such plans. Thus PRACTIONIST agents
present a double-layered structure: the bottom layer represents
the framework, which defines the execution logic and provides
some built-in services implementing such a logic, while the top
layer includes the specific agent components to be defined in
order to satisfy specific application requirements [5].

More concretely, in order to design a PRACTIONIST agent
developers shall specify the following components:(i) Goal
Model, that is the set ofGoals the agent could pursue and
the relations among them;(ii) Plan Library, that is a set of

39

means, to pursue such goals or to react to the stimuli coming
from the environment;(iii) Perceptorsto receive such stimuli;
(iv) Actions the agent could perform and the corresponding
Effectors, and(v) Belief Base, that is a set of beliefs and rules
on them to model the information about both its internal state
and the external world.

Moreover, agents are endowed with the ability to dynami-
cally build plans (i.e.Planning). Finally the management of
perceptors and effectors is part of the agentcore services
infrastructure.

The framework also includes the PRACTIONIST Agent
Introspection Tool (PAIT), a visual integrated monitoring and
debugging tool, which supports the analysis of the agent’s state
during its execution. In particular, the PAIT can be suitable to
display, test and debug the agents’ mental attitudes (i.e. beliefs,
desires, and intentions) and their execution flow, in terms of
active behaviours. Each of these components can be observed
at run-time through a set of specific tabs.

Furthermore, the runtime and framework supplies facil-
ities and built-in components for autonomically manage
PRACTIONIST-based applications and external resources.

Finally, it is worth mentioning that PRACTIONIST run-
time and framework has been designed on top of JADE2, a
widespread platform compliant to the FIPA3 specifications,
that provides some core services, such as a communication
support, interaction protocols, life-cycle management, and so
forth.

IV. PRACTIONISTStudio

PRACTIONISTStudiois a modelling, design and develop-
ment tool for BDI agent systems according to the PRACTION-
IST mdoel. It includes a set of visual modelling editors, some
of which are based on UML 2.0 metamodel, whereas others
are based on PRACTIONIST Agent Modelling Language
(PAML). More accurately, a brief description of such visual
modelling editors follows:

• i* [15] based editors:

– Strategic Dependency (SD) editor: to describe the
dependency relationships among various actors in an
organizational context;

– Strategic Rational (SR) editor: to describe stake-
holder interests and concerns and how they might
be addressed by various configurations of systems
and environments;

• UML2.0 based editors:

– Use Case editor: to model use cases and system
funcionalities from the actor’s point of view;

– Class editor: to model static structures of a system
or of its parts;

• PRACTIONIST specific editors:

– Agent editor: to model agents and specify their
components;

– Domain editor: to model facts about the world the
agent can believe or not;

2http:jade.tilab.com
3http://www.fipa.org

– Goal editor: to model agent goals and the relation-
ships among them;

– Effector/Action - Perceptor/Perception editor: to
model the means agents use to interact with their
environment;

– Plan editor: to model the features of plans agent can
adopt to pursue their intention;

– Plan Body editor: to model the body of plans, in
terms of (simple or complex) flow of acts.

PRACTIONIST Studio aims at bridging the gap between
the increasing need of development of multi-agent systems
and the availability of tools for their design. Indeed, it can
be used in the same way as other software modelling tools
to develop multi-agent systems as it supports developers from
the requirements analysis to the code generation of agents.

As many well-known CASE tools, PRACTIONISTStudio
provide all the features that support the development of
complete and consistent visual models, such as:

• Unified model: all diagrams created inside a PRACTION-
IST project share the same model (i.e. an instance of the
meta-model), whereas each generic GMF diagram file has
usually its own model file.
Sharing the same model file means sharing the same
command stack, allowing us to execute cross-checks
among elements and consequently model more complex
and greater systems as a whole;

• Drag and Dropsupport: a PRACTIONIST project has its
own model view, where the developed model is displayed
as a tree. From this view it is possible todrag and
drop the elements into diagrams, enabling us to use the
same elements in different diagrams as well. Thus, if an
element is modified in a diagram, it will be updated in
all the other diagrams.

• Delete from diagramand delete from modelactions: in
a GMF diagram thedelete from modelaction is enabled
by default, so when an element is deleted in the diagram
it is also automatically deleted from the model. Such a
behaviour was modified in order to get thedelete from
view action as well, and thus have a more flexible model
management.

For the development of PRACTIONISTStudio, the support
provided by the Eclipse environment has been fully exploited.
As a consequence:

• a PRACTIONIST project, which is a custom Eclipse Java
project, provides several sections where developers can
create their own diagrams and the source folder that will
contain the generated source code;

• the model view of a PRACTIONIST project is a custom
Eclipse view that displays the unified model underlying
the project;

• the PRACTIONIST Java code can be generated starting
from diagrams in a simple way.

The hierarchical representation of a PRACTIONISTStudio
project is composed by several sections where developers
can create their own diagrams and manage the source code
generated; besides, the model view of the project is a custom
Eclipse view that presents the unified model underlying the

40

Fig. 3. A snapshot of the PRACTIONISTStudio.

project; finally, the Java code generation in a very simple
process.

V. M ODELLING WITH PRACTIONISTStudio

Throughout this section we present an overview on how
to model a PRACTIONIST system by using the facilities
and functionalities offered by PRACTIONISTStudio. This is
done by describing the design of some components of the
PSTS and showing some snapshots of models developed with
PRACTIONISTStudio.

As a complex system should be able to select at runtime
the best behaviour on the basis of the current situation, we
believe that in the requirements analysis phase, goals can be
used as an abstraction to model the functions around which the
systems can autonomously select the proper behaviour [17].

The requirements state that the goals of the PSTS (PRAC-
TIONIST Stock Trading System) must be the monitoring of
investors’ stock portfolio in terms of risk and profit manage-
ment and supplying a decision support for the on line stock
trading, by considering investors’ trading rules (i.e. stop loss,
stop profit, profit target, tolerance, maximum budget to be
inevested a week) and their degree of willingness to risk.
Besides, if users so wish, the PSTS has to be able to replace
orders (system orders) which are too risky or profitable, asking
a broker to execute them. Moreover, through the PSTS users
have to be allowed to placemarket orders(a market order is
a buy or sell order to be executed by the broker immediately
at current market prices) andlimit orders (a limit order is an

order to buy a stock at no more - or sell at no less - than a
specific price).

A. Modelling the organizational environment of the PSTS

In order to provide a deeper level of understanding about
how the PSTS can be embedded in the organizational envi-
ronment, the relevant stakeholders of the application domain
were modelled, where also the system-to-be (the PSTS) was
introduced as another actor, along with the dependencies
among them in terms of goals, tasks or resoures. In other
words, it was created a Strategic Dependency (SD) diagram.
Indeed the SD model focuses on the intentional relationships
among organizational actors.

Referring to the PSTS case study, the SD diagram was
modelled by using the SD editor of PRACTIONISTStudio,
which is shown in the Figure 4, where actors, depicted as
circles, are theInvestor, thePSTS, Yahoo and theBank;
the dependencies among the actors are depicted as arrowed
lines connected by a graphical symbol varying according to
the dependum: a rectangle if the dependum is a resource, a
rectangle with rounded corners if the dependum is a hard goal

More in detail, theInvestor would like to have a
system (thePSTS) that is able to provide information about
stock market (Get Stock Information), to provide up-
dated and detailed data about his/her Stock Portfolio (Get
Portfolio Information), to manage risky and prof-
itable stocks of the portfolio(Default Manage Risky

41

Fig. 4. Strategic Dependency model.

Stocks and Manage Profit), to give adivice on stocks
to be bought or sold (Do recommendation) and allow to
do trading autonomously (Make do trading). ThePSTS
depends on Internet (i.e. in particularYahoo) to obtain every
day the current data about stocks (opening and closing stock
prices, highest and lowest stock prices and volume of trading).
Finally, the PSTS depends on a broker (i.e. theBank), to
Place sell orders andPlace buy order).

B. Modelling agents’ goals

Architectural analysis of the PSTS produced the entities
classified as agents. In the resulting design they are

• the Trader, the agent in charge of managing all kinds
of order (i.e. market, limit and system orders) by asking
the broker (theBank) to place them;

• the Analyst, the agent liable for executing the market
analysis;

• the Advisor, the agent which interprets the
Analyst’s signals and does recommendations to
investors;

• the HoldingStockManager, the agent which moni-
tors investor’s stock current prices and places sell order
for that stocks resulting too profitable (if they have
reached the profit target indicated by investor or the profit
has descended below the stop profit of investors) or too
risky (if their value has descended below the stop loss of
investors).

It is worth noting that the goal turns out to be an in-
teresting abstraction related to autonomous entities for the
development of software systems whose requirements are not
entirely known at design time. Thus, the explicit representation
of goals and the ability to reason about them from agents,
plays an important role in the modelling phase. By using
PRACTIONISTStudio, a designer can specify for each agent,
goals it could pursue and their properties, and all relations
among such goals.

More in detail, for each goal it is possible to define the
success condition, the applicability condition stating whether
it is possible (given current conditions) to achieve that goal
and the cancel condition stating in which situations the agent
should give up to pursue a goal.

Regarding the relationships among goals, PRACTIONIST
Studioallows to model(i) the inconsistency between two goals
(if the designer want to declare that if a goal succeds, the other
one fails),(ii) the entailment (if the designer want to declare
that if a goal succeeds, then also the other one succeeds),(iii)
the fact that a goal is a precondition of another goal (that is
the fact that a goal must succeed in order to be possible to
pursue another goal),(iv) the dependence (if the designer want
to declare that a goal is precondition of another goal and must
be successful while pursuing this last one). A formal definition
of the goal relationships in PRACTIONIST can be found in
[17].

For example, referring to theHoldingStockMaganer,
the properties of goals and their relationships were modelled
in PRACTIONISTStudio as in Fig. 5

The main objective of theHoldingStockMaganer is
ManageHoldingStock: it is applicable if the agent be-
lieves that a new current price is available for one of the
holding stocks (NewStockPriceReceivedpredicate), or
that the investor has bought a new stock (NewStockBought
predicate); indeed in the last case, the agent has manage such
a new stock.

The agent monitors both the profit and the
risk of a stock, so the ManageHoldingStock
depends on the ManageRiskyStock and the
ManageProfitableStock goals; the agent continues to
pursue these goals until the price and the amount of a stock
do not change, otherwise both goals have to be cancelled.

To manage the risk and the profit of a stock, the agent
has to analyze its risk and profit on the basis of investors’
rules, so the goalsComputeRisk and ComputeProfit

42

Fig. 5. Goal Diagram related to theHoldingStocksManageragent.

entail respectively the goalsManageRiskyStock and
ManageProfitableStock.

Finally, the dependency relationships of the
ComputeProfit andComputeRisk goals were modelled;
the dependee goals have to be achieved to compute the
value of some investor’s trading rules, that is theprofit
target, thestop profit, and thestop loss.

C. Modelling agents’ plans

In the BDI agent model, another key element is the library
of plans, as it represents the set ofrecipe to meet agent’s
intentions.

In PRACTIONIST Studio it is possible to declare a set of
plans an agent has to own (theplan library), to specify the
activities it should undertake in order to achieve its intentions,
or handle incoming perceptions, or react to changes of its
beliefs.

Each plan presents five slots: (i)practical, which defines the
kind of events the plan is able to manage; (ii)applicable, to
define the formula that has to be believed as true by the agent
in order to actually adopt a practical plan; (iii)invariant, to
define the condition to hold during the execution of the plan;
(iv) cancel, to define when the plan has to be stopped with
failure; (v) success, to define the formula has to believed as
true by the agent then the plan ends with success.

But, the way a certain event is handled has to be specified
in the body, which is an activity that can contain a set of
acts ([17]), such as desiring to pursue some goal, adding or
removing beliefs, sending ACL messages, doing an action and
so forth.

Thus, in order to model the plan’s body, a designer can
use the Plan Body editor of PRACTIONISTStudio. In Fig.
6 it is shown the Plan Diagram where the plan library of the
HoldingStocksManagerwas modelled.

The HoldingStockManageragent has to manage the profit
and the risk of a holding stock every time a new price is

available or the investor has placed a new buy order for a
stock already held, or a new stock is bought. Therefore it
was equipped with theManageProfitForNewOrder,Manage-
ProfitForNewPrice plans, regarding the profit management,
and ManageRiskForNewOrderand ManageRiskForNewPrice
plans, regarding the risk management; as shown in Fig. 6.
Success and cancel conditions of these plans refer to the goal
success and cancel conditions, whereas they have a proper
applicable condition.

Finally, other plans were also modelled, for example to han-
dle the stimuli received from the environment (i.e. a stock price
updating or a stock placed order) and to compute the investor’s
trading rules (that is, to manage theComputeStopLossgoal,
etc.).

VI. CODING WITH PRACTIONISTStudio

As stated, PRACTIONISTStudio supports the actual im-
plementation of BDI agent systems by providing an automatic
code generation facility, which produces template or partially
filled parts of source code according to the developed models
and relying on the PRACTIONIST Framework.

In this section the source code related to theManageHold-
ingStockgoal generated by PRACTIONISTStudio is shown.
A snippet of the goal follows:

/**
* @generated
*/

public class ManageHoldingStock implements Goal
{

....

/**
* @generated
* @see org.practionist.core.GoalProfile#applicable())

*/
public boolean applicable()
{

// TODO: Insert the right variables value
return
beliefBase.bel(AbsPredicateFactory.create

("newStockPriceReceived(arrived: X)"))
|| beliefBase.bel(AbsPredicateFactory.create

43

Fig. 6. Plan Diagram related to theHoldingStocksManageragent.

("newPlacedOrderReceived(uid: X, stockSymbol: X,
operation: X, quantity: X, price: X)"));

}

/**
* @generated

*
* @see org.practionist.core.GoalProfile#succeed())

*/
public boolean succeed()
{

// TODO: Insert the right variables value
return beliefBase.bel(AbsPredicateFactory

.create("managed(investor: X, stockName: X)"));
}
....

}

This general implementation produced by the code genera-
tor of PRACTIONISTStudioshould be customized according
to the specific requirements for this goal. An example follows:

/**
* @generated
*/

public class ManageHoldingStock implements Goal
{

.....

/**
* @generated
* @see org.practionist.core.GoalProfile#applicable())

*/
public boolean applicable()
{

return beliefBase.bel(AbsPredicateFactory
.create("newStockPriceReceived(arrived: true)"))
|| beliefBase.bel(AbsPredicateFactory

.create("newPlacedOrderReceived
(uid: %, stockSymbol: %,
operation: %, quantity: %, price: %)",
uid, stockSymbol,
operation, quantity, price));

}

/**
* @generated

*
* @see org.practionist.core.GoalProfile#succeed())

*/
public boolean succeed()
{

return beliefBase.bel(AbsPredicateFactory
.create("managed(investor: %, stockName: %)",

investorID, symbol));
}
....

}

In this snippet, the designer just needs to detail the right
variables of the predicates (in this example a parametrized
form of the predicates has been adopted, using the symbol %
and then adding values). That is, in order to express the appli-
cability and success conditions of the goal, the corresponding
beliefs were customized by replacing the aforementioned
variables with the values that characterise the goal.

A code snippet of the dependency relation
between the ManageHoldingStock and the
ManageProfitableStock goals follows:
/**
* @generated
*/

public class GR_ManageHoldingStock_ManageProfitableStock
implements DependencyRel

{
public Goal verifiesRel(SerializableGoal goal1,

SerializableGoal goal2)
{

if (goal1 instanceof ManageHoldingStock
&& goal2 instanceof ManageProfitableStock)

return new ManageProfitableStock();
return null;

}
}

In this example, everyManageHoldingStock goal de-
pends on theManageProfitableStock goal, without
specifying any information about stocks. Thus, this code
should be now customized according to the designer’s needs:
/**
* @generated NOT
*/

public class GR_ManageHoldingStock_ManageProfitableStock
implements DependencyRel

{
public Goal verifiesRel(SerializableGoal goal1,

SerializableGoal goal2)
{

if (goal1 instanceof ManageHoldingStock
&& goal2 instanceof ManageProfitableStock)
{

ManageHoldingStock g =
(ManageHoldingStock) goal1;

return new
ManageProfitableStock(g.getUID(),

g.getSymbol());
}
return null;

}
}

44

Fig. 7. Agent Diagram related to theHoldingStocksManageragent.

In this snippet, the designer has just to detail some prop-
erties of the dependee goal; here the dependee goal refers to
the same user and symbol of stock of the dependent goal.

Finally, a code snippet of the HoldingStockManager agent
class is shown:

/**
* @generated
*/

protected void initialize()
{

addBeliefSet("/home/pl/holdingstockmanager.pl");

/*****************Goals*****************/
// TODO:Remember to put the goal’s parameters here
registerGoal(new ManageHoldingStock(), "");
registerGoal(new ManageProfitableStock(), "");
registerGoal(new ComputeProfitTarget(), "");

/***********Goals**Relations************/
// TODO:Remember to put the relation’s parameters here
registerRelation(new

GR_ManageHoldingStock_ManageProfitableStock(), "");
registerRelation(new

GR_ManageRiskyStocks_ComputeRisk(), "");

/*****************Plans*****************/
// TODO:Remember to put the plan’s parameters here
addPlan(ManageRiskyStock.class, "ManageRiskyStock");
addPlan(NewStockPriceHandler.class,

"NewStockPriceHandler");
}

The Fig. 7 shows a snapshot of the Agent Diagram. More
in detail, by means of such a diagram it is possible to look at
the list of all the intentional elements were modelled and to
choose that ones that the designer wants associate to an agent.

It is worth noting that the code generator of PRACTIONIST
Studiois able to produce the agent source code by putting the
entities which were designed in the previous modelling phases
together; obviously, this code should be customized according
to the designer’s needs.

VII. C ONCLUSIONS ANDFUTURE WORK

In this paper, through a running example, i.e. the PSTS, we
presented PRACTIONISTStudio, the visual modelling, design
and development environment of the PRACTIONIST suite,
which is the set of tools we have been developing to implement
agent systems according to the BDI model.

PRACTIONISTStudiosupports the development of agents
endowed with a lot of useful built-in capabilities and with

a computational model which is more flexible and adaptive
than the agent models underlying several commercial and non-
commercial frameworks.

Our tool allows the design and development of BDI agent
systems from several perspectives, including the representation
of intentional attitudes and relationships among them, the way
the agents interact with their environment, the activities within
a plan. and so forth.

As part of our future work, we aim at further developing
PRACTIONIST Studioby adding editors for other diagrams
(i.e. dynamic views, such as interactions). We also intend
to improve service features of the tools, such as reverse
engineering and documentation management and automatic
generation.

Finally, we have been developing some other real-world
applications by using the PRACTIONIST framework, method-
ology andStudio.

REFERENCES

[1] J. McCarthy, “Ascribing mental qualities to machines,” Stanford Uni-
versity, Tech. Rep. STAN-CS-79-725, 1979.

[2] D. Dennett,The Intetional Stance. MIT Press, 1989.
[3] M. P. Georgeff, B. Pell, M. E. Pollack, M. Tambe, and M. Wooldridge,

“The belief-desire-intention model of agency,” inATAL ’98: Proceed-
ings of the 5th International Workshop on Intelligent Agents V, Agent
Theories, Architectures, and Languages. London, UK: Springer-Verlag,
1999, pp. 1–10.

[4] A. S. Rao and M. P. Georgeff, “Modeling rational agents within a
BDI-architecture,” inProceedings of the 2nd International Conference
on Principles of Knowledge Representation and Reasoning. Morgan
Kaufmann publishers Inc.: San Mateo, CA, USA, 1991, pp. 473–484.
[Online]. Available: http://citeseer.nj.nec.com/rao91modeling.html

[5] V. Morreale, S. Bonura, G. Francaviglia, F. Centineo, M. Puccio, and
M. Cossentino, “Developing intentional systems with the practionist
framework,” in Proceedings of the 5th IEEE International Conference
on Industrial Informatics (INDIN07), July 2007.

[6] O. J., “Objects and agents: how do they differ?”Journal of Object-
Oriented Programming, pp. 50–53, 2000.

[7] J. Pavon, C. Sansores, and J. J. Gomez-Sanz, “Modelling and simulation
of social systems with ingenias,”Int. J. Agent-Oriented Softw. Eng.,
vol. 2, no. 2, pp. 196–221, 2008.

[8] D. Bertolini, A. Perini, A. Susi, , and H. Mouratidis, “The tropos visual
modeling language. a mof 1.4 compliant meta-model.”Contribution for
the AOSE TFG meeting., 2005.

[9] H. Wang, J. Mylopoulos, and S. Liao, “Intelligent agents and financial
risk monitoring systems,”Commun. ACM, vol. 45, no. 3, pp. 83–88,
2002.

[10] X. Feng and C.-H. Jo, “Agent-based stock trader,” inComputers and
Their Applications, 2003, pp. 275–278.

[11] D. N. Davis, Y. Luo, and K. Liu, “Combining kads with zeus to develop
a multi-agent e-commerce application,”Electronic Commerce Research,
vol. 3, no. 3-4, pp. 315–335, 2003.

[12] A. Ricci, M. Viroli, and A. Omicini, “Programming MAS with artifacts.”
in PROMAS, 2005, pp. 206–221.

[13] I. Trencansky and R. Cervenka, “Agent modelling language (aml): A
comprehensive approach to modelling mas,”Informatica, vol. 29, pp.
391–400, 2005.

[14] O. M. Group, “Unified Modeling Language, Superstructure.”
[15] E. S. K. Yu, “Towards modelling and reasoning support for early-

phase requirements engineering,” pp. 226–235. [Online]. Available:
citeseer.ist.psu.edu/article/yu97towards.html

[16] V. Morreale, S. Bonura, G. Francaviglia, M. Cossentino, and S. Gaglio,
“PRACTIONIST: a new framework for BDI agents,” inProceedings
of the Third European Workshop on Multi-Agent Systems (EUMAS’05),
Brussels, Belgium, 2005, p. 236.

[17] V. Morreale, S. Bonura, G. Francaviglia, F. Centineo, M. Cossentino,
and S. Gaglio, “Goal-oriented development of BDI agents: the PRAC-
TIONIST approach,” inProceedings of Intelligent Agent Technology.
Hong Kong, China: IEEE Computer Society Press, 2006.

45

Arguments and Artifacts for Dispute Resolution
Enrico Oliva
Mirko Viroli

Andrea Omicini
DEIS, ALMA MATER STUDIORUM—Università di Bologna

via Venezia 52, 47023 Cesena, Italy
E-mail:{enrico.oliva,mirko.viroli,andrea.omicini}@unibo.it

Abstract—In a social context cultural differences, individual
interests, and partial awareness are often the causes of disputes.
Alternative Dispute Resolution (ADR) is usually considered to be
alternative to litigation, and can also be used to allow disputing
parts to find an agreement. A dispute resolution is not an easy
task and usually involves more entities including mediator or
arbitrator with multiple dialogue sessions.

In the paper we focus the attention on dispute resolution
system in artificial society proposing a model and a technology to
support the persuasive processes. The persuasion is the principal
form dialogue used in an ADR system where agents exchange
arguments to support their positions.

The general architecture proposed to build an ADR system
exploits two artifacts abstractions – Co-Argumentation Artifact
and Dialogue Artifact – that provide the right abstractions
to coordinate the agents during the argumentative process.
The technological support for the artifacts is provided by the
TuCSoN infrastructure, also exploiting a meta-programming
technique in Prolog. Finally, in the paper we present a simplified
example of the execution of a persuasion dialogue ground on the
commitments.

I. ALTERNATIVE DISPUTE RESOLUTION

People develop systems and methods in order to settle
conflicts in a fair way. Human societies define norm systems,
infrastructure (such as court) and methods (such as trial) to
achieve the dispute resolution.

In a global business process scenario there is a increasing
need of speed-up the processes, and to make faster the conflict
resolution. The new systems have to support legal process
when for instance a negotiation is broken, they have to
combine mediation and legal service to avoid litigation.

Alternative Dispute Resolution (ADR) is usually consid-
ered to be alternative to litigation. It also can be used as
a colloquialism for allowing a dispute to drop or as an
alternative to violence. ADR is generally classified into at
least four subtypes: negotiation, mediation, collaborative law,
and arbitration. Walker and Daniels [1] underline that legal
negotiation is a part of traditional dispute resolution system
rather than a component of the ADR movement. The legal
negotiation directly occurs among agents that represent the
disputants in a context similar to a courtroom.

Arguments have a central role in the process of formalising
legal system, and in the trial, too. The paper [2] contains a
survey of logic in computational model on legal argument.
The authors present the main architecture of legal arguments
with a four layer architecture: 1) logical layer, 2) dialectical

layer, 3) procedural layer, and 4) strategic layer. Disputants use
arguments in order to persuade the other parts of the dispute
and also the decision makers—juries, judges, clients and
attorneys. In [3] the use of arguments in an ADR systems is
considered, and an analysis of arguments in different contexts
such as arbitration, mediation and multi-party facilitation is
presented. Argumentation plays an important role in conflict
resolution systems, where it drives the ADR to obtain a
successful solution of the dispute. The argumentation process
promotes the values of justice, equality and community that
are desirable in a dispute resolution system.

In an open agent society, the same issue as in human society
holds: it is undesirable to resolve dispute by litigation. The
development of a system for internal resolution of disputes
in virtual organisations is presented by Jeremy Pitt et al in
[3], which proposes a norm-government MAS and an ADR
protocol specification for virtual organization exploited by
intelligent agents.

ADR supplies a theoretical bases for Online Dispute Reso-
lution (ODR) as defined in [4]. ODR has the purpose to extend
the ADR process, moving it towards virtual environments
while providing computation and communication support. In
ODR, the role of technology used to facilitate the resolution
of disputes between parties is crucial. It provides a structured
communication, as well as an informed environment that helps
to the successful conclusion of the conflict.

ODR could be seen as an instance of an ADR system, with
a communication infrastructure and Artificial Intelligence (AI)
techniques aiming at supporting the parties toward agreements.
The reasoning and argumentation capabilities of the parties are
achieved by exploiting AI methods.

Walton and Godden [5] show that argument-based dialogue,
in particular persuasion dialogue, contributes to the construc-
tion of effective dispute resolution system. The main type of
dialogue usually considered by ADR is negotiation, which
could be interpreted as a particular sort of communication for
the purpose of persuasion. In argumentation theory both types
of dialogues are present: persuasion dialogue and negotiation
dialogue. These two types of dialogue have a different struc-
ture and different goals, and in the context of ODR systems
should be managed by different procedural rules.

A fundamental problem in ODR and ADR systems is that it
is difficult to structure and process the information exchanged
between negotiating parties. In order to resolve this problem

46

oliva
Casella di testo

oliva
Casella di testo

in this work we propose to build a ADR system based on the
A&A meta-model [6] with Co-Argumentation Artifact (CAA)
[7] and Dialogue Artifact (DA) [8] abstractions. We aim at
providing a framework for conflict resolution in an agent-
based society supplying a supporting infrastructure in order
to manage arguments, to retrieve information and to bargain.

Our framework provides structured information based on
logic tuple along with the control of dialogue processes
through a mediated form of communication over a pro-
grammable infrastructure. These two features are useful in
order to build MAS in a scalable and flexible architecture, and
also to build ADR that supports multi-party dialogue sessions.

The aim of the work is to provide a more formal (functional)
connection among the two types of argumentation artifacts
CAA and DA in order to support a dialogue for dispute res-
olution. In particular we make explicit a set of functionalities
useful during the dialogue to control the relation with the
argumentative commitment store. For the CAA we collect a
list of operations to manage a commitment store based on
the argumentation system. On the other hand for the DA
we describe by operational semantics the use of the CAA
operations during the dialogue.

The result is a powerful architecture where it is possible to
specify a dialogue grounded on the state of the commitment
store enabling a partially automate dialogue execution through
DA and CAA infrastructure. Using that dialogue specification
the DA can automatically drive the sequence of actions based
on the state of the CAA.

In Section II we introduce the architecture of the framework
with the definition of the specific CAA and DA; in Section
III we explain the argumentation and dialogue system by
introducing the new operators to describe the interaction with
the commitment store; finally in Section IV we present the
case study, implementing a persuasion dialogue protocol.

II. ARCHITECTURE

We propose our architecture for MAS based on A&A meta
model to design a ADR/ODR application. An ADR system,
especially on-line, exploits the forms of negotiation, arbitration
or mediation required to achieve a solution. There, typically,
the entities involved are more than two: at least, two partic-
ipants and a third entity to help the dispute resolution such
as in mediator and arbitrator procedure. The parties involved
choose the procedure, terms and conditions of their dispute.
For instance, in [3] an arbitration protocol is presented, along
with concepts for decision making through formation and
voting protocol.

In order to find a solution, the parties have the possibility to
share any pertinent argument, make demands and evaluate the
acceptability of an argument with respect to normative context.
To do that, a multi-party dialogue protocol is required, and also
an impartial computation over the shared knowledge. When
the dispute involves an increasing number of participants it is
necessary to introduce a mediated form of communication in
order to have a scalable system. The essential point, here, is

that in the act of mediating there are a number of evaluations
that could be done automatically.

In that scenario our architecture provides the required
abstractions: (i) Dialogue Artifact, (ii) Co-Argumentation Ar-
tifact to made a flexible system. In the DA we store the
arbitration, mediation or negotiation protocol. The parties
exploit the DA to take part of the discussion, which drives
the dialogue ground on the commitments. The advantages are:
the management of dialogue between multiple entities, and
the automatic interaction with commitment/argument store.
The CAA provides the right abstraction to made a commit-
ment/argument store where it is possible evaluate automati-
cally the argument validity respect of normative context. Also,
it provides default function to exchange information, data and
arguments, and to record their public commitments in private
or public form. For instance, in a bargain among three or more
entities handled by a CAA, the final set of arguments stored
in the CAA during the bargain represent a form of contract
among the parties.

Fig. 1. General architecture of multi-agent argumentation system

A possible architecture for a Multi-agent argumentation
system is shown in Figure 1 where A1 and A2 represent
two rational agents. The suggested architecture exploits both
local and global DA and CAA. The global CAA and DA
provide services and functionalities for the entire agent society.
Ideally, in the model, DA and CAA are separate entities with
different and orthogonal functionalities. However, in an actual
implementation, both shared artifacts could collapse in one
unique global entity without loss of generality. The local
CAA1 and CAA2 are used by agents in order to coordinate
their mental state. Classically, those functions are provided by
an internal argumentation component hidden inside the agent.

In the following, we focus our attention on the persuasion
dialogue that is among the most common and useful dialogue
in ADR. An interesting observation in [5] put in evidence the
fact that a negotiation dialogue could naturally include or shift
to persuasion dialogue in two points: 1) to follow an offer,
and 2) to follow a rejection of an offer. In both cases reasons
(by argument) are provided to prove the (un)acceptability of
an offer. A dialogue model for persuasion could be composed
of: 1) a commitment store for each participant, 2) an inference
rule to draw conclusion from commitments in the commitment
store made by the participant, and 3) practical rules that
govern the sequence of locutions and their consequence. We

47

foresee that our architecture provides the desired abstraction
and properties to implement the persuasion dialogue with
agreement purpose in an agent society.

A. Co-Argumentation Artifact

The CAA provides co-ordination services to agents, al-
lowing them to share, store and exchange arguments with
one another working as a commitment store. In particular,
for persuasion dialogue we exploit the ability of the CAA
to automatically calculate argument and belief acceptability
according to the agent attitudes and the argumentation seman-
tics. In [9] are introduced agent attitudes in order to provide
some acceptability criteria. An agent may have one of three
acceptance attitudes about proposition: (i) a credulous agent
can accept any formula for which there is an argument S; (ii)
a cautious agent can accept any proposition for which there
is an argument if no stronger rebutting argument exists; (iii) a
skeptical agent can accept any proposition for which there is
an acceptable argument S.

Exploiting our argument definition 1 and referring to our
argumentation system in section III-A, we resolve the argu-
ment acceptance problem following the preferred semantics
on argumentation: an argument is credulous acceptable if it
belongs to some preferred extension; an argument is skeptical
acceptable if it belongs to all preferred extensions.

The CAA validates the argument committed verifying their
correctness and also it evaluates their acceptability verifying
which of preferred sets belong to. The state of a CAA
is represented by a collection of arguments with also the
related list of conflict free sets, admissible sets and preferred
extension. These sets are update for each argument insertion
or removal.

In tuple notation these sets are expressed by a
tuple name like conflictfree, admissible and
preferred and a parameter composed by a list of lists
of argument names indicated by arg1,...,argN i.e.
conflictfree([[arg1,...,argN],...]). In partic-
ular for persuasion dialogue the CAA supports the agent
credulous and skeptical attitudes, calculating in which
argument set the reference argument belong to. Here, we list
a set of operation provided by the CAA where Arg parameter
means a generic input argument:

• acceptable(Arg,Attitude): the CAA verifies the ac-
ceptance of the argument Arg respect of state of the
commitment store with the type of acceptability specified
by Attitude

• read(ArgTemplate): the CAA returns an argument that
logically unifies with ArgTemplate

• conflict(Arg): the CAA verifies the existence of an
argument ∈ CAA in rebuttal relation with Arg (see
section III-A)

• attack(Arg):the CAA verifies that Arg is in undercut
relation with an argument ∈ CAA (see section III-A)

• defeat(Arg) the CAA verifies the existence of an argu-
ment ∈ CAA in undercut relation with Arg

• remove(Arg): the CAA removes the argument Arg

• commit(Arg): the CAA stores the argument Arg and it
recompute the conflict free sets, the admissible sets and
the preferred extensions

For further details, including an implementation and exam-
ples of this argumentation framework, we refer to the paper
[10].

B. Dialogue Artifact

The DA is the abstraction to encapsulate the rules of
dialogue and it coordinates the entities during persuasion
process. We follow the definition provided of this artifact in [8]
where the DA is composed of three components: a collection
of specifications of dialogue protocols; a collection of commit-
ments stores; and a collection of specifications of interaction
control. Basically, the function of the DA is to drive the agents
general type of dialogue keeping trace in the commitments
stores of the partial results of the communication. Moreover
the DA keep in charge to suggest of the agents the possible
right moves constrained by the state of the commitment store.
Here a list of operation provided by DA:

• nextlocutions([L]): the DA provides the list of possible
locutions

• lastlocution(L): the DA provides the last locutions
• state(S): the DA provides the protocol state
• act(L): the DA store the locution L and updates the state

of protocol
• cs(A): the DA executes an action A over the commitment

store
From a general architecture point of view the commitment

store of DA is provided by CAA correctly implemented and
the global state of the system is represented by the state of
the CAA and the state of the protocol in the DA.

III. ARGUMENTATION & DIALOGUE SYSTEM

In order to achieve agreement among agents a common dia-
logue system and a shared argumentation system are required
in the agent society. Following, we propose a formalization of
both systems.

A. Argumentation System

Our reference argumentation system is introduced in detail
in [7] as an extension of the Dung’s framework [11] with the
definition of the structure inside the arguments. Here we report
briefly the argument definition and the object language.

The object language of our system is a first-order language,
where Σ contains all well-formed formulae. The symbol
` denotes classical inference (different styles will be used
like deduction, induction and abduction) ≡ denotes logical
equivalence, and ¬ or non is used for logical negation.

Definition 1 (argument): An argument is a triple A =
〈B, I, C〉 where B = {p1, . . . , pn} ⊆ Σ is a set of beliefs,
I ∈ {`d,`i,`a} is the inference style (respectively, deduction,
induction or abduction), and C = {c1, . . . , cn} ⊆ Σ is a set
of conclusions, such that:

1) B is consistent
2) B `I C

48

Deductive Inference Inductive Inference
MP A A→B

B
θ-su B

R
where Rθ ⊆ B

MT ¬A B→A
¬B

Abductive Inference
MMP B1,...Bn (B1,...Bn)→C

C
Ab B A→B

A

TABLE I
DEDUCTIVE INFERENCE: (MP) MODUS PONENS, (MMP) MULTI-MODUS

PONENS AND (MT) MODUS TOLLENS. INDUCTIVE AND ABDUCTIVE
INFERENCE: (θ-SU) θ-SUBSUMPTION, (AB) ABDUCTIVE

3) B is minimal, so no subset of B satisfying both 1 and
2 exists

The types of inference I we consider for deduction, induction
and abduction are shown in Table I. Modus Ponens (MP) is
a particular case of Multi-Modus Ponens (MMP) with only
one premise. The inference process θ-subsumption derives
a general rule R from specific beliefs B, but is not a legal
inference in the strict sense.

Definition 2 (contrary): The contrary (or attack) relation R
is a binary relation over Σ that ∀p1, p2 ∈ Σ, p1Rp2 iff p1 ≡
¬p2.
For defeat of arguments there are two possible types of
attack based on the contrary relation: ‘conclusions against con-
clusions’, called rebuttals, and ‘conclusions against beliefs’,
called undercuts.

Definition 3 (undercut): Let A1 = 〈B1, I1, C1〉 and A2 =
〈B2, I2, C2〉 be two distinct arguments, A1 is an undercut for
A2 iff ∃h ∈ C1 such that hRbi where bi ∈ B2.

Definition 4 (rebuttal): Let A1 = 〈B1, I1, C1〉 and A2 =
〈B2, I2, C2〉 be two distinct arguments, A1 is a rebuttal for
A2 iff ∃h ∈ C1 such that hRci where ci ∈ C2.
The definitions of conflict-free set, admissible set, preferred
extension are the basic ones in our argumentation system.
These sets are composed of arguments that together feature
different kinds of properties like absence of conflicts or
common defence, formally introduced in [11].

We consider also important argument extensions such as
acceptability in order to determine whether a new argument
is acceptable or not. An argument is acceptable in the context
of preferred semantics if an argument is in some/all preferred
extensions (credulous/skeptical acceptance).

B. Dialogue System

Our intention here is to capture the rules that govern legal
utterance and the effect of the utterances on the commitment
store of the dialogue. We use a process algebra approach
to represent the possible paths that a dialogue may take,
and to represent explicitly the operations to and from the
commitment store. Our communication language is a set of
locutions Lc where a locution is a expression of the form
perfname(Arg1 , . . . ,Argn) in particular perfname is a perfor-
mative and Argx is either a fact or an argument. An agent per-
forming a dialogue using the communication language can ut-
ter a locution composed of facts and arguments. An argument
is represented with the tuple argument(B,I,C); also a fact
is considered an argument but with an (true) implicit premise
and it is represented by syntax argument(true,I,C).

Definition 5 (action): An action A is defined by the syntax
A ::= s : Lc|s[t1, . . . , tn] : Lc where s indicates the source,
and [t1, . . . , tn] indicates the (optional) targets of the message.
On the other, beyond this, we include additional atomic
operations K over commitment stores—many of them can
actually occur into one argumentation artifact.

Definition 6 (term action): A term action K has the
syntax K ::= commit(C,X)|read(C,X)|conflict(C,X)
|attack(C,X)| defeat(C,X)| acceptableS(C,X)|
acceptable(C,X), where C is a term representing the
commitment store identifier, and X is a term representing the
commitment.
A protocol P specifies by standard process algebra operator
(.,+, ‖) respectively sequence, parallel and choice, the set of
actions and term actions that the agents and DA might execute.
For example, an abstract dialogue protocol definition is given
by D := s : a1 ‖ s : a1 ‖ s : a1 ‖ t : a2 ‖ t : a3 where
agent s invokes a1 three times, agent t can invoke a2 and a3

only once, but in whichever order. For more detailed protocol
definition with the process algebra approach and the related
operational semantic we refer to the work [8].

Enriching the previous work we augment the set of K term
actions in order to clarify the relations with a commitment
store based on arguments. The behaviour of term actions is
defined by operational semantics. This semantics describes the
evolution over time of the dialogue state and the states of
commitment store (seen as the composition of all commitment
stores). In essence, the commitment store is the knowledge
repository of the dialogue as a whole, and it is expressed in
our framework as a multiset of arguments.

Definition 7 (commitment store): A commitment store C is
a multiset of arguments and it is defined by the syntax C ::=
0|(C|C)|X where X is a argument, and 0 is the empty set.
We use also notation t{x/y}, to mean term t after applying the
most general substitution between terms x and y—x should be
an instance of y, otherwise the substitution notation would not
make sense. Finally, we define the semantics of K operation
that describe the interaction and evolution over time of the
commitment store C in function of protocol P :

(C)commit(x).P τ→ (C ′|x)P (1)

(C|x)read(y).P τ→ (C|x)P{x/y} (2)

(C|x)remove(y).P τ→ (C)P{x/y} (3)

(C|x)conflict(y)).P τ→ (C|x)P if {x rebuttal y} (4)

(C|x)attack(y)).P τ→ (C|x)P if {y undercut x} (5)

(C|x)defeat(y)).P τ→ (C|x)P if {x undercut y} (6)

(C|E)acceptS(y).P τ→ (C|E)P if {∀E ∈ E , y ∈ E}(7)

(C|E)acceptable(y).P τ→ (C|E)P if {y ∈ E} (8)

As usual, we write s → is′ in place of 〈s, i, s′〉 ∈→, meaning
the dialogue system moves from state s to s′ due to interaction
i—either an action a, or an internal step τ (an operation over
the commitment store).

Rule (1) provides the semantic of commit operation,
expressing that x term is added to the commitment store C,

49

and the state of commitment store is updated recalculating
conflict free set and preferred extensions after that the process
continuation can carry on. Rules (2) and (3) to read and remove
terms from commitment store C: the use of substitution
operator guarantees that the term x in the commitment store
is an instance of the term x to be retrieved. Rules (4), (5)
and (6) provide the semantics for attack, conflict and defeat
relations using the standard definition of undercut and rebuttal.
Finally, rules (7) and (8) express the semantics for acceptable
operators for skeptical(7) and credulons(8) acceptance, where
E is the set of all preferred extension E in the commitment
store C.

IV. PERSUASION DIALOGUE APPLICATION

In persuasion dialogue the goal of a participant is to prove
his/her thesis and to rationally persuade the other parties. With
the word “persuasion” we mean not a psychological persua-
sion but rather a rational persuasion supported by arguments.
Walton & Krabbe [12] observe that disputes is a subtype of
persuasion dialog—where the parties disagree about a single
proposition ϕ. So, for instance, at the beginning of the dialogue
a party beliefs in ϕ while the other belief in ¬ϕ, so they have a
contrary opinion about a proposition. Generally the following
moves are allowed in the dialogue: asking question, answering
question, and putting forward arguments. Following Walton
[5], a proponent in a persuasion dialogue has successful
when: 1) the responded has committed all the premises of
the argument 2) each argument is corrected 3) the chain of
argument has the proponent thesis as its conclusion

In [13] is presented a survey of formal system of persuasion
dialogue that point out the crucial role of the regulating
interaction among agents rather than design of behaviour in in-
dividual agent within a dialogue. Among the main approaches
to design persuasion dialogue and communication between
agents based on arguments we draw inspiration from the Par-
son and McBurney’s [9] and Prakken’s [14] approaches; and
also from [15], where the authors show how each move of a
dialogue could be specified by rationality rules, dialogue rules
and update rules explicating the relation with the commitment
store.

The more common locutions of persuasion dialogue that can
be found in literature are well collected in [13], and briefly
listed here:

• claim ϕ (assert): The agent asserts a formula ϕ to start
the persuasion.

• why ϕ (challenge): The agent asks for reasons about the
ϕ formula.

• concede ϕ (accept): The agent accepts the validity of ϕ.
• reject ϕ(retract): The agent no commits the ϕ. In some

cases it retracts the formula from the commitment store
previously stored.

• S since ϕ (argue): The agent provides reasons for ϕ
formula by an argument.

dialog_persuasion(X,Y,P):=
X:assert(argument(true,I,P)).
dialog_response(X,Y,argument(true,I,P))

dialog_response(X,Y,argument(true,I,P)):=
Y:accept(argument(true,I,P)) +
Y:reject(argument(true,I,P)) +
Y:why(argument(true,I,P)).

X:argue(argument(B,I1,P)).
dialog_argue(X,Y,argue(argument(B,I1,P))).

% Evaluation of chain argument support of P assertion
dialog_argue(X,Y,argument(B,I,P)):=

Y:accept(argument(B,I,P)) +
Y:reject(argument(B,I,P)) +
Y:argue(argument(B1,I1,P1).(

X:retract(P) +
X:argue(argument(B2,I2,P2)).
dialog_argue(X,Y,argument(B,I,P)))).

Fig. 2. Persuasion dialogue without interaction with the CS

A. Protocol Specification

In order to make a persuasion dialogue concrete, a persua-
sion protocol is typically to be defined among two parties—
proponent and respondent. We formalise through our process
algebra a generic persuasion dialogue with and without au-
tomatic action to the commitment store. The protocol draws
inspiration from [16, 15] and adds repetition rule proposed
by [13]. The dialogue could be partially driven through the
state of commitment store by the actions listed in II-A that
are specifiable in the protocol.

Figure 2 shows a dialogue protocol for persuasion where an
agent can accept or reject an assertion P based on its attitudes
by an internal evaluation of facts and argument acceptability.
Then an argumentation phase starts that concludes with either
an acceptance or rejection of the assertion P expressed by an
argument with “true beliefs”. The relation among dialogue and
commitments is not explicitly expressed. In a dialogue, each
move could be specified by rationality rules, dialogue rules
and update rules [15]: the rationality rules specify the pre and
post conditions for playing a move; The update rules specify
the modification of commitment store; And the dialogue rules
specify the next moves. With our process algebra we have the
expressive power to cover the three types of dialogue rules.
For instance, we propose modified version of the persuasion
protocol in the figure 3 where we provide the specification of
the automatic evaluation of some preconditions (rationality)
and the consequent modification of the commitment store
(update). In that version of the dialogue specification the
DA automatically drives the sequence of action through the
state of the commitment store using the term actions: commit
and acceptable. In the choice points some locutions are
automatically chosen by preconditions based on the state of
acceptability of arguments. In particular the proponent agent
(X) is constrained to retract the proposal if its supporting
argument is not acceptable during the arguing phases. Also,
the opposer (Y) is constrained to accept the proposal if its
opposing argument is not acceptable respect to the state of
the commitment store. We exploit the ability of the CAA in
order to find argument acceptability following the credulous

50

argumentation semantic.
This protocol formalisation is very flexible, and opens a

number of different courses of actions. The problems could
be the termination of dialogue and the determination of the
dialogue result. The dialogue is partially automated through
DA and CAA infrastructure. Agents have the time the control
over own actions, and can decide in every moment to suspend
the dialogue.

dialog_persuasion(X,Y,P):=
X:assert(argument(true,I,P)).
dialog_response(X,Y,argument(true,I,P))

dialog_response(X,Y,argument(true,I,P)):=
Y:accept(argument(true,I,P)).commit(argument(true,I,P)) +
Y:reject(argument(true,I,P)) +
Y:why(argument(true,I,P)).

X:argue(argument(B,I1,P)).commit(argument(B,I1,P)).
dialog_argue(X,Y,argue(argument(B,I1,P)))

% Evaluation of chain argument support of P assertion
dialog_argue(X,Y,argument(B,I,P)):=
Y:accept(argument(B,I,P)).commit(argument(B,I,P)) +
Y:reject(argument(B,I,P)) +
Y:argue(argument(B1,I1,P1)).commit(argument(B1,I1,P1)).(

acceptable(argument(B1,I1,P1)).(
X:retract(argument(B,I,P)) +
X:argue(argument(B2,I2,P2)).commit(argument(B2,I2,P2)).(
acceptable(argument(B2,I2,P2)).
dialog_argue(X,Y,argument(B,I,P)) +
not(acceptable(argument(B2,I2,P2)).
X:retract(argument(B,I,P))

)
) +
not(acceptable(argument(B1,I1,P1))).

Y:accept(argument(B,I,P)).commit(argument(B,I,P))
)

Fig. 3. Persuasion dialogue with CS interaction: Automatic evaluation of
acceptability

B. Technology Support

Logic programming and meta logic programming are two
useful techniques to prototype quickly complicated software
systems with rational behavior. The technological support to
build artifacts is provided here by TuCSoN, a coordination
infrastructure for MAS introduced in [17]. TuCSoN infras-
tructure following a Linda like coordination model provides a
programmable environment based on logic tuples.

To realize CAA and DA implementing the necessary op-
erators listed in section II, an obvious choice is to exploit
a TuCSoN logic tuple centre. In fact, on the one hand a
typical argumentation process is composed of two parts: (1)
knowledge representation; and (2) computation over the set of
arguments. On the other hand, the tuple centre architecture is
also composed of two parts: an ordinary tuple space where
the information are stored in form of tuples, and a behaviour
specification that defines the computation over the tuple set.
Thus, a TuCSoN tuple centre could support the argumentation
process by representing knowledge declaratively in terms of
logic-tuple arguments, and by specifying the computation over
argument set in term of ReSpecT specification tuples.

From a practical point of view, we exploit the Prolog
language and ReSpecT to implement the meta programs
for managing the argument set with the ability to calculate:

(1) the argument validity; (2) the relations of undercut and
attack between argument; (3) the conflict-free sets; and (4)
the preferred extensions. Each argument has its own context,
where the argument is true. The context is provided in the
argument and is composed only by the set of beliefs – facts
and rules – directly declared in the tuple. The connection
between the premises and the conclusion is expressed in terms
of the corresponding inference process, which is specified in
the argument too.

The meta programs are useful also to realize the con-
trol of dialogue interaction. The engine of process al-
gebra management is implemented exploiting a transi-
tion system defined in Prolog by the predicates
transition(Currentstate, Action, Newstate).
The program has to have the ability to change dialogue state
after an agent action, to search of next admissible move after
an agent request, and also to make the automatic interaction
with the commitment store by argumentative actions. For a
more detailed explanation of the use of meta-program tech-
nique to manage argument and dialogue process we forward
the interested reader to [18].

C. Example of a Run

In this section we provide an example of run of a simpli-
fied version of persuasion dialogue exploiting the TuCSoN
infrastructure and showing its use. In order to perform the
dialogue simulation TuCSoN provides useful tools: CLIAgent
to simulate agents interaction and Inspector to inspect current
state of tuple space . The Inspector tool shown in figure 4
allows users to observe and debug the communication state
and the behaviour of a tuple centre. In particular, it makes
possible to inspect the tuple set, the pending query set, the
triggered reaction set, and the behaviour specification set.

Fig. 4. Inspector tool

The CLIAgent tool allows users to invoke the commands
of the TuCSoN coordination language. For our purpose we
exploit the CLIAgent to utter agent locution in the form
out(move(Dialog,Id,Locution)).

The rules to manage the dialogue in the DA are programmed
with the ReSpecT code in [18]; for the commitment store

51

the same tuple space of dialogue is considered, and the initial
dialogue state is expressed by the tuple
dialogstate(persuasion,[act(X,assert1(P)),
(act(Y,accept(P))+act(Y,reject(P)))+act(Y,assert1(non(P)))+
act(Y,why(P),act(X,argue(argument(N,bel(B),inf(I),conc(C)))),
(act(Y,accept(N))+ act(Y,reject(N)))]).

The locutions that could be uttered in that dialogue are:
assert, accept, reject, why, and argue. We start the simulation
sending a assert locution in tuple centre from agent Paul by
the CLIAgent shown in the figure 5. After that move, the
infrastructure reacts and calculates next dialogue state.

Fig. 5. CLIAgent

move(persuasion,paul,assert1(safe))
dialogstate(persuasion,
[’+’(’+’(’+’(act(_4,accept(safe)),act(_4,reject(safe))),
act(_4,assert1(non(safe)))),act(_4,why(safe))),
act(paul,argue(argument(_3,bel(_2),inf(_1),conc(_0)))),
’+’(act(_4,accept(_3)),act(_4,reject(_3)))])

The responder agent Olga can ask the pos-
sible admissible next locutions by the tuple
rd(nextlocutions(persuasion,L)), and the
tuple centre responds by new tuple nextlocution.
nextlocution(persuasion,
[act(_2,accept(safe)),act(_2,reject(safe)),
act(_1,assert1(non(safe))),act(_0,why(safe))])

At this point, the responder chooses a move either from
the state of commitment store or independently from our
knowledge base—for instance in this case the choice could be
why(safe). Figure 6 shows the state of the tuple centre after
Olga locution by the inspector tool. The new dialogstate
expresses the remaining locution constrained by previous
logical unification of paul and olga identifiers.
dialogstate(persuasion,[act(paul,
argue(argument(_3,bel(_2),inf(_1),conc(_0)))),
’+’(act(olga,accept(_3)),act(olga,reject(_3)))])

REFERENCES

[1] G. B. Walker and S. E. Daniels, “Argument and alterna-
tive dispute resolution systems,” Argumentation, vol. 9,
no. 5, pp. 693 – 704, 1995. [Online]. Available: http:
//www.springerlink.com/content/m1263hp73g344127

[2] H. Prakken and G. Sartor, Computational Logic: Logic
Programming and Beyond. Essays In Honour of Robert
A. Kowalski, Part II., 2048th ed., ser. Lecture Notes
in Computer Science 2048. Berlin: Springer, 2002,
ch. The Role of Logic in Computational Models

Fig. 6. Tuple Set

of Legal Argument: A Critical Survey, pp. 342–
380. [Online]. Available: http://www.springerlink.com/
content/e0j2bhdq8gm8cg98

[3] J. Pitt, D. Ramirez-Cano, L. Kamara, and B. Neville, “Al-
ternative Dispute Resolution in Virtual Organizations,” in
Proceedings of The Eighth Annual International Work-
shop ”Engineering Societies in the Agents World” (ESAW
07), Athens, Greece, 2007.

[4] T. Schultz, G. Kaufmann-Koheler, D. Langer, V. Bonnet,
and J. Harms, “Online dispute resolution: State of the
art, issues, and perspectives,” Faculty of Law and Centre
Universitaire Informatique, University of Geneva, Tech.
Rep., October 2001, draft Report.

[5] D. Walton and D. M. Godden, “Persuasion
dialogue in online dispute resolution,” Artificial
Intelligence and Law, vol. 13, pp. 273–295,
2005. [Online]. Available: http://www.springerlink.com/
content/k813173822154532

[6] A. Omicini, A. Ricci, and M. Viroli, “Artifacts in the
A&A meta-model for multi-agent systems,” Autonomous
Agents and Multi-Agent Systems, vol. 17, no. 3, Dec.
2008, special Issue on Foundations, Advanced Topics and
Industrial Perspectives of Multi-Agent Systems.

[7] E. Oliva, P. McBurney, and A. Omicini, “Co-
argumentation artifact for agent societies,” in
Argumentation in Multi-Agent Systems, ser. LNAI,
S. Parsons, I. Rahwan, and C. Reed, Eds.
Springer, Apr. 2008, vol. 4946, ch. 3, pp. 31–
46, 4th International Workshop (ArgMAS 2007),
Honolulu, HI, USA, 15 May 2007. Revised
Selected and Invited Papers. [Online]. Available: http:
//www.springerlink.com/content/5817w1n882861170/

[8] E. Oliva, M. Viroli, A. Omicini, and P. McBurney,
“Argumentation and artifact for dialogue support,” in 5th
International Workshop “Argumentation in Multi-Agent
Systems” (ArgMAS 2008), I. Rahwan and P. Moraitis,
Eds., AAMAS 2008, Estoril, Portugal, 12 May 2008, pp.
24–39.

[9] S. Parsons and P. McBurney, “Argumentation-based com-
munication between agents,” in Communication in Mul-
tiagent Systems, ser. LNCS, M.-P. Huget, Ed., vol. 2650.
Springer, Berlin, September 2003, pp. 164–178.

[10] E. Oliva, P. McBurney, and A. Omicini, “Co-

52

argumentation artifact for agent societies,” in 4th In-
ternational Workshop “Argumentation in Multi-Agent
Systems” (ArgMAS 2007), S. Parsons, I. Rahwan, and
C. Reed, Eds., AAMAS 2007, Honolulu, Hawai’i, USA,
15 May 2007, pp. 115–130.

[11] P. M. Dung, “On the acceptability of arguments
and its fundamental role in nonmonotonic reasoning,
logic programming and n-person games,” Artificial
Intelligence, vol. 77, no. 2, pp. 321–358, 1995. [Online].
Available: citeseer.ist.psu.edu/dung95acceptability.html

[12] D. N. Walton and E. C. W. Krabbe, Commitment in
Dialogue: Basic Concepts of Interpersonal Reasoning.
SUNY Press, 1996.

[13] H. Prakken, “Formal systems for persuasion dialogue,”
Knowledge Engineering Review, vol. 21, no. 2, pp. 163–
188, 2006.

[14] ——, “Coherence and flexibility in dialogue games
for argumentation,” Journal of Logic and Computation,
vol. 15, no. 6, pp. 1009–1040, 2005.

[15] L. Amgoud, N. Maudet, and S. Parsons, “An
argumentation-based semantics for agent communication
languages,” in ECAI, F. van Harmelen, Ed. IOS Press,
2002, pp. 38–42.

[16] S. Parsons, M. Wooldridge, and L. Amgoud, “Properties
and Complexity of Some Formal Inter-agent Dialogues,”
Journal of Logic and Computation, vol. 13, no. 3, pp.
347 – 376, 2003.

[17] A. Omicini and F. Zambonelli, “Coordination for Inter-
net application development,” Autonomous Agents and
Multi-Agent Systems, vol. 2, no. 3, pp. 251–269, Sep.
1999.

[18] E. Oliva, “Argumentation and artifacts for intelligent
multi-agent systems,” Ph.D. dissertation, Dottorato in
Ingegneria Elettronica, Informatica e delle Telecomuni-
cazioni, Cesena, Italy, Mar. 2008.

53

Towards a New Inheritance Definition
in Multi-Agent Systems

Antonino Ciuro, Massimo Cossentino, Giuseppe Fontana, Salvatore Gaglio, Riccardo Rizzo and Monica Vitali

Abstract—Growing complexity of software systems leads some
researchers to explore new paradigms like self-organization
and genetic programming. We regard this problem as a new
occurrence of a need that has been partially solved in the past
with the introduction of object-orientation whose most innovative
feature can probably be agreed to be inheritance. In this work,
the authors propose a different approach for solving the initially
discussed process. The definition of a new “nature-inspired”
inheritance is discussed. Agents according to this approach can
reproduce by mixing their genome and generate new agents that
can better fit a specific problem.

Index Terms—Agent-oriented software engineering, Agents
and objects, Relationships between agents and other development
technologies.

I. INTRODUCTION

SOFTWARE complexity continuously grows up and pushes
researchers towards the definition of new techniques for

facing this complexity.
In 1970s, the well-known software crisis encouraged the

adoption of new programming paradigms (object-orientation)
and new design philosophies (waterfall design approaches
were fully exploited and then overcome by more modern
evolutionary and iterative/incremental approaches). Despite the
relevant advantages offered by modern technologies (service-
oriented architectures, model driven engineering, and so on)
new challenges have to be faced. Several researchers think
that a solution to growing software complexity is in the
definition of evolutionary paradigms for software behaviour.
Some of them adopt self-organization [7] as the key strat-
egy for solving complex problems. The idea of designing
a rather simple system (usually composed by autonomous
entities called agents) that can dynamically evolve its be-
haviour towards the achievement of a goal is for sure very
fascinating. The designer needs to define the goal (for instance
by using a formal logics or a kind of fitness function) and the
entities composing the system will reorganize their individual
behaviours and collaborations in order to collectively achieve
the goal. The research presented in this paper starts from
a similar motivation, it is largely inspired by evolutionary
concepts and it aims at exploring the following issue: how
can system entities evolve themselves in order to achieve the
best fitness for solving a problem? This question has usually

Antonino Ciuro is with EMC Corporation, aciuro@gmail.com.
Massimo Cossentino and Riccardo Rizzo are with CNR-ICAR,

cossentino@pa.icar.cnr.it, ricrizzo@pa.icar.cnr.it
Giuseppe Fontana is with Accenture S.P.A., gfontana13@gmail.com
Salvatore Gaglio is with Universita’ di Palermo, CNR-ICAR,

gaglio@unipa.it
Monica Vitali is with Universita’ di Palermo, monicavit164@gmail.com

been faced by adopting evolutionary criteria of the information
manipulated by an algorithm (this is the typical application
context of genetic algorithms [6] [5]). If the concept of agent
as a highly encapsulated, autonomous, proactive and social
entity is introduced in this scenario, a different strategy should
be identified because object-oriented inheritance cannot be
applied because it violates the high encapsulation of agents.
Since agents are frequently regarded as live entities the obvious
path for achieving such an evolution is to look at natural
evolutionary processes and the problem becomes defining an
agent-oriented inheritance as the propagation of parents knowl-
edge and abilities to their child with the necessary changes
that may ensure evolution. Modern agent-based architectures
are mostly based on diffused object-oriented languages and
therefore do not offer a specific (agent-oriented) inheritance
feature. Sometimes, delegation is adopted as a surrogate for
that. In order to define a natural evolution paradigm for agents,
it is possible to look at the biological inheritance among
individuals. The proposed approach consists in defining a
genetic representation of the agent (a DNA-like representation
of agent physical and behavioural features), and in allowing
the reproduction of couples of individuals by mixing portions
of their DNA. Casual changes introduced in the DNA mixing
phase also ensure the possibility of pursuing an evolution of
species just like it happens in nature. The paper is organized as
follows: section 2 introduces the proposed approach, section 3
discusses the Genoma framework we developed to implement
the agents’ reproduction process, section 4 introduces a case
study where the proposed approach is used to approximate
some geometrical shapes. Finally some conclusions are drawn
in section 5.

II. THE PROPOSED APPROACH

In object oriented approaches using inheritance makes por-
tions of useful and general code available to a large set of
other classes [9]. Such a code can be easily specialized by
programmers in order to fulfil a new goal.

In the agent oriented world such an inheritance process
doesn’t exist. Some attempts have been proposed in the past
(for instance in [4][8]).

In our approach the focus of inheritance is not the code
but knowledge and ability of the agents, and the “user” is
not a programmer but another agent (the CrosserAgent) that
manages the deployment of new agents with new knowledge
and abilities. We realize this inheritance feature by means of
a reproduction process that starting from two parent agents
(that are not able to solve a specific problem), generates a new

54

agent that (hopefully) better fits the problem. The solution is
ensured by the generation of several new individuals that in
turn reproduce themselves until the proper result is achieved.

Knowledge and abilities are stored in chromosomes and
modified using techniques coming from genetic programming
(crossover, mutation, and so on). Using the genetic algorithm
point of view, we are looking to a solution in the space
obtained by joining the ability and knowledge spaces. In so
doing, we suggest an agent reproduction process characterized
by two different phenomena:

• from an individualistic point of view: it is highly prob-
able that a part (probably the most useful) of parents’
knowledge and ability is forwarded to their children;

• from a social point of view: the behaviour of the new
agents “moves” towards the achievement of the assigned
goal. This means that plans and knowledge evolve in
order to fulfil the desired service.

The first phenomenon concerns the conservation of the useful
knowledge and abilities of the agent in the reproduction
process. The second phenomenon is about the whole point
of genetic programming: the desired behaviour emerges from
the agent society during evolution and it can be considered as
a “specialization” of the agent.

In order to realize our ideas, we developed the Genoma
Framework; this framework allows us to obtain a society of
agents capable to increment their efficiency and/or to learn
new capabilities. A Genoma agent (an agent that belongs
to the framework) is composed of chromosomes defining
its knowledge about the world and the plans (addressed as
Abilities) that define its behaviours. All the knowledge and
the abilities of the agent are coded in a genome structure.
Using the information in the genome structure it is possible
to implement a reproduction process for the agent. The agent
is developed using the JADE platform so it is able to send
and receive messages to other JADE agents. The knowledge
of the agent is implemented by using Java and it is an instance
of ontological elements. In the Genoma framework, the agent
society is composed by one or more Genoma agents that can
make available many services, and by one agent that manages
the reproduction process: the CrosserAgent. Once activated,
each Genoma agent sends a chromosome containing all the
information that defines the agent to the CrosserAgent.

Inside the agent society all the agents that need a service
can ask for that service to all the others inside the society.
If the required service is not available, or not satisfying, the
agent can ask to the CrosserAgent to activate an evolution
procedure. The CrosserAgent will form a society composed
by descendants of all agents that can deliver a similar service
and it will start the crossover procedure among the selected
individuals. The generation zero will contain a lot of duplicate
agents, if there are not enough individuals. The following gen-
eration will contain many agents of the preceding generation
and new agents obtained by crossing genome of the original
agents. This evolution process will continue until a suitable
agent is obtained (according to some fitness criterion). This
resulting agent will now be introduced in the agent society
and the CrosserAgent will send to the agent that requested
the unsatisfied service its name in order to properly fulfil the

Fig. 1. A sketch of the agent crossover procedure, Genoma agents are white,
selected agents are light gray.

service request (Figure 1). The evolution process operates at
two different levels: knowledge and plan. The knowledge level
is related to instances of (knowledge) objects that belong to the
agent, plans are related to how the agents behave and execute
the required service. The evolution procedure is different for
knowledge and plan and some details will be reported later.

An example will help to explain the full mechanism. Imag-
ine we want to develop an agent capable to escape from a
labyrinth. A simple (but not efficient) way to escape from
a labyrinth is to go ahead and turn on the same side each
time a wall or a turn is met. This plan can be expressed as a
graph where each node corresponds to a choice or an action.
In the upper part of Figure 2 we have two plans for agents
that are trying to solve the labyrinth: the former (agent A
on the left) changes its direction whether it finds a wall or
not. The latter (agent B on the right) tries to move forward
in every circumstance. The nodes of the plans refer to the
knowledge of the agent. This is a consequence of the ontology
structure adopted in PASSI [2] that is composed of: concepts
describing categories of the world, predicates asserting the
status of the previous cited concepts and finally actions that
can affect concepts status. For instance, the action “turn” is
referred to a concept “direction” of the agent. This knowledge
piece, once instantiated in the agent, can have four values:
right, left, forward or backward. We can suppose it has value
left. Both of these agents are unable to solve the problem. The
crossover of these agents generates a new individual who has
acquired the ability to solve the proposed problem as shown
in the lower part of Figure 2. The new agent in Figure 2
inherits from agent B the ability to go ahead if there are not
walls (part of the plan on the no branch of the second decision
node) and from agent A the ability to turn according to the
actual value of “direction”. This value actually depends from
the crossover process applied to the knowledge of the two
agents. In a second scenario, we can suppose agent A having
the value “back” for its direction and agent B having the value
“left” (even if it doesn’t use it in its plan). The new agent can
inherit one or both parents’ knowledges and it will be able to
solve the problem only if it inherits the knowledge direction
with value left. Figure 3 shows a possible crossover of the

55

Fig. 3. Diagram which shows the relations between the action “Turn” and
the concept “Direction”. The instance on the left belongs to the upper left
agent in Figure 3, the one on the right belongs to the upper right agent. The
instance in the lower part is the knowledge of the new agent generated by
crossover.

knowledge “direction”. The instance of “direction” on the left
belongs to agent A in Figure 2, the one on the right belongs
to agent B. Different tecniques for crossing knowledge will be
explained further on.

III. THE GENOMA FRAMEWORK

The Genoma Framework blends genetic programming to the
JADE agent platform[1][3]. All the information required to
define an agent and its behaviour are coded in a data structure
that is comparable to a genome, as it will be described
later. Genomes belonging to two different exemplars of agents
are mixed in order to obtain a new agent with some new
behaviours.

The basic structure of the framework, as reported in this
paper, is applied to the realization of services delivered by
single agents, but because of the generality of the approach
it can be used for other broader scope tasks. The Genoma
Framework is based on the GenomaAgent agent that is a
specialization of the JADE Agent. The reproduction process,
governed by the CrosserAgent, is applied to couples of these
agents and produces new individuals. In the following a de-
scription of the GenomaAgent agent will be provided in terms
of its structure (subsection III-A) and chromosome (subsection
III-B); after that, subsection III-C provides a description of the
CrosserAgent.

A. The Genoma Agent Structure

The GenomaAgent agent structure is based on a class that
is an extension of the JADE Agent class. The GenomaAgent
class is composed of:

• a global plan representing the ability of the agent;
• a set of knowledge items (instances of ontology ele-

ments);
• a set of tasks that are used in the global plan;
These elements represent the chromosomes of the agent;

more specifically we can talk of an Ability chromosome

(representing the agent global plan and composed by activities
and control nodes), a knowledge chromosome and a set of
task chromosomes (representing the agent activities). Task
chromosomes can, in turn, be represented as the composi-
tion of an Ability and Knowledge chromosome. The Ability
chromosome is composed of activities and control nodes
while the knowledge chromosome is composed of referred
knowledge (that is the portion of the agent knowledge that is
referred in the plan). The global plan (stored in the agent’s
Ability chromosome) manages the agent’s life, defines the
roles the agent can assume during its life-cycle, and manages
the interactions with the environment and the service delivery.
The activities used in the Ability chromosome are elementary
pieces of behaviour that constitute the whole set of the agent
capacities (usually implemented by using tasks in the JADE
platform). Each activity is the representation in the Ability
chromosome of an ontology action (stored in the Knowledge
chromosome as an Action gene). Tasks realizing activities
can have an internal plan that leads the agent towards the
achievement of the related sub-goal. Tasks refer to knowledge
items for manipulating entities of the environment. As a
consequence, Tasks, even though they constitute one of the
agent’s chromosomes, contain an Ability and a Knowledge
chromosome themselves.

All of these elements (ability, knowledge and tasks) define
the agent chromosome structure. In order to simplify the oper-
ations related to the reproduction process, a plan is represented
by a tree structure that is composed by nodes. A node is the
basic element of the tree and can contain an action/activity or
a predicate. It can have one or more predecessors and one or
more successors. If the action or the predicate related to the
node are satisfied, all the successors nodes are activated.

B. Chromosomes

The agent structure can be defined using three chromosome
categories: a Knowledge chromosome, an Ability chromosome
and a Task chromosome. Each chromosome is made by genes;
in the first chromosome, each gene describes an instance of
the ontology (predicates, concepts and actions). The ability
chromosome contains a plan that represents what the agent is
able to do.

Figure 4 reports the genome structure in form of a UML
class diagram.

1) Knowledge Chromosome Crossing: The generated agent
will have a set of knowledge elements derived by the two
parents. If parents own a similar knowledge they will generate
a new knowledge that will be in relation to both the knowledge
of the parents. If one of the parents has a knowledge that does
not have any correspondent to the knowledge of the other
parent, the new knowledge will be in relation only will the
knowledge of one parent (the right parent). In this way, for
each knowledge piece of the parents there will be only one
knowledge piece in the child. On the other side, the knowledge
of the child will be in relationship with at least one knowledge
of the two parents.

The evolution process is realized by applying several differ-
ent crossover techniques to the parents’ genome. This process

56

Fig. 2. On the left part of the figure the two plans of the parent agents and on the right the resulting plan. The parts of the plan selected for the crossover
procedure are highlighted.

Fig. 4. A UML class diagram representing the agent genome

is strongly conditioned by the need of obtaining a working
agent. In order to achieve this objective, it is necessary
that knowledge crossover will happen only between similar
knowledge elements. There are four techniques to obtain a
new knowledge:

• fusion: the two parents’ knowledge is unified into a single
body of knowledge that will contain a weight or algebraic
average of the parent knowledge

• selection: as in fusion, the two parents’ knowledge orig-
inate a unique knowledge in the child but, in this case,
one of the two is copied and the other one is discarded

• union: the new individual’s knowledge will be composed
by the union of the two parents’ bodies of knowledge.
A frequent use of this technique may produce a very

redundant agent
• copy: it is used if one of the two parents has a knowledge

the other parent has not. In this case the knowledge is
simply copied from the parent to the child.

As it is obvious, we assume that all the knowledge pieces
of an agent may have a reference to other knowledge pieces
or may be referred by portions of the agent plan. Of course, it
is necessary to maintain these references in the child agent
during the reproduction process; otherwise it will contain
some knowledge portions without any reference (and therefore
useless).

An example is in Fig. 5 where the concept “brush” is linked
to the concept “grid” (an agent can draw in the grid by using
a brush). If we remove this link, the crossover may generate

57

Fig. 5. Crossover where there are referred knowledge pieces

a concept “grid” without any reference to the object “grid”
referred by the two parents.

The algorithm applied for the knowledge chromosomes
crossing is the following:

1) A crossover operation (fusion, selection, union, copy) is
assigned to each knowledge gene element contained in
the agent chromosome;

2) An item, containing the selected operation and the
parents’ knowledge, is added to the list of crossover
operations to be done.

3) The first item of the list is selected and the corresponding
operation is performed. Then the resulting knowledge is
verified:

a) if both the objects referred by the parents’ knowl-
edge were not marked then a new mark is created
with the same crossover operation and it is added
to the bottom of the crossover list

b) if at least one of the knowledge was marked for
the crossover operation, a reference is created.

4) if the list is empty then end, else go to step 3.

2) Plan Chromosome Crossing: Plan crossing is the op-
eration that allows obtaining the child plan from the two
plans of the parents. Plan crossing is some way less complex
than the previous discussed knowledge crossing, because all
the referred knowledge genes have been already crossed at
this point. Generic tasks composing the plan (and referred
in the knowledge as actions) are crossed by using the same
techniques explained in the previous subsection. In this case
it is necessary to distinguish the two parents’ agents in, a
randomly labelled, “mother” and “father” agent. The plan frag-
ment obtained from the “mother” agent will always contain the
starting node and will be obtained as follows:

1) randomly select a cut node
2) cancel all the links that start from the cut node
3) cancel all the nodes that are not reachable

An example of “mother” agent plan is represented in the top-
left part of Figure 2. The plan fragment obtained from the
“father” agent will always contain the end node and will be
obtained as follows:

1) randomly select a cut node
2) cancel all the nodes that are not reachable from the cut

node
An example of “father” agent plan is reported in the top-right
part of Figure 2. The “child” agent plan is obtained substituting
the cut node of the “mother” with the cut node of the “father”
(see bottom plan in Figure 2).

3) Mutation: Mutation allows obtaining a new individual
from a single parent by modifying in a random way one of
its characteristics. If mutation is applied to a knowledge item,
an attribute is selected and a random value is given to the
node. If mutation is applied to a plan a node is replaced
with an equivalent one or a link is added in a random way.
The probability that an efficient individual is obtained after
mutation is low but mutation adds an unpredictable variation
that sometimes allows obtaining unexpected improvements.

C. The Crosser Agent

The CrosserAgent is responsible for managing the repro-
duction process that includes the creation of agent genera-
tions, the execution of new agents, and the evaluation of the
results achieved by each agent. The behaviour of this agent is
composed by a set of tasks executed according to a specific
plan (Figure 6 represents it as a PASSI [2] Task Specification
diagram). More in details, the most relevant components of
this behaviour are:

• Listener: this task is responsible for message receiving
and management. Messages containing agent genome and
crossing requests are usually received by this agent.

• ManageRequest: this task is responsible for creating the
necessary file system structure (namely directories) for
storing next agent generations.

• GenerateChildren: it is responsible for child agent cre-
ation and chromosome crossover operations.

• CompileChildren: it compiles the classes (agents) built
by the GenerateChildren task.

• PollChildren: it instantiates agents of the current gener-
ation and introduces them in the agent platform. Then it
requests them the service that is to be evaluated to esteem
the agent fitness to solve the assigned problem. All the
agents of this generation have a fixed time for performing
the assigned duty. If they complete the work in time, their
fitness is evaluated, otherwise they are discarded.

• EvaluateChildren: it calculates the fitness function value
for each agent and stores it.

• ManageGeneration: it selects the agents that will com-
pose the next generation. This new generation will be
composed of elite agents (the best agents of the current
generation) and the children of this generation that better
realised the required service. If the crossover process is

58

Fig. 6. The CrosserAgent plan represented as a PASSI Task Specification
diagram

completed (maximum number of generations or maxi-
mum value of fitness function reached) then it selects the
best agent.

In the current implementation of the framework, crossover
operations can be done by only considering agents providing
the same service.

IV. EXPERIMENTAL RESULTS

The discussed approach has been applied to a simple case
study where the goal is to be achieved by a single agent; the
goal consists in reproducing a design in shape and colour (see
the shape at the top of Figure 7).

A. Reproduction of a Graphical Structure

This case study uses an agent-oriented system for solving
a problem characterized by several different variables. The
problem consists in reproducing a shape in both colour and
geometry; the fitness function considers both shape similarity
and colour proximity.

Figure 7 reports the original shape to be reproduced (exper-
iments have been done by adopting different shapes, sizes and
filling colours). Each agent of the first generation (composed
by the two individuals depicted in Figure 7) was able to draw
by using elementary cells (brushes) of square shape. Inside the
brush, it was able to draw a triangle with a vertex on the lower-
right corner (the other agent was able to draw a triangle with
a vertex on the higher-left corner). Each agent designed its
brush in a different colour. An optimal solution to this problem
requires that agents cross their genome in order to learn how
to draw brushes that can produce a good reproduction of the
goal picture in both shape and colour. During the evolution
process, brushes of different size can emerge and the triangle
can change its orientation and even its shape. The fitness
function calculates the percentage of the shape that is filled
(and not left blank) and the similarity in the filling colour to the
goal picture. Figure 8 reports results obtained by individuals of
the fourth generation; they are interesting because they show
the different evolution paths that can be undertaken during

Fig. 7. The objective of the case study is reproducing the shape at the top
of this figure. Initial agents are able to achieve a limited approximation of the
required goal.

Fig. 8. Results obtained by individuals of the fourth generation and the
corresponding fitness function

the process. We found that the number of generations that is
necessary to build in order to find the optimal solution to the
problem depends (as it was expected) on the complexity of the
goal picture. In the reported example, nine generations have
been necessary in order to obtain some individuals (more than
one obtained the same score) achieving the optimal solution.
A few examples of good and optimal solutions obtained from
individuals of the ninth generation are reported in Figure 9.

V. CONCLUSIONS AND FUTURE WORKS

We proposed a new inheritance approach that focuses on
agent knowledge and abilities as a subject of reuse.

In our approach the agents do not inherit code or classes
but behaviours and pieces of knowledge; genetic programming
techniques modify and specialize them in order to fulfil a
defined goal or delivery a requested service. In principle, the
management of this procedure is delegated to an agent so that
this process is automatic and transparent to the user: agents
are evolved by reusing and modifying their knowledge and
abilities without the programmer help.

59

Fig. 9. Results obtained by individuals of the eight (subfigures (a) and (b))
and ninth generations (subfigures (a1) and (b1))

Many aspects of the proposed method need further investi-
gations: for example we noticed that there are also part of the
plan of the agent that are not used but merely transmitted from
parent to children and they remain present in the agents that
reach the final goal. These parts of plan and knowledge can be
considered a sort of “memory” of the agent society and they
can be useful if another service is requested. In fact from an
optimized set of knowledge pieces and set of abilities it can
be difficult to obtain something new. It is possible to think
that if we optimize the agent by deleting unused knowledge
and abilities future generations will cover a smaller area of the
“solution” space. The impact on the agent functionality, and
on the agent society, of these parts of plan and knowledge that
are not used are worth of more investigations.

REFERENCES

[1] F. Bellifemine, A. Poggi, and G. Rimassa. Jade - a fipa2000 compliant
agent development environment. Agents Fifth International Conference
on Autonomous Agents (Agents 2001), 2001.

[2] M. Cossentino. From requirements to code with the PASSI methodology.
In Agent Oriented Methodologies. Idea Group Publishing, june 2005.

[3] M. Cossentino and L. Sabatucci. Agent System Implementation. CRC
Press, April 2004.

[4] L. Crnogorac, A.S. Rao, and K. Ramamohanarao. Analysis of inheri-
tance mechanisms in agent-oriented programming. Morgan Kaufmann
Publishers Inc., 1997.

[5] R. Koza. Genetic Programming: On the Programming of Computers by
means of Natural Selection. MIT Press, 1992.

[6] Nils J. Nilsson. Artificial Intelligence, a New Synthesis. Morgan
Kaufmann Publishers, Inc., 1998.

[7] G. Di Marzo Serugendo, Marie-Pierre Gleizes, and Anthony Karageorgos.
Self organisation and emergence in mas: An overview. Informatica
Journal, 2005.

[8] O. Shehory, K. Sycara, P. Chalasani, and S. Jha. Agent cloning: An
approach to agent mobility and resource allocation. IEEE Communication
Magazine, 1998.

[9] A. Snyder. Encapsulation and inheritance in object-oriented programming
languages. In In proc. of Conference on Object Oriented Programming
Systems Languages and Applications, pages 38–45, 1986.

60

Nature-inspired Spatial Metaphors for Pervasive Service Ecosystems

Cynthia Villalba1, Alberto Rosi1, Mirko Viroli2, Franco Zambonelli1
1) University of Modena and Reggio Emilia – 42100 Reggio Emilia, Italy

2) University of Bologna – 40723 Cesena (FC), Italy
cynthia.villalba@unimore.it, alberto.rosi@unimore.it, mirko.viroli@unibo.it, franco.zambonelli@unimore.it

Abstract

Innovative paradigms and frameworks have to be iden-
tified to enable the effective deployment and execution of
pervasive computing services. Such frameworks must be
conceived so as to match the spatially-situated nature of
pervasive services, and must be able to exhibit properties
of self-organization and self-adaptability, self-management,
and of long-lasting evolvability. This paper discusses how
such frameworks should get inspiration from natural sys-
tems, by enabling modeling and deployment of services as
autonomous individuals, spatially-situated in an ecosystem
of other services, data sources, and pervasive devices, all
of which acting, interacting, and evolving according to a
limited set of spatial “eco-laws”. In this context, this pa-
per presents a reference architecture to uniformly frame
ecosystem concepts, surveys and critically analyzes differ-
ent nature-inspired spatial metaphors to realize the idea,
and details our current research agenda concerning the de-
velopment of service frameworks inspired to the ecological
metaphor.

1 Introduction

Pervasive and mobile computing devices increasingly
populate our everyday environments [7]. These, together
with the increasing amount of Web tools that makes it pos-
sible to produce and access spatially-situated information
about the physical world [5], will eventually define a com-
prehensive, integrated, and very dense, decentralized shared
infrastructure for general-purpose usage. At the user level,
the infrastructure can be used to access innovative services
for better perceiving/interacting with the physical world and
for acting on it. It is also expected that users themselves
will be able to personalize the infrastructure by deploying
customized services over it (in other words, the overall per-
vasive infrastructure will be as open the same as the Web
currently is). In addition, the infrastructure will be used as
a way to enrich more traditional classes of digital services

with the capability of dynamically and autonomously adapt-
ing their behavior to the context in which they are invoked
and exploited.

The inherent spatial nature of the above infrastructure
and of all the services that will be deployed over it is very
sharp. On the one hand, the infrastructure will be embedded
into physical space, will have to deal with spatial concepts
and spatial data, and its devices will typically interact based
on spatial proximity (as induced by wireless communica-
tions). On the other hand, services will have to deal with
spatially-situated activities of users, and with their interact-
ing with the physical world.

The effective development and execution of services in
the above infrastructure calls for a deep rethinking of cur-
rent service models and for service frameworks, in order to:

• Naturally match the inherent spatial nature of the envi-
ronment and of the services within.

• Inherently exhibit those properties of self-
organization, self-adaptation and self-management
that are necessarily required in highly-decentralized
and highly-dynamic scenarios (as the envisioned
infrastructure is, due to its distributed nature, the
unreliability of its components, and its openness to
user contributions).

• Flexibly tolerate evolutions of structure and usage over
time. This is necessary to account for increasingly di-
verse and demanding needs of users as well as for tech-
nological evolution, without forcing significant (and
economically unbearable) re-engineering to incorpo-
rate innovations and changes.

To reach this goal, we should no longer conceive ser-
vices and their interactions as it is usual made in standard
SOA architectures [9]. There: services are simply consid-
ered as “loci” of functionalities, whose activities are orches-
trated according to specific pre-defined patterns with the
support of middleware services (such as discovery, routing,
and context services) that either miss in accounting spatial

61

concepts or do not elect them as primary abstractions; self-
organization, self-adaptability and self-management are not
intrinsic properties of the system, but are typically enforced
via ad-hoc one-of solutions, e.g., via the introduction of spe-
cific control tools [10]; long-term evolvability is simply not
ensured, and most likely it can be achieved only at very high
re-engineering costs.

Thus, the most promising direction is that of taking
inspiration from natural ecosystems [16, 8], where spa-
tial concepts, self-organization, self-management, and long-
lasting evolvability are inherently there because of the basic
“rules of the game”. We are aware that nature-inspired so-
lution have already been extensively exploited in the area of
distributed computing (see e.g. [2, 11] for two recent exten-
sive surveys). However, most of these proposals exploit the
natural inspiration only for the effective implementation of
specific algorithmic solutions or for the realization of spe-
cific distributed services. Here we go further, and argue
that natural ecosystem can act as the key metaphor around
which to conceive, model, and develop, fully-fledged per-
vasive service framework and all the components within.

You can think at physical systems, at chemical systems,
at biological systems, as well as at the most properly called
ecological systems. In all of them, you can always recog-
nise the following characteristics: above a spatial environ-
mental substrate, individuals of different kinds (or species)
interact, compete, and combine with each other in respect
of the basic laws of nature. Accordingly, in our scenario,
the shared pervasive infrastructure substrate will have to
be conceived as the space in which bringing to life an
ecosystem of services, intended as individuals whose com-
putational activities are subject to some basic laws of the
ecosystem, and for which the dynamics of the ecosystem
(as determined by the enactment of its laws) will provide
for naturally enforcing features of self-organization, self-
management, and evolvability.

In this context, the contributions of this paper are as fol-
lows:

• We introduce a unifying reference architecture for
nature-inspired pervasive service ecosystems, to show
how ecosystem concepts can be framed into a unifying
conceptual scheme (Section 2).

• We survey the different metaphors that can be adopted
for such ecosystems (Section 3), and discussed their
advantages and limitations w.r.t. the capability of
supporting self-organization and self-adaptation, self-
management and decentralized control, and evolution
over time (Section 4).

• We go into more details about the so called ecological
metaphor, and sketch our current research work and
our research agenda in that area (Section 5), and con-
clude (Section 6).

Figure 1. A Reference Architecture for Perva-
sive Service Ecosystems

2 A Reference Architecture for Pervasive
Service Ecosystems

A unifying reference architecture can be identified
around which to frame the key abstractions and the con-
ceptual structure for spatial pervasive service ecosystems,
independently of the specific metaphor adopted (see Figure
1).

At the lowest level is the physical ground on which the
ecosystem will be deployed, i.e., a very dense infrastructure
(ideally, a pervasive continuum) of networked computing
devices and information sources. These includes all the de-
vices that are going to increasingly pervade all our everyday
environments (e.g., PDAs, smart phones, sensors, tags), all
interconnected with each other, and most of which gener-
ating a large amount of information about the surrounding
environment. In addition, such ground can also include the
increasing amount of Web tools and data sources that al-
ready collect spatially-situated knowledge about nearly ev-
ery aspect of the world.

At the highest level, service developers, producers and
consumers of services and data, access the open service
framework for using/consuming data or services, as well as
for producing and deploying in the framework new services
and new data components.

At both the bottom and the top levels, the architec-
ture exhibits a high-degree of openness: new devices can
join/leave the system at any time, and new users can inter-
act with the framework and can deploy new services and
data items on it. In between these two levels, there are the
components of the pervasive ecosystem architecture.

62

The level of “Species” is the one in which physical and
virtual devices of the pervasive system, digital and network
resources of any kind, persistent and temporary knowl-
edge/data, contextual information, events and information
requests, and of course software service components, are
all abstracted as “living entities” of the system (i.e., the
ecosystem individuals) that populate the pervasive ecosys-
tem space. Although such individuals are expected to be
modelled (and computationally rendered) in a uniform way,
they will have specific characteristics very different from
each other, i.e., they will be of different “species”.

In general terms, an ecosystem is expected to be popu-
lated with a set of individuals physically deployed in the en-
vironment (physical and network resources, contextual in-
formation, initialization data and services, and so on). Yet,
the population of individuals is far from being static. First,
the set of individuals is subject to changes (to tackle the
physical system’s mobility, faults, and evolution). Second,
service developers and producers inject in the system new
individuals at any time (they can insert new services and
virtual devices, as well as data and knowledge). Third, pro-
ducers and consumers can keep control and influence the
behavior of (a limited set of) the individuals.

The “Space” level provides the spatial fabric support-
ing individuals, their spatial activities and interactions, as
well as their life-cycle. From a conceptual viewpoint, the
“Space” level gives shape to and defines the structure of the
virtual world in which individual lives. Given the inherent
spatial nature of pervasive services, it is clear that this level
should consider that individuals exist in a specific portion of
some metric space, and that their activities and interactions
are directly dependent on their positions in space and on the
shape of the surrounding space. What the actual structure
and shape could be, might depend on the specific abstrac-
tions adopted for the modeling of the ecosystem.

From a more practical viewpoint, the spatial structure of
the ecosystem will be implemented by means of some mini-
mal middleware substrate, i.e., a software infrastructure de-
ployed on top of the physical deployment context. Such
middleware substrate will provide for supporting the execu-
tion and life cycle of individuals, and will enforce concepts
of locality, local interactions, and mobility, coherently to a
specific structure of the space.

The way in which individuals live and interact (which
may include how they produce and diffuse information,
how they move in the environment, how they self-compose
and/or self-aggregate with each others, aggregate, how they
can spawn new individuals, and how they decay or die) is
determined by the set of fundamental “Laws” regulating
the eternal service ecosystems model. Such laws, or “eco-
laws”, are expected to act on the basis of spatial locality
principles, as in real laws of nature: the enactment of the
laws on individuals will typically affect and be affected by

the local space around them and by the other individuals
on. The enactment of the eco-laws requires the presence of
some meaningful description (within the uniform modeling
on individuals) of the information/service/structure/goals of
each species, and of proper “matching” criteria to define,
based on such description, how the eco-laws apply to spe-
cific species in specific conditions of the space.

The dynamics of the ecosystem will be overall deter-
mined by having individuals in the ecosystem act based on
their own internal goals, yet being subject to the eco-laws
for their actions and interactions. The fact that the way
eco-laws apply may be affected by the presence and state
of other individuals, provides for closing the feedback look
which is a necessary characteristic to enable self-* features.
Indeed, the typical evolution patterns that can be driven by
such laws may include forms of self-organization (e.g., ser-
vice aggregation or service orchestration, where the eco-
laws can play an active role in facilitating individuals to
interact with each other and orchestrate their actions), self-
adaptation (changing conditions will reflect in changes in
the way individuals in a locality are affected by the eco-
laws) and of decentralized self-management (the injection
of new individuals can be used to modify the way eco-laws
affect other individuals and, thus, to somehow control the
evolution of the ecosystem dynamics form within the sys-
tem). As far as adaptation over time and long-term evolu-
tion are concerned, the very existence of the eco-laws can
make the overall ecosystem sort of eternal, and capable of
tolerating dramatic changes in the structure and behavior
of the species living in the ecosystem (i.e., the presence of
brand new classes of services). Simply said in ecological
terms: while the basic laws of life (i.e., the basic infras-
tructure and its laws) are eternal and do not change (i.e., do
not require re-engineering), the forms under which it man-
ifests continuously evolve (i.e., the actual service and data
species), naturally inducing new dynamics for the interac-
tions between individuals and for the ecosystem as a whole.

3 Metaphors for Pervasive Service Ecosys-
tems

The key difference in the possible approaches that can
be undertaken towards the realisation of eco-inspired ser-
vice frameworks (as from the described reference architec-
ture) stands in the metaphor adopted to model the ecosys-
tem, its individuals, the space in which they live, and its
laws. Without excluding the existence of other useful nat-
ural metaphors or the possibility of conceiving interest-
ing non-natural metaphors, the main metaphors that can
be adopted and have been suggested so far are: physical
metaphors [6, 12], chemical metaphors [3, 14], biological
metaphors [2, 4, 15], together with the most properly called
ecological metaphors [1, 13].

63

Figure 2. Metaphors for Service Ecosystems

As far as we know, none of these metaphors has been
so far adopted to extensively studying and prototyping an
actual, open and general-purpose service framework: either
the metaphor has been applied to specific application sce-
narios [12, 4, 15] or its potential general adoption has been
only envisioned [6, 1].

Let us now come to the distinguishing characteristics of
each metaphor, a summary of which is in Figure 2.

Physical metaphors consider that the species of the
ecosystem are sort of computational particles, living in a
world of other particles and virtual computational fields,
which act as the basic interaction means. In fact, all ac-
tivities of particles are driven by laws that determine how
particles should be influenced by the local gradients and
shape of some computational field (those whose description
“matches” some criterion). In particular, they can change
their status based on specific perceived fields, and they can
move or exchange data by navigating over such fields (i.e.,
by having particles that move following the gradient descent
of a field, or by making them spread sort of data particles
to be routed according to the shape of fields). The space
in which such particles live and in which fields spread and
diffuse can be either a simple (euclidean) metric world, or it
could be a sort of relativistic world, in which shapes and dis-
tances in the environment are not “inherent” but are rather
shaped by fields themselves (as in gravitational space-time).

Chemical metaphors consider that the species of the
ecosystem are sorts of computational atoms/molecules,
with properties described by some sort of semantic descrip-
tions which are the computational counterpart of the de-
scription of the bonding properties of physical atoms and
molecules. Indeed, the laws that drive the overall behaviour
of the ecosystem are sort of chemical laws. They dictate
how chemical reactions and bonding between components
take place (i.e., relying on some forms of pattern-matching

between the semantic description of components), and can
lead to both the production of aggregates (e.g., of aggre-
gated distributed components) or of new components (e.g.,
of composite components). In this case, the space in which
components live is typically formed by a set of localities,
intended as the “solution” in which chemical reactions can
occur, altough of course it is intended that components can
flow/diffuse across localities to ensure globality of interac-
tions.

Biological metaphors typically focus on biological sys-
tems at the small scale, i.e., at the scale of individual or-
ganisms (e.g., cells and their interactions) or of colonies
of simple organisms (e.g. ant colonies). The species are
therefore either simple cells or very simple (unintelligent)
animals, that act on the basis of very simple goal-oriented
behaviours (e.g., move and eat) and that are influenced in
their activities by the strength of specific chemical signals in
their surroundings to which they are sensitive to (i.e., with
which there is a match). Similarly to physical systems, in
fact, components are expected (depending on their status)
to be able to spread and diffuse (chemical) signals around,
that can then influence the behaviour of other components.
The laws of the ecosystem together with the shape of the
spatial computational landscape in which individuals live
determine how such signals should diffuse, and how they
could influence the behaviour and characteristics of compo-
nents.

Ecological metaphors focus on biological systems at the
level of animal species and of their interactions. The com-
ponents of the ecosystem are sort of goal-oriented animals
(i.e., agents) belonging to a specific species (i.e., agent
classes), that are in search of “food” resources to survive
and prosper (e.g., specific resources or other components
matching specific criteria). The laws of the ecosystem de-
termine how the resulting “web of food” should be realised,
that is, they determine how and in which conditions animals
are allowed to search food, eat, and possibly produce and
reproduce, thus influencing and ruling the overall dynamics
of the ecosystem and the interaction among individuals of
different species. Similarly to chemical systems, the shape
of the space is typically organized around a set of locali-
ties, i.e., of ecological niches (think at a set of local per-
vasive computing environments), yet enabling interactions
and diffusion of species across niches.

4 Critical Analysis

As already stated in the introduction, a pervasive ser-
vice ecosystem should be able to exhibit features of self-
organization and self-adaptation (i.e., the capability of au-
tonomously and adaptively self-organize and self-adapt the
distributed spatial activities of the components) and self-
management (here mostly intended as the possibility of ex-

64

erting control and directing the behavior of the system form
within the system itself, a fundamental feature not to lose
control over the system and not to be forced to introduce
complex management solutions), and should tolerate evo-
lution and adaptation over time (i.e., should adaptively ac-
commodate new species, should survive the extinction of
species, and should be capable of accommodating very di-
verse and composite behaviour with the same limited set of
eco-laws). All of these features, of course, should be en-
forced without paying the price of dramatically increasing
the complexity of the ecosystem, i.e., the number and com-
plexity of eco-laws, and the structure of its components and
of the space in which they live.

The analysis of the extent to which the presented
metaphors can be able to accommodate (and how easily and
naturally) the above features is very complex, and would
require much more room than the few pages of this paper.
Nevertheless, we can try at least to draw some considera-
tions about this.

Physical metaphors have been extensively studied for
their spatial self-organization features, and in particular for
their capability of facilitating the achievement of coherent
behaviours even in large scale system (e.g., for load balanc-
ing and data distribution), and the conceptual tools avail-
able for controlling the spatial behaviour and the dynamics
of such systems are well-developed. However, the physical
metaphor seems to fall short in evolution and time adap-
tation, in that it hardly tolerates the presence of very di-
verse components with very diverse behaviours (at least if
we want to preserve the simplicity of the eco-laws).

Chemical metaphors, on the other hand, can effectively
lead to local self-organizing structures (e.g., local compos-
ite services) and, to a more limited extent, to some sorts
of global structures (e.g., networks of distributed homoge-
neous components, as in crystals). Real chemistry, and so
chemical computational metaphors, can accommodate an
incredible amount of different components and composites,
yet with the same set of simple basic laws. This is an impor-
tant pre-condition for facilitating evolution over time. As
far as self-management is concerned, one can think at using
sort of catalyst or reagent components to control the dynam-
ics and the behaviour of a chemical ecosystem.

Biological metaphors appear very flexible in enabling
the spatial formation of localised morphological and activ-
ity patterns, and this has been shown to have notable appli-
cations in a variety of applications to distributed systems.
However, the number of patterns that can be enforced by the
spread of chemical gradients and by the reactions of simple
individuals seems (as it is in physical metaphors) quite lim-
ited, and this does not match with the need for time evolu-
tion and adaption. Moreover, it is quite difficult to under-
stand how to properly control the overall behavior of such
systems (just think at the fact that, so far, the mechanisms

Figure 3. Key Elements for an Ecological Sys-
tem

of morphogenesis are not fully understood by scientists).
Ecological metaphors, the same as chemical ones,

promise to be very suitable for local forms of spatial self-
organization (think at equilibria in ecological niches), and
are particularly suited for modeling and tolerating evolu-
tion over time (think at how biodiversity has increased over
the course of evolution, without ever mining the health exis-
tence of life in each and every place on earth). However, un-
like chemical systems, understanding how to properly con-
trol the local and global equilibria of real ecological system
is a difficult task, and it would probably be very difficult
also in their computational counterparts.

In summary, it is very difficult to assess once and for all
which of the metaphors is the best for next generation of
adaptive service ecosystems. Some exhibit suitable features
for certain aspects, but fall short for others.

Personally, and having already extensively studied in the
physical metaphor in the past [12], we are now very inter-
ested in studying both the chemical metaphor (see for a pre-
liminary study about [14]) and the ecological one (which is
the specific subject of the PhD studies of the first author,
and which is detailed in the next section), and in possibly
ending up with a sound new “hybrid” metaphor, getting the
best of the above.

5 Our Current Approach and Research
Agenda

As from Section 3, the development of a pervasive ser-
vice ecosystem inspired by the ecological metaphor should
conceive the individuals within as the life forms of an eco-
sphere, each of which having the trivial ego-centric goal
of surviving by finding the appropriate food and resources.
The eco-laws thus reduce to simply ruling the dynamics of
the food web (who eats who and when), and the spatial
structure of the system (typically structured around spatially
confined ecological niches) determines how life forms can
find and look for food.

In general, an ecological system can consider the pres-
ence of different classes of living forms (see Figure 3). Pas-

65

sive life forms (i.e., the flora system) do not actively look
for food, although their existence and survival must be sup-
ported by nutrients that have to be spread in space. Primary
consumers (i.e., herbivors) need to eat vegetables to survive
and prosper. Secondary consumers (i.e. carnivors) typically
need to eat other animals to survive, though this does not
exclude that can also act as primary consumers (eating ve-
gatables too). The result of the metabolization of food by
both primary and secondary consumers typically ends up in
feeding lower-level “digestors” life forms (e.g., bacteria),
densely spread in space, and that in their turn produce and
diffuse necessary resources and nutrients for the flora.

Let us now translate the above concepts in computational
terms. Passive life forms represent the data sources of the
ecosystem, which are not to be considered proactive com-
putational entities, i.e., they do not need to “do something”
to exist and be used. Primary consumers represent those
services that require to digest information to be of any use,
and yet are computationally autonomous (they do not re-
quire external computational functionalities). Secondary
consumers, instead, are those services that, to be of any
use, need the support of other services (whether primary or
secondary in their turn), other than possibly of information
sources. Digestors can be generally assimilated to all those
background computational services that are devote to mon-
itor the overall activities of the system, and either produce
new information about or influence the existing informa-
tion.

To better clarify, let us present a simple case study we
are currently in the process of developing.

Consider a scenario like a thematic park or an exhibi-
tion center, densely pervaded with digital screens where to
display information, movies, advertisements, or whatever.
We can consider each of these screens (i.e., the computa-
tional resources associated with each of them) as a spatially
confined ecological niche. Different classes of visitors will
watch these screens to look for different types of informa-
tion (intended as passive life forms). Thus, we can think
at sort of “user agents” executing on the users’ PDAs that,
once in the proximity of a screen (i.e., while finding them-
selves into that specific ecological niche) start looking for
specific information to eat (i.e., to have it displayed). User
agents would thus act as primary consumers. Concurrently,
we can think at “advertising agents” that, acting on behalf
of some advertising company, roam from screen to screen in
search of specific classes of user agents (i.e. those interested
in specific types of information), with the ultimate goal of
displaying advertisements there where they could be more
effective. Advertising agents would this act as secondary
consumers. Background monitoring agents, executing on
each ecological niche and possibly interacting with each
other, can contribute replicating and spreading information
there where it appears to be more appreciated, and can also

contribute in supporting the spatial roaming of advertiser
agents by directing them there where they could find more
satisfaction. Thus, they would act as digestors.

The feedback loop that derives from the above activities
can contribute the properly rule the overall dynamics of the
screen ecosystem, by continuously self-organizing and self-
adapting the way information flows in the system, as well as
the way advertising agents move, act, and coordinate with
each other. The possibility of exerting control over the dy-
namics of the system is ensured by the possibility of inject-
ing in the system new classes of “digestor agents” that can
radically influence the dynamics of information diffusion
and the activities of advertising agents. The adaptation of
the system over time is ensured by the fact that it is mostly
irrelevant, for the overall functioning of the system, what
specific classes of information user agents want, or what the
specific goal of advertising agent is. In fact, independently
of the specific species of life forms that will populate the
system, the basic eco-laws will ensure that such life forms
will either find their way of living and their role in the sys-
tem (e.g., as it can be the case of useful information and
of advertising agents that find appropriate users to which to
display their ads), or will simply disappear (as it can be the
case of useless information or of advertisements no users is
interested in).

We personally believe that, within the above simple con-
ceptual framework (mostly in line with that envisioned in
[1]), we will be able to identify a simple yet usable general-
purpose model for the design and development of specific
data/service/control components, and will be able to de-
velop a practical software framework for the execution of
a wide class of distributed spatial services for pervasive en-
vironment. To this end, we are currently in the process of:

• Trying to identify a proper semantic representation of
the needs and characteristics of each life forms (what
food one agent class needs, and what kinds of nutrient
it can represent to others);

• Define a simple agent-inspired computational model to
have the action of agents, as well as their propagation
and diffusion over space, driven by a simple set of “eat
to survive” eco-laws;

• Implement a simple “middleware” infrastructure to test
and put at work our ideas. Such middleware will typ-
ically rely on a spatially-structured network of nodes,
each of which acting as the basic ecological niche for
the local execution of components and their interac-
tions, and interacting with close niches to enforce spa-
tial diffusion and propagation of life forms;

• Put our ideas at work in a variety of application sce-
narios, to verify their generality and their extent of ap-
plicability;

66

• Evaluate how and to which extent to integrate and ex-
tend the sketched ecological approach with features
and characteristics inspired by other metaphors, if at
all needed.

6 Conclusions

In this paper, we have elaborated on the idea of getting
inspiration from natural ecosystem to model and develop
next generation pervasive service framework. That is, of
conceiving future pervasive service frameworks as a spa-
tial ecosystem in which services, data items, and resources
are all modeled as autonomous individuals that spatially
act and interact in accord to a simple set of well-defined
”laws of nature”. In this way, it is possible to deliver self-
organization, self-adaptation, self-management, and long-
lasting evolvability as inherent properties of the framework,
rather than as complicated ad-hoc solutions.

The road towards the actual deployment of usable and ef-
fective pervasive service ecosystems, however, still requires
answering to several challenging questions. Among the oth-
ers: what actual metaphor is the best to be adopted among
the possible ones? What should be the actual modeling
of individual and of eco-laws? What should be the actual
shape and properties of the space in which individual will
live and interact? And how can we practically implement
this? Finding at least some of these answers is the current
goal of our research work.

References

[1] G. Agha. Computing in pervasive cyberspace. Commun.
ACM, 51(1):68–70, 2008.

[2] O. Babaoglu, G. Canright, A. Deutsch, G. A. D. Caro,
F. Ducatelle, L. M. Gambardella, N. Ganguly, M. Jelasity,
R. Montemanni, A. Montresor, and T. Urnes. Design pat-
terns from biology for distributed computing. ACM Trans.
Auton. Adapt. Syst., 1(1):26–66, 2006.

[3] A. P. Barros and M. Dumas. The rise of web service ecosys-
tems. IT Professional, 8(5):31–37, 2006.

[4] J. Beal and J. Bachrach. Infrastructure for engineered emer-
gence on sensor/actuator networks. IEEE Intelligent Sys-
tems, 21(2):10–19, 2006.

[5] G. Castelli, A. Rosi, M. Mamei, and F. Zambonelli. A
simple model and infrastructure for context-aware browsing
of the world. Pervasive Computing and Communications,
2007., pages 229–238, 19-23 March 2007.

[6] J. Crowcroft. Toward a network architecture that does ev-
erything. Commun. ACM, 51(1):74–77, 2008.

[7] D. Estrin, D. Culler, K. Pister, and G. Sukjatme. Connecting
the physical world with pervasive networks. IEEE Pervasive
Computing, 1(1):59 – 69, 2002.

[8] S. Herold, H. Klus, D. Niebuhr, and A. Rausch. Engineer-
ing of it ecosystems: design of ultra-large-scale software-
intensive systems. In ULSSIS ’08: Proceedings of the

2nd international workshop on Ultra-large-scale software-
intensive systems, pages 49–52, New York, NY, USA, 2008.
ACM.

[9] M. N. Huhns and M. P. Singh. Service-oriented comput-
ing: Key concepts and principles. IEEE Internet Computing,
9(1):75–81, 2005.

[10] J. O. Kephart and D. M. Chess. The vision of autonomic
computing. Computer, 36(1):41–50, 2003.

[11] M. Mamei, R. Menezes, R. Tolksdorf, and F. Zambonelli.
Case studies for self-organization in computer science. Jour-
nal of Systems Architecture, 52(8-9):443–460, 2006.

[12] M. Mamei and F. Zambonelli. Field-based Coordination for
Pervasive Multiagent Systems. Springer Verlag, 2006.

[13] M. D. Peysakhov, R. N. Lass, and W. C. Regli. Stabil-
ity and control of agent ecosystems. In AAMAS ’05: Pro-
ceedings of the fourth international joint conference on Au-
tonomous agents and multiagent systems, pages 1143–1144.
ACM, 2005.

[14] R. Quitadamo, F. Zambonelli, and G. Cabri. The service
ecosystem: Dynamic self-aggregation of pervasive commu-
nication services. In SEPCASE ’07: Proceedings of the 1st
International Workshop on Software Engineering for Perva-
sive Computing Applications, Systems, and Environments,
page 1, Washington, DC, USA, 2007. IEEE Computer Soci-
ety.

[15] W.-M. Shen, P. Will, A. Galstyan, and C.-M. Chuong.
Hormone-inspired self-organization and distributed control
of robotic swarms. Autonomous Robots, 17(1):93–105,
2004.

[16] M. Ulieru and S. Grobbelaar. Engineering industrial ecosys-
tems in a networked world. In 5th IEEE International Con-
ference on Industrial Informatics, pages 1–7. IEEE Press,
23-27 June 2007.

67

Ontology Agents in FIPA-compliant Platforms:
a Survey and a New Proposal

Daniela Briola
DISI, Univ. di Genova,

Via Dodecaneso 35, 16146, Ge, IT
E-mail: daniela.briola@unige.it

Angela Locoro
DIBE, Univ. di Genova,

Via Opera Pia 11/A, 16146, Ge, IT
E-mail: angela.locoro@unige.it

Viviana Mascardi
DISI, Univ. di Genova,

Via Dodecaneso 35, 16146, Ge, IT
E-mail: viviana.mascardi@unige.it

Abstract—In 2001, FIPA delivered a specification suggesting
that each MAS should integrate an “Ontology Agent” (OA)
offering services for ontology management. These services should
include ontology discovery, maintenance, matching, as well as
translation of expressions between different ontologies or con-
tent languages. Currently, no FIPA-compliant OA exists that
implements all of them. One of the reasons is that providing
a service for ontology matching is not an easy task, and coping
with translation between ontologies and/or content languages may
be even harder. In this paper we survey the state of the art in
the area, and we describe our prototypical implementation of
an OA for Jade able to match ontologies. Besides “standard”
ontology matching algorithms, our OA offers a “matching via
upper ontologies” method that, as we showed in a recent technical
report, improves the precision of the matching w.r.t. the use of
traditional techniques.

I. INTRODUCTION

In 2001, FIPA delivered a specification for organizing and
managing ontologies in a MAS [7]. This specification suggests
that each MAS should integrate an “Ontology Agent” (OA)
providing services to deal with ontologies. The OA should
be at the same conceptual level as the Directory Facilitator
Agent, and should be able to deal with ontologies explicitly
represented in some ontology language, and stored somewhere
(perhaps in some server), where agents can access, query, and
in case update them.

In particular, an OA should offer the following services to
the agents in the MAS:

1) discover public ontologies in order to access them,
2) maintain (for example, register with the Directory Fa-

cilitator, upload, download, and modify) a set of public
ontologies,

3) translate expressions between different ontologies and/or
different content languages,

4) answer queries about relationships between terms or
between ontologies,

5) facilitate the identification of a shared ontology for com-
munication between two agents.

It’s not mandatory for an OA to be able to realize all these
services, provided that it is able to answer that it cannot
process the required service.

The FIPA specification assumes that each ontology accessi-
ble through the OA’s services adheres to the OKBC model
[19]. OKBC supports an object-oriented representation of

knowledge and provides a set of representational constructs
commonly found in object-oriented knowledge representation
systems. This standard is widely used there, but differs from
the standards commonly accepted in the semantic web area,
where OWL [27] is the most widespread model. The RDF,
RDFS, and OWL languages are represented as a graph of
triples <object, property, subject>. The semantics of OWL
is based on Description Logic [2]. Even when the modelling
primitives look similar to OKBC, the semantics is different,
thus converting the operations associated to an OWL ontology
into OKBC operations is not feasible. The lack of support to
OWL ontologies is one of the main limitations of the FIPA
OA specification, and motivates the lack of fully implemented
FIPA-compliant OAs.

Another reason why no OAs exist that implement all the
services suggested by the FIPA specification is that “answering
queries about relationships between terms or between ontolo-
gies”, as the specification suggests, is definitely an hard task
if we consider semantic relationships, and not just structural
ones. Answering a query on the structure of ontologies, such
as “Is concept c1 ∈ o a subconcept of c2 ∈ o (or even a
subconcept of c′ ∈ o′)?” is almost trivial; answering a query
on the semantics of terms, such as “What is the confidence in
c ∈ o and c′ ∈ o′ having the same meaning?” is much more
difficult. This activity requires that the OA is able to “match”
ontologies o and o′, namely, it is able to compute an “ontology
alignment” between them.

Many algorithms for ontology matching exist, and some of
them have been implemented and are available to the research
community1. Surprisingly, none of them has been integrated
into an OA. Thus, to the best of our knowledge, no existing
OAs offer services for ontology matching.

In this paper we describe our implementation of an OA
for Jade, able to provide both “standard” and new ontology
matching services, as well as services for comparing one or
more alignments to a reference one. In particular, our OA
offers services for ontology matching via upper ontologies, a
new approach that has proven to give good results in precision

1For example, the Alignment API developed by J. Euzenat and his team at
INRIA-Rhône Alpes is available at http://alignapi.gforge.inria.fr/ under GNU
Lesser General Public License. It provides string-based and simple language-
based ontology matching methods, as well as methods for computing precision
and recall of a given alignment w.r.t. a reference one.

68

and recall [16].
Our OA is far from implementing all the services suggested

by the FIPA specification as, at the time of writing, it only
offers the matching one. Since most of the existing FIPA-
compliant OAs provide services for ontology discovery and
interrogation, whereas none of them provides a service for
ontology matching, we started our research by implementing
the latter, in order to complement existing proposals. As other
researchers, we deviate from the FIPA specification since we
assume that ontologies are represented in OWL instead than
OKBC.

The paper is organized as follows: Section II discusses the
state of the art of FIPA-compliant OAs, after providing a short
background on ontology matching and upper ontologies. Sec-
tion III describes the functionalities of our OA, briefly presents
the algorithms for matching OWL ontologies, discusses the
implementation of a simple MAS consisting of a Request
Agent and one OA, and shows experimental results. Finally,
Section IV concludes and highlights future improvements of
our work.

II. BACKGROUND

A. Ontology Matching

A formalization of the ontology matching process can be
found in [6]. Quoting the authors, we define a matching
process as “a function f which takes two ontologies o and
o′, an input alignment a, a set of parameters p and a set of
oracles and resources r, and returns an alignment a′ between
o and o′”.

A correspondence (also named “mapping”) between an
entity e belonging to ontology o and an entity e′ belonging to
ontology o′ is a 5-tuple < id, e, e′, R, conf > where:
• id is a unique identifier of the correspondence;
• e and e′ are the entities (e.g. properties, classes, individ-

uals) of o and o′ respectively;
• R is a relation such as “equivalence”, “subsumption”,

“disjointness”, “overlapping”, holding between the enti-
ties e and e’;

• conf is a confidence measure (typically in the [0;1]
range) holding for the correspondence between the en-
tities e and e′.

An alignment of ontologies o and o′ is a set of correspon-
dences between entities of o and o′.

Among the matching techniques, we just discuss those that
fall under the “Granularity / Input Interpretation” classification
described in [6], based on the granularity of the matcher and
on the interpretation of the input information.
• String-based methods. These methods measure the simi-

larity of two entities just looking at the strings (seen as
mere sequences of characters) that label them. Among
them we may cite substring distance, where two strings
are compared to find the longest common substring, n-
gram distance [4], where two strings are the more similar
the more n-grams (sequence of n characters) they have in
common, and SMOA measure [24], which is a function

of the commonalities (in terms of substrings) as well as
of differences between two strings.

• Language-based methods. These methods exploit natural
language processing techniques to find the similarity
between two strings seen as meaningful pieces of text
rather than sequences of characters. Some of them exploit
external resources like WordNet, and exploit the semantic
relations that it offers to compute the correspondences.

B. Upper Ontologies and their Application to Ontology
Matching

An upper ontology (also named top-level ontology, or
foundation ontology) is “an attempt to create an ontology
which describes very general concepts that are the same across
all domains” [28]. Few upper ontologies exist: BFO [10], Cyc
[13], DOLCE [9], GFO [11], PROTON [5], Sowa’s ontology
[23], and SUMO [17]. They vary in dimension, ranging from
the 30 classes of Sowa’s ontology to the 300,000 of Cyc, in
representation language (OWL, KIF [1], First Order Logic),
in structure (monolithic vs. decomposed into modules), and
in developed applications. Nevertheless, all of them describe
general concepts (also named “classes”) and share the aim to
have a large number of ontologies accessible under them.

In our previous work, we implemented different algorithms
that used upper ontologies for boosting the ontology match-
ing process [16]. We run experiments with SUMO-OWL (a
restricted version of SUMO translated into OWL), OpenCyc
(the open version of Cyc, which is a commercial ontology),
and DOLCE. The experiments demonstrate that when the
“structural matching method via upper ontology” uses an
upper ontology large enough (OpenCyc, SUMO-OWL), the
recall is significantly improved and the precision is kept
w.r.t. not using upper ontologies. Instead, the “non structural
matching method” via OpenCyc and SUMO-OWL improves
the precision and keeps the recall. The “mixed method”, that
combines the results of structural alignment without using
upper ontologies and structural alignment via upper ontologies,
improves the recall and keeps (improves, with OpenCyc) the
F-measure, whatever the upper ontology used.

C. FIPA-compliant OAs: the State-of-the-Art

The FIPA reference model for the services provided by the
OA is shown in Figure 1.

In the literature there have been few attempts to realize the
FIPA OA, and each one adopts a particular point of view of
the problem.

Some solutions implement only a subset of the OA’s ser-
vices, others change the FIPA specification in order to use
the OWL specification language, others realize a Web Service
playing the OA role. Besides being different from the design
point of view, these solutions also differ in the choice of the
middleware where the OA is integrated, and hence of the
language used to implement it.

In the following sections we discuss the most relevant
solutions for the integration of the OA in a FIPA compliant
framework.

69

Figure 1. FIPA Ontology Service Reference Model

Implementation over the COMTEC platform

The first attempt to realize an OA was made in 2001 by
Suguri, Kodama, Miyazaki [25]. They realized an OA for the
COMTEC platform.

The OA is divided into two parts. The first part is an
interface to the OKBC front-end. From the OKBC point of
view, the OA is one of the front-end user applications. The
second part is the FIPA interface where the agent wrapper
is implemented. The FIPA interface is an agent wrapper
that takes care of generating and interpreting SL [8] actions,
predicates and ACL communicative acts based on appropriate
interaction protocols. It also processes the registration with the
DF, the management of ontology names and the relationship
between the ontologies.

The COMTEC OA implements a subset of the services of
a generic FIPA-compliant OA, in particular

1) register an ontology in the framework;
2) operate over an ontology (create, delete frames, slot,

modify the hierarchies);
3) answer queries about ontologies’s structure, and their

level of similarity.
No ontology matching service is provided by this OA.

From a design point of view, this solution is one of the best
because it tries to faithfully adhere to the FIPA specification.
Its main problem is that the COMTEC platform on which it
was implemented is no longer available.

Implementation over the AgentService platform

Vecchiola, Grosso, and Boccalatte implemented a FIPA
compliant framework called AgentService [26], based on the
.NET platform. Together with Passadore, they integrated an
OA into AgentService [20].

Ontologies in AgentService are represented in OKBC: the
implementation of the OA is thus fully compliant with the

FIPA specification.
The services that the OA offers are a subset of the possible

ones: the OA implements the discovery and publication of
the ontology and its maintenance, allows two agents to check
whether they use the same ontologies and if not, it helps them
to download the “missing” ones. However, neither ontology
matching nor translation are supported.

AgentService uses Protégé [22] to support the designer
from the creation of the ontology to the development of an
agent that can communicate using that ontology, and MS Visio
(http://office.microsoft.com/en-us/visio/default.aspx) to design
agent interaction protocols. Visio allows the designer to import
an ontology and supports him/her in the creation of message
contents compliant with concepts expressed in the ontology
itself.

Thus, the main usefulness of having ontologies integrated
into AgentService is to support developers in designing mes-
sage exchange in a clear and well-founded way. This makes
the design easily sharable among developers. AgentService
OA has been conceived for managing ontologies within closed
MASs, rather than for implementing open systems where het-
erogeneous/unknown agents interact and choose an ontology
on the fly.

Implementation over the Jade platform

One of the most used FIPA-compliant platform is Jade [3].
This framework is fully compliant to the FIPA standards, and is
based on Java. Jade offers some utilities to model ontologies,
but in the spirit of integrating the ontology into the agent’s
code. Thus, Jade supports the hard coding of the ontology both
at design and compile time: all the entities of the ontology
have to be transformed in classes and objects, in order to
allow a Jade agent to use them. This approach gives little
help to a MAS developer who wants to create agents that can
communicate with others automatically, after having agreed on
an ontology known and available to all of them. Then, Jade
lacks a real support to the use of ontologies in open MASs.

We have implemented an OA in Jade offering services for
matching OWL ontologies using different algorithms, and for
evaluating the result of the matching. Its functionalities are
described in Section III.

The only other attempt of integrating a FIPA-compliant OA
into Jade we are aware of, is that by Obitko and Snáěl [18].
Their implementation follows the FIPA specification but adapts
it to ontologies represented in OWL, as we do.

Since Obitko and Snáěl intended to store OWL ontologies
only, they had to adapt the language for describing actions
performed by the ontology agent. Their OA agent exploits Jena
[12] and implements the basic functionalities of the ontology
services as specified in the FIPA proposal, i.e. the possibility
of modifying ontologies (assert and retract) and of querying
ontologies using RDQL.

Obitko and Snáěl’s OA is well organized and closely follows
the FIPA specification except for the usage of OWL instead
to OKBC.

70

Non FIPA-compliant solutions

Ontology Services as the result of Distributed Coopera-
tion: A good effort to design and implement a MAS with a
support to ontology matching comes from Li, Wu and Yang
[14], [15]. Their work concentrates on the process of mapping
and integrating ontologies: these functionalities are integrated
in the MAS thanks to a set of agents which collaborate to
offer them to the other agents. The agents which are involved
in the delivery of ontology services are:

1) User Agent (UA): assists the user in formulating his/her
requests, posts queries (e.g. tasks) to the proposed system
via the IA and visualises the required results according
to the user’s requirement. The UA only knows the IA.

2) Interface Agent (IA): acts as an interface among agents
in the MAS and the UA. Every agent knows the IA.

3) Ontology Agent (OA): acts on behalf of the correspond-
ing ontology, is in charge of ontology related tasks. It
provides as much information of the ontology it acts on as
possible. The OA operates over the ontology structure and
the mapping result file. When a new ontology is loaded
in the system, a corresponding OA is created to manage
it.

4) Mapping Agent (MA): maps, if possible, concepts from
an ontology to the concepts of a second ontology, using
also the SA.

5) Similarity Agent (SA): maintains a thesaurus for the
purpose of similarity. It holds a list of common words
and synonyms of words.

6) Query Agent (QA): operates over the mapping results
to investigate ontology-understandable of heterogeneous
ontologies after executing ontology mapping.

7) Integration Agent (InA): merges two ontology in a new
one (in RDF format). Is based on the result of ontology
mapping.

8) Checking Agent (CA): checks the consistency of the
integrated ontology (assuming all given ontology are
consistent at the beginning).

The purposes of this system, namely providing a large set of
ontology services that include ontology matching ones, make
it very close to our proposal. However, the way these services
are implemented make the system really far from the FIPA
OA specification, since services are distributed among differ-
ent agents, and are not integrated within a FIPA-compliant
framework.

An OA implemented as a Web Service: In [21] Peña,
Sossa and Gutierrez implement the OA as a web service, in
order to offer its services also over the Internet. The OA
carries out the management of the ontologies through an
interface between the application agents and the ontologies.
It is responsible for catching the requests arriving from the
agents, interpreting them, forwarding them to the Ontology
Manager in charge of the Ontology referenced in the request,
and forward back the response from the Ontology manager.
Ontologies are in OWL format, and each Ontology Manager
answers only to requests about the structure of the ontology

or for changing its structure, but no support is offered to
the mapping, translating or more complex queries about two
ontologies.

III. OUR OA IN JADE

The OA we have implemented in Jade provides the follow-
ing services:

1) matching two OWL ontologies through a direct matching;
2) matching two OWL ontologies via an upper ontology

(represented in OWL too);
3) evaluating an alignment against a reference alignment.

The implementation of a fourth service, namely the repair of
an alignment based on word sense disambiguation techniques,
is under way. We do not discuss it here for space constraints.

In this section, we describe the algorithms that realize all
the implemented services of the OA. It is worth specifying
that in our matching algorithms we only consider concepts as
entities to match, and equivalence as relation.

In order to be compliant with the Align API mentioned
in Section I, and to be able to exploit some of the methods
it provides, our alignments are represented in RDF and their
format is like the one shown below.

<rdf:RDF .. namespaces here ...>
<Alignment>
<xml>yes</xml>
<level>0</level>
<type>**</type>
<time>15</time>
<method>StringDistAlignment</method>
<onto1>file:///ka.owl</onto1>
<onto2>file:///edumit.owl</onto2>
<uri1>file:///ka.owl</uri1>
<uri2>file:///edumit.owl</uri2>
...
<map> <Cell>
<entity1 rdf:res=ka.owl#Book/>
<entity2 rdf:res=edumit.owl#Book/>
<relation>=</relation>
measure>1.0</measure>

</Cell> </map>
<map> <Cell>
<entity1 rdf:res=

ka.owl#TechnicalReport/>
<entity2 rdf:res=

edumit.owl#Techreport/>
<relation>=</relation>
<measure>1.0</measure>

</Cell> </map>
...

</Alignment>
</rdf:RDF>

With respect to the definition provided in Section II-A, our
correspondences are simpler due to the lack of the correspon-
dence identifier, which is strictly necessary only in case we

71

need to uniquely identify them (e.g. when storing them in a
repository).

Direct Matching

The direct matching service is implemented by a function
that we named parallel match(o, o′, {WordNet}, th), be-
cause it runs in parallel different “standard” matching methods,
and combines their outputs. The matching methods that we
used are the substring, n-gram, SMOA and WordNet ones that
we introduced in Section II-A. We used the implementation
of these methods offered by Euzenat’s Align API2. The th
parameter is used as a threshold for cutting all correspondences
below it. In our experiments, we set it at 0.5. To obtain a final
alignment from the ones obtained by the individual matching
methods, we use an aggregate function that composes the
four alignments by making the union of all their correspon-
dences. In case different alignments produced correspondences
between the same concepts c and c′, aggregate keeps the
correspondence with the highest confidence measure.

Matching via Upper Ontology

For matching two ontologies o and o′ via an upper ontology
uo we compute the parallel match(o, uo, {WordNet}, th)
and parallel match(o′, uo, {WordNet}, th), obtaining two
alignments between o and uo, and o′ and uo respectively.
These two alignments are given in input to a merge(a, a′)
function. Merge produces the final alignment between o and
o′ by combining the correspondences of o-uo and o′-uo in
such a way that: if ∃ a correspondence < c, cu, r, conf1 >
in o-uo and ∃ a correspondence < c′, cu, r, conf2 > in o′-
uo, then the merge function creates a new correspondence
< c, c′, r, conf1 ∗ conf2 > and adds it to the final alignment.

Alignment Evaluation

The Alignment API provided by Euzenat and colleagues
offers a PrecEval method for measuring the goodness of an
alignment based on precision, recall and F-measure. Precision
is the number of correctly found correspondences with respect
to the reference alignment (true positives), divided by the
total number of found correspondences (true positives and
false positives), and recall is the number of correctly found
correspondences (true positives) divided by the total number of
expected correspondences (true positives and false negatives).
F-measure is the harmonic mean of precision and recall.

We have integrated the PrecEval method into our OA; an
example of evaluation produced by the OA is given by the
following RDF fragment:

<rdf:RDF ..namespaces here ..>
<map:output rdf:about=’’>
<map:in1 rdf:resource="ka.owl"/>

2In particular, we used the Alignment API version 3.1. The methods
we used are StringDistAlignment that provides subStringDistance,
ngramDistance and smoaDistance string metrics, and JWNLAlignment
that computes a substring distance between two concepts exploiting their
WordNet 3.0 synsets.

<map:in2 rdf:resource="edumit.owl"/>
<map:precision>0.097</map:precision>
<map:recall>0.084</map:recall>
<map:fMeasure>0.09</map:fMeasure>
<map:nbcorrect>7</map:nbcorrect>
<map:nbfound>72</map:nbfound>

</map:output>
</rdf:RDF>

Implementation and Experiments

In order to test the behaviour of our OA we implemented
a Request Agent (RA) that acts as an interface between the
user and the OA, and allows the user to request services to
the OA. The RA receives a set of parameters from the user,
and saves them for later use. These parameters are:
• the URI of the OWL file containing the first ontology to

match, o;
• the URI of the OWL file containing the second ontology

to match, o′;
• the URI of the file where the computed alignment will

be stored;
• the URI of the file containing the reference alignment for

performing an evaluation of the computed alignment;
• the matching method (“direct matching” or “matching via

upper ontology”);
• a further optional parameter providing the URI of the file

containing the upper ontology in OWL. This parameter
is needed only in case of matching via upper ontology.

The system architecture is depicted in Figure 2.

Figure 2. Architecture of the Ontology Agent integrated into Jade.

72

During its start up phase, RA searches and identifies an OA
inside the Jade Platform.

After having received the parameters from the human user,
and having found OA, RA:
• sends as many INFORM messages to the OA, as the

parameters it wants to send to OA; the parameters are sent
as the message content (one parameter for each message);
the conversation id of the message is used to keep track
of the conversation just started;

• sends a REQUEST message asking for the matching
and evaluation services (which, in this first prototype,
are always coupled); the ontologies to match, and the
method to use, are those passed in the previous INFORM
messages.

OA starts its life with the registration of its ontology services
to the DF. When RA begins the interaction phase, OA reacts
as follows:
• it receives all the parameters from the RA and sends

an ACL Message in reply to each message, setting the
same conversation id for correctly keeping track of the
conversation, after having successfully received and saved
each parameter;

• on reception of a REQUEST message, it runs the required
matching method on the ontologies specified in the pre-
vious interaction steps with the RA;

• sends an INFORM message to notify the RA of the
accomplishment of the matching service and to communi-
cate the alignment file URI and the evaluation file URI; in
case something goes wrong, it sends a FAILURE message
to the RA.

Both agents terminate after the completion of these activi-
ties.

OA and RA have been structured according to Jade recom-
mendations for the development of agents. RA’s setup()
method includes the steps to save parameters from the com-
mand line, the instantiation of a wakerBehaviour object
in order to find the OA via DF query and the call to
the RequestPerformer behaviour. This one includes the
action() method where the agent sends the parameters,
sends the alignment and evaluation requests, and waits for the
results. It has been implemented as a generic Behaviour
class.

OA’s setup() method starts with the registration of
OA’s services to the DF and the instantiation of its
two behaviours which are of type ReceiveParameters
and Align respectively. The action() method of
ReceiveParameters is dedicated to receive the param-
eters and has been implemented as a OneShotBehaviour
class. The action() method of Align first waits for an
ontology matching request. After the request message has been
received, the matching and evaluation activities are performed,
and the result is notified to the sender. This class has been
modelled extending the generic Behaviour class.

To better synchronize the exchange of messages each of
them is received by the two agents in blocking mode and the

MessageTemplate class has also been used to deal with
conversation id patterns.

For the development of our MAS consisting of the OA and
the RA we used Jade 3.6.

In order to verify the feasibility of our approach, we have
run a large set of experiments. We discuss only two of them
in details; the other ones have been carried out in a similar
way.

In the first experiment, the RA asks the OA to execute
a direct alignment between Ka (protege.cim3.net/file/pub/
ontologies/ka/ka.owl) and Bibtex (oaei.ontologymatching.org/
2004/Contest/304/onto.rdf). Ka has 96 concepts dealing with
the academic domain, including Event (Activity, Meeting,
Conference, Workshop), Publication (concepts similar to those
of the Bibtex ontology), Organisation (Department, Enterprise,
Institute, University), ResearchTopic, whereas Bibtex has only
15 concepts including Article, Book, Conference, Manual,
Person, Publisher, etc.

Before using Ka and Bibtex in our experiments, we pre-
processed them by hand in order to remove properties and
individuals that we do not use in our matching algorithms.
We also built a reference alignment between Ka and Bibtex by
hand because we wanted to evaluate how good the alignments
resulting from the automatic matching methods were, w.r.t. the
reference one.

We passed the URIs of the two ontologies to match as
input parameters to RA together with the URI of the file
that had to contain the alignment, the URI of the file that
contains the reference alignment, and the chosen method
(direct alignment).

The second experiment also aimed at aligning Ka and Bib-
tex, but using the “matching via upper ontology” method. The
upper ontology we used is SUMO-OWL, a lossy translation
into OWL of the SUMO ontology, whose full version is
encoded in KIF.

The results of these two experiments are shown below; the
table summarizes the total correspondences found w.r.t. the
correct ones and the precision, recall and f-measure computed
by the PrecEval method integrated into our OA.

Method Found Correct Prec. Recall F-meas.
Direct 27 7 0.26 0.08 0.13
SUMO-OWL 9 6 0.67 0.07 0.13

While running this experiment, we activated the Jade sniffer
agent to follow the interactions between RA and OA. A
screenshot of the “sniffed” messages is given in Figure 3.
The messages exchanged in the first and second experiment
are very similar. In both experiments OA and RA exchange
messages to pass and save parameters. When the parameter
negotiation phase ends, the RA sends a request to OA for
performing the matching and the evaluation. The task has been
successfully executed in both experiments. As a consequence
OA sends an INFORM message to RA to inform it of the suc-
cessful outcome of the matching, and both agents terminate.

73

Figure 3. A sniffer screenshot with OA and RA agents.

The first experiment uses a direct matching method that
took less than a minute to complete3, while the second one
required about 10 minutes due to the usage of a more sophis-
ticated matching algorithm involving a large upper ontology
(SUMO-OWL has 4,393 concepts). From a comparison of the
alignments computed by the OA in the two experiments, which
are reported in Table III, it turns out that matching Ka and
Bibtex via SUMO-OWL gives the best precision (67% against
26% of the direct alignment), while recall and F-measure are
the same (recall: 7% against 8%; F-measure: 13% for both).

We have run 9 more tests. Besides Ka and Bibtex, the
ontologies that we have used in our experiments and the URLs
from where they may be downloaded are:

• Agent, 212.119.9.180/Ontologies/0.2/agent.owl
• Biosphere, sweet.jpl.nasa.gov/ontology/biosphere.owl
• Ecology, wow.sfsu.edu/ontology/rich/EcologicalConcepts.owl
• Food, silla.dongguk.ac.kr/jena-owl1/food
• Geofile, www.daml.org/2001/02/geofile/geofile-ont.daml
• HL7 RBAC, lsdis.cs.uga.edu/projects/meteor-s/wsdl-s/

ontologies/HL7 RBAC.owl
• MPEG7, dmag.upf.es/ontologies/2003/03/MPEG7Genres.rdfs
• Restaurant, guru-games.org/ontologies/restaurant.owl
• Resume, statistic.gunadarma.ac.id/research/

WorkGroupInformationSystem/DownLoad/onto colection/
resume.owl

• Space, 212.119.9.180/Ontologies/0.3/space.owl
• Subject, www.library.yale.edu/ontologies/subject.owl
• Top-bio, www.co-ode.org/ontologies/basic-bio/top-bio.owl

3We run our experiments on a HP Pavillon Notebook with Intel Core Duo
T2250 processor, 1.73 GHz of clock, 2 GB of RAM, and Windows XP.

• Travel, lsdis.cs.uga.edu/projects/meteor-s/downloads/Lumina/
ontology/travelontology.owl

• Vacation, www.guru-games.org/ontologies/vacation.owl
• Vertebrate, www.co-ode.org/ontologies/basic-bio/

basic-vertebrate-gross-anatomy.owl (Vertebrate has been
reduced by hand when running our experiments)

The experiments run consisted of matching the following
couples of ontologies:
• 1: Ka - Bibtex;
• 2: Biosphere - Top-bio;
• 3: Space - Geofile;
• 4: Restaurant - Food;
• 5: MPEG7 - Subject;
• 6: Travel - Vacation;
• 7: Resume - Agent;
• 8: Resume - HL7 RBAC;
• 9: Ecology - Top-bio;
• 10: Vertebrate - Top-bio
The obtained results are summarized in Table I. In 7

experiments out of 10, matching via SUMO-OWL allowed us
to obtain the best precision. In many cases, the recall of the two
methods can be compared even if, in some experiments, the
direct matching performs definitely better. The suitability of
the “matching via upper ontologies” method strictly depends
on the ontologies to match. From our experiments we have
learnt that for example, the type of English words used by
both upper and matched ontologies counts, as well as the
terminology used by both upper and matched ontologies.

IV. CONCLUSIONS

This paper describes a FIPA-compliant Ontology Agent
integrated in Jade, able to deal with OWL ontologies.

Our OA is able to produce alignments between two OWL
ontologies via direct matching or via an OWL version of
an upper ontology. It evaluates the obtained alignment with
respect to a given reference one and is going to be extended
with more “standard” services such as registration, discovery,
and maintenance of ontologies. The exploitation of an upper
ontology for performing an alignment between two ontologies
is a new approach that we only described in a recent technical
report. This approach represents an original contribution to the
ontology matching process.

For what concerns our decision to match concepts only,
and to limit ourselves to considering the equivalence relation,
our intention is to extend the matching methods towards the
exploitation of properties and individuals, and to take into
consideration at least subsumption and disjunction relations.

Our OA can be improved through a deeper analysis of the
FIPA-Agent-Management ontology in order to see if it is
feasible to join the description of the services provided by OA
with concepts of the Jade BasicOntology, thus allowing
the matching process, the evaluation and the correspondences
repair services to be a part of the Jade Agents semantic.
Future extensions we would like to carry on are: the modelling
of more complex behaviours which would better reflect the

74

Test Method Found Correct Prec. Rec. F-meas.
1 Manual 83 83 1.00 1.00 1.00
1 Direct 27 7 0.26 0.08 0.13
1 SUMO-OWL 9 6 0.67 0.07 0.13
2 Manual 604 604 1.00 1.00 1.00
2 Direct 26 6 0.23 0.01 0.02
2 SUMO-OWL 2 0 0.00 0.00 0.00
3 Manual 513 513 1.00 1.00 1.00
3 Direct 164 38 0.23 0.07 0.11
3 SUMO-OWL 49 22 0.45 0.04 0.08
4 Manual 1041 1041 1.00 1.00 1.00
4 Direct 107 12 0.11 0.01 0.02
4 SUMO-OWL 82 28 0.34 0.03 0.05
5 Manual 637 637 1.00 1.00 1.00
5 Direct 323 94 0.29 0.15 0.20
5 SUMO-OWL 224 93 0.42 0.15 0.22
6 Manual 262 262 1.00 1.00 1.00
6 Direct 50 19 0.38 0.07 0.12
6 SUMO-OWL 26 8 0.31 0.03 0.06
7 Manual 1122 1122 1.00 1.00 1.00
7 Direct 157 58 0.37 0.05 0.09
7 SUMO-OWL 71 31 0.44 0.03 0.05
8 Manual 295 295 1.00 1.00 1.00
8 Direct 127 36 0.28 0.12 0.17
8 SUMO-OWL 60 34 0.57 0.12 0.19
9 Manual 308 308 1.00 1.00 1.00
9 Direct 88 28 0.32 0.09 0.14
9 SUMO-OWL 140 17 0.12 0.06 0.08
10 Manual 19 19 1.00 1.00 1.00
10 Direct 12 2 0.17 0.11 0.13
10 SUMO-OWL 7 2 0.29 0.11 0.15

Table I
COMPLETE RESULTS OF OUR EXPERIMENTS

alignment, evaluation and correspondences repair tasks (i.e.
parallel behaviours for string based and language based
partial alignments which could be nested inside a sequential
behaviour able to produce the final alignment and the merged
alignment via an upper ontology), the extension of OA life to
prolong the availability of these services for the whole time
the platform is running and the exploitation of FIPA standard
interaction protocols to manage the conversation between our
agents. Separating the alignment process from the evaluation
one by providing different requests for alignment, evaluation
and correspondences repair, hence exploiting a modular
architecture, is a further goal we will pursue.

ACKNOWLEDGMENTS

The authors acknowledge the “Iniziativa Software” CINI-
FINMECCANICA project that partially funded this work.

REFERENCES

[1] American National Standard. KIF Knowledge Interchange Format –
dpANS NCITS.T2/98-004, 1998.

[2] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F.
Patel-Schneider, editors. The Description Logic Handbook: Theory,
Implementation, and Applications. Cambridge University Press, 2003.

[3] F. Bellifemine, G. Caire, and D. Greenwood. Developing Multi-Agent
Systems with JADE. WILEY, 2007.

[4] E. Brill, S. Dumais, and M. Banko. An analysis of the askmsr question-
answering system. In Conference on Empirical Methods in Natural
Language Processing, EMNLP 2002, Proceedings, 2002.

[5] N. Casellas, M. Blázquez, A. Kiryakov, P. Casanovas, M. Poblet, and
R. Benjamins. OPJK into PROTON: Legal domain ontology integration
into an upper-level ontology. In R. Meersman and et al., editors,
WORM 2005, 3rd International Workshop on Regulatory Ontologies,
Proceedings, volume 3762 of LNCS, pages 846–855. Springer, 2005.

[6] J. Euzenat and P. Shvaiko. Ontology Matching. Springer, 2007.
[7] FIPA Ontology Service Specification, 2001. http://www.fipa.org/specs/

fipa00086/XC00086D.pdf.
[8] FIPA SL Content Language Specification, 2002. http://www.fipa.org/

specs/fipa00008/SC00008I.html.
[9] A. Gangemi, N. Guarino, C. Masolo, A. Oltramari, and L. Schneider.

Sweetening ontologies with DOLCE. In A. Gómez-Pérez and V. R.
Benjamins, editors, EKAW, 13th International Conference, Proceedings,
volume 2473 of LNCS, pages 166–181. Springer, 2002.

[10] P. Grenon, B. Smith, and L. Goldberg. Biodynamic ontology: Applying
BFO in the biomedical domain. In D. M. Pisanelli, editor, Ontologies in
Medicine, volume 102 of Studies in Health Technology and Informatics,
pages 20–38. IOS Press, 2004.

[11] H. Herre, B. Heller, P. Burek, R. Hoehndorf, F. Loebe, and H. Michalek.
General formal ontology (GFO): A foundational ontology integrating
objects and processes. part i: Basic principles. Technical report, Research
Group Ontologies in Medicine (Onto-Med), University of Leipzig, 2006.
Version 1.0, Onto-Med Report Nr. 8, 01.07.2006.

[12] JENA. http://jena.sourceforge.net/.
[13] D. Lenat and R. Guha. Building large knowledge-based systems.

Addison Wesley, 1990.
[14] L. Li. Agent-based ontology management towards interoperability.

Master’s thesis, Swinburne University of Technology, 2005.
[15] L. Li, B. Wu, and Y. Yang. Agent-based ontology integration for

ontology-based application. In AOW 2005, associated with the 18th
CRPIT Conference series by Australian Computer Society, Vol 58, pages
53–59, 2005.

[16] V. Mascardi, A. Locoro, and P. Rosso. Exploiting DOLCE,
SUMO-OWL, and OpenCyc to boost the ontology matching
process. Technical Report DISI-TR-08-08, University of
Genoa, 2008. http://www.disi.unige.it/person/MascardiV/Software/
OntologyMatchingViaUpperOntology.html.

[17] I. Niles and A. Pease. Towards a standard upper ontology. In C. Welty
and B. Smith, editors, FOIS 2001, 2nd International Conference on
Formal Ontology in Information Systems, Proceedings, pages 2–9. ACM
Press, 2001.

[18] M. Obitko and V. Snáěl. Ontology repository in multi-agent system. In
M. H. Hamza, editor, Artificial Intelligence and Applications, AIA 2004,
Proceedings, 2004.

[19] OKBC. http://www.ai.sri.com/∼okbc/.
[20] A. Passadore, C. Vecchiola, A. Grosso, and A. Boccalatte. Designing

agent interactions with Pericles. In ONTOSE 2007, 2nd International
Workshop, 2007.

[21] A. Peña, H. Sossa, and F. Gutierrez. Web-services based ontology agent.
In Distributed Frameworks for Multimedia Applications, 2006. The 2nd
International Conference on, pages 1–8, 2006.

[22] Protégé. http://protege.stanford.edu/.
[23] J. F. Sowa. Knowledge Representation: Logical, Philosophical, and

Computational Foundations. Brooks Cole Publishing, 1999.
[24] G. Stoilos, G. B. Stamou, and S. D. Kollias. A string metric for

ontology alignment. In Y. Gil, E. Motta, V. R. Benjamins, and M. A.
Musen, editors, 4th International Semantic Web Conference, ISWC 2005,
Proceedings, volume 3729 of Lecture Notes in Computer Science, pages
624–637. Springer, 2005.

[25] H. Suguri, E. Kodama, M. Miyazaki, H. Nunokawa, and S. Noguchi.
Implementation of FIPA Ontology Service. In Workshop on Ontologies
in Agent Systems, Proceedings, 2001.

[26] C. Vecchiola, A. Grosso, and A. Boccalatte. AgentService: a framework
to develop distributed multi-agent systems. Int. J. Agent-Oriented
Software Engineering, 2(3):290 – 323, 2008.

[27] W3C. OWL Web Ontology Language Overview – W3C Recommenda-
tion 10 February 2004, 2004.

[28] Wikipedia. Upper ontology – Wikipedia, the Free Encyclopedia, 2008.
[Online; accessed 30-March-2008].

75

From Agents to Artifacts Back and Forth:
Operational and Doxastic use of Artifacts in MAS

Michele Piunti
Università degli studi di Bologna

DEIS - Bologna, Italy
Email: michele.piunti@unibo.it

Alessandro Ricci
Università degli studi di Bologna

DEIS - Bologna, Italy
Email: a.ricci@unibo.it

Abstract— Recent approaches in Multi-Agent Systems are
focusing on providing models and methodologies for the design
of environments and special purpose tools supposed to ease pro-
gramming in the large and scale up growing complexities. Among
others, the Agents and Artifacts (A&A) approach introduced the
notion af artifact as first class abstraction providing agents with
external facilities, services and coordination medium explicitely
conceived for promoting their activities. In this paper we analyse
A&A systems by focusing on the functional roles played by arti-
facts. In particular, we here investigate the function of artifacts
once they are employed in the context of societies of cognitve
agents, i.e. agents capable to reason about their epistemic and
motivational states. In this context, a twofold kind of interaction
is envisaged. On the one side, artifact rapresentational function
allows agent to improve epistemic states, i.e., by representing and
sharing strategic knowledge in the overall system (doxastic use).
On the other side, artifacts operational function allows agents
to improve the repertoire of actions, i.e., by providing additional
means which can be purposively triggered by agents to achieve
goals (operational use). Some of the outcomes of this approach
are discussed along with test cases showing agents engaged in
goal-oriented activities relying on the transmission of relevant
knowledge and the operations provided by artifacts.

I. INTRODUCTION

The artifact abstraction has been recently introduced in
Multi-Agent System (MAS) [13] and MAS programming
[20] as a basic building block to model and design agent
environments and, more exactly, agent work environments.
The notion of work environment used here refers to that
part of the MAS – so developed by MAS designers and
developers – which is perceived and used by agents as a
first-class entity of their world, and which provides suitable
functionalities and services that agents can exploit to ease
their individual and social activities [18]. Artifacts – as in-
troduced by the A&A conceptual model – can be conceived
as basic module to structure such work environments, rep-
resenting non-autonomous computational objects1 that agents
can dynamically instantiate, share and use as resources and
tools to support and promote their activities. Mutuating the
notion of ecosystems2 or human societies, where individuals
are supposed to behave and interact by means of shared

1The notion of object is used here in its general term, meaning a dynamic
entity with a proper identity

2Introduced by Cristopherson in [5], ecosystem has been defined as “a
natural unit consisting of all plants, animals and micro-organisms (biotic
factors) in an area functioning together with all of the non-living physical
(abiotic) factors of the environment”.

Fig. 1. A metaphorical representation of a MAS according to A&A.

knowledge, cultural transmission, memes [6], A&A states a
clear separation of concern between the entities dwelling in
a MAS: whereas agents can be considered as the proactive
actors of the systems, exhibiting a purposive and autonomous
behavior, artifacts are the non-autonomous entities, providing
agent with facilities and special purpose tools to be exploited
as external resources in order to serve a functional role [14].
According to this view, a MAS is designed and programmed in
terms of an ensemble of agents that play together in a common
(work) environment not only by communicating through some
high-level Agent Communication Languages, but also co-
constructing and co-using different kinds of artifacts, organised
in workspaces (Figure 1 shows a metaphorical picture of a
MAS in this perspective). The main source of inspiration
underlying this view comes from human societies and research
works in Activity Theory [12], remarking the fundamental role
that play artifacts in our society in mediating and supporting
human work, in particular cooperative work. Besides A&A,
CARTAGO [20] has been introduced as a platform and infras-
tructure providing a concrete computational model to program
artifacts and a distributed runtime for executing artifact-based
work environments, making it possible for agents developed on
different agent platforms to dynamically join and work inside
such environments [18].

76

At first, for MAS designers the usefulness of the artifact
abstraction concerns the availability of an explicit level of
abstraction and technologies – based on A&A concepts – for
modeling, design and programming work environments for
different kinds of purposes. This is the main line followed
by most of the existing work exploiting the notion of arti-
fact, where work environments are mainly devoted at ruling
and promoting complex social interactions. Recent examples
are [9], [8], where the notion of artifacts is used respectively
to conceive and design organisation infrastructures for open
MAS and to support the design of reputation mechanisms.

Then, a further – more challenging – level can be devised, in
which MAS designers conceive and design agents – typically
cognitive agents – which are capable to reason about their
work environment and dynamically decide how to exploit it
depending on their goals and tasks. This level is fundamental
when open MAS are of concerns, and introduces many inter-
esting and challenging issues, both on the artifact side and the
agent side.

On this line, in this paper we report on preliminary investi-
gation concerning the functional roles played by artifacts in the
context of cognitive agent societies, and we relate such roles
to the epistemic and motivational states of agents working
with artifacts. As a result, we identified two fundamental
general functions (described in Section III): (i) doxastic,
which allows agent to improve their epistemic states, by
representing and sharing strategic knowledge in the overall
system; (ii) purposive, which allows agents to improve the
repertoire of actions, by providing additional means which
can be purposively triggered by agents in order to achieve
their goals. Besides the conceptual aspects, in Section III
we show some practical outcomes of the work reporting
simple examples involving agents programmed with the Jason
agent platform [1] (based on the AgentSpeak BDI-based
agent language) engaged in goal-oriented activities involving
artifacts programmed with CARTAGO. In order to ground
the discussion and the examples provided in Section III,
Section II provides an overview about the computational
model of artifacts provided in CARTAGO and the repertoire
of actions provided to agents for playing within artifact-
based environments. Concluding remarks on the approach are
reported in Section IV.

II. THE CARTAGO PLATFORM

CARTAGO (Common ARtifact infrastructure for AGent
Open environment) is an infrastructure and a platform for
programming and executing artifact-based work environments
for MAS [20], implementing the A&A conceptual model. In
detail, the platform includes a Java-based API for program-
ming artifacts, defining new types of artifacts following the
A&A programming model, an agent API to be used in agent-
oriented programming platforms to play within CARTAGO
environments – including a basic set of actions for creating and
interacting with artifacts, and managing and joining workspace
– and a runtime and related tools, to execute and manage the

artifact-based environments. CARTAGO technology is open-
source3 and implemented on top of the Java platform.

A. Environment Model

A work environment in CARTAGO is conceived as col-
lection of workspaces possibly distributed on different nodes
where the infrastructure has been installed (referred in the
following as CARTAGO nodes). Agents (possibly in exe-
cution on multiple and heterogeneous agent platforms) can
dynamically join and quit the workspaces, possibly working
in multiple (and distributed) workspaces at the same time.
A Role-Based Access Control (RBAC) model is adopted for
specifying and managing security aspects at workspace level,
ruling agent entrance and exit, and agent access and interaction
with artifacts.

By default, each workspace contains a set of pre-defined
artifacts, created at the workspace creation time, which pro-
vides some fundamental functionalities and facilities for agents
working inside the workspace and for workspace(s) manage-
ment. Among the others, a factory artifact is used to instantiate
artifacts, specifying the artifact template and a name and a
registry artifact is used to keep track of the set of artifacts
actually available in the workspace. The general idea is to reify
in terms of a suitably designed artifact every infrastructure part
and functionality so as to make it observable, controllable,
adaptable by agents themselves (meaning agents that have the
permission to do that according to their role), besides human
administrators.

B. Programming Artifacts: An Example

To give a taste of artifact programming model, here we
briefly describe a simple example of artifact, a bounded-
inventory, which contains main aspects of the artifact model,
namely observable properties and a usage interface, besides
basic synchronization functionalities. The bounded-inventory
is a kind of coordination artifact designed to function as a
shared inventory mediating the exchange of some kind of items
between a possibly dynamic number of producer agents and
consumer agents [11]. The producers-consumers problem is
typical in concurrent systems, where agents are supposed to
adopt effective strategies with respect of the shared resorce
and taking into account further bounded resources like time
and space (memory). This requires some kind of coordination
strategy between agents, i.e., in order to coordinate the cyclic
production of items by producer and the activities performed
by consumer agents. To this end, the bounded-inventory pro-
vides a coordination mechanism to uncouple and – at the same
time – synchronize the activities of producers and consumers,
thus providing a locus of design (the size of the inventory) for
tuning the performance of the system.

Looking at the CARTAGO implementation in Figure 2,
the bounded-inventory artifact provides a usage interface
with two operation controls to respectively insert (put)
e consume (get) items, and two observable properties,

3Available at http://cartago.sourceforge.org.

77

OBSERVABLE PROPERTIES:

n_items: int+
max_items: int

Invariants:
n_items <= max_items

USAGE INTERFACE:

put(item:Item) / (n_items < max_items):
 [obs_prop_updated, op_exec_completed]

get / (n_items >= 0) :
 [obs_prop_updated, new_item(item:Item),
 op_exec_completed]

put

n_items 0
max_items 100

get

import alice.cartago.*;
import java.util.*;

public class BoundedInventory extends Artifact {
 private LinkedList<Item> items;

 @OPERATION void init(int nmax){
 items = new LinkedList<Item>();
 defineObsProperty("max_items",nmax);
 defineObsProperty("n_items",0);
 }

 @OPERATION(guard="inventoryNotFull") void put(Item obj){
 items.add(obj);
 updateObsProperty("n_items",items.size()+1);
 }

 @OPERATION(guard="itemAvailable") void get(){
 Item item = items.removeFirst();
 updateObsProperty("n_items",items.size()-1);
 signal("new_item",item);
 }

 @GUARD boolean itemAvailable(){ return items.size() > 0; }

 @GUARD boolean inventoryNotFull(Item obj){
 int maxItems = getObsProperty("max_items").intValue();
 return items.size() < maxItems;
 }
}

Fig. 2. A simple bounded-inventory artifact, exploiting operation control guards to synchronize agent use of the inventory.

max nitems, showing the maximum capacity of the inven-
tory, and n items, showing the current number of items
stored in the inventory. Internally, a simple linked list is used
to store items. The synchronization functionality provided
by the artifact is realised here by exploiting a basic feature
of the artifact programming model, which accounts for the
possibility of defining guards that specify when an operation
controls is either enabled or disabled. In the example the
put control is allowed only when the inventory is not full
(inventoryNotFull guard), and get is allowed when the
inventory is not empty (itemAvailable guard). Hence, if
an agent selects the put operation control and the inventory
is full, the action is suspended. Analogously for the get
control, if the inventory is empty. A most detailed description
of the Java-based API and of this use case, along with other
examples, can be found in [19].

C. Integration with Agent Platforms

CARTAGO is envisaged for enabling full interoperability
across heterogeneous agent platforms, hence it has been de-
signed to be orthogonal to the specific models and technologies
adopted for the agents working in it. It allows integration and
exploitation in principle of any agent programming platform,
enabling agents of heterogeneous platforms (and finally mod-
els and architectures) to interact and interoperate as part of the
same MAS, sharing common artifact-based environments [18].

To realise such integration, both from a conceptual and
engineering point of view, the notion of agent body is ex-
ploited, as that part of an agent which is belonging to a
CARTAGOworkspace. Whereas the agent mind remains in
execution externally – whithin the agent platform – an agent
body is physically running in a CARTAGOsystem. Hence,
the agent body logically and physically situates an agent
in a CARTAGOworkspace: in particular, it contains proper
effectors that make it possible essentially to act upon (use)
artifacts, and sensors to detect and perceive observable events
generated by artifacts, possibly applying filters and specific
kinds of “buffering” policies. From an architectural point of
view, to connect agent mind and agent body, platform-specific
bridges are introduced, functioning as wrappers on the agent
mind side to control the body and perceive stimuli collected
by body’s sensors. Currently, bridges exists for Jason [1], an
interpreter for an extended version of AgentSpeak, Jadex [17],
a BDI agent platform based on Java and XML as mainstream
language / technologies to develop intelligent software agent
systems, and simpA [21], a Java-based agent-oriented frame-
work based on the A&A conceptual model.

D. The Tenet of Agent-Artifact Interaction Model: Use and
Observation

To enable interactions between agents and artifacts the
repertoire of actions natively provided by the agent platforms

78

is extended with a new set of special-purpose actions envis-
aged for playing inside an artifact-based environment. The
overall set of new actions can be grouped in four groups, as
depicted in Table I: (i) join and leave workspaces; (ii) create,
lookup, dispose of an artifact; (iii) use an artifact; (iv) observe
an artifact without directly using it.

The core part of this set is given by actions in the last two
groups, concerning artifact use and observation. The agent
activities bleonging to artifact use and observation are the tenet
of the agent-artifact interaction model and their understanding
is the pivotal underpinning of this work.

The use action is provided to agents so as to act upon the
artifact by selecting an operation control. To use an operation
its description needs to be part of the artifact usage interface,
and eventually specifying parameters required by the control
(see Figure 3). If the use action succeeds, then a new instance
of the operation linked to the operation control starts its
execution inside the artifact. The execution of the operation
eventually generates a stream of observable events that may
be perceived both by the agent which is responsible of the
operation execution and by all the agents that are observing the
artifact. Some basic types of events are meant to be generated
by default by artifacts, in spite of their specific type, in corre-
spondence to particular situations (i.e., the completion or the
failure of an operation, the update of an observable property, or
rather the disposal of an artifact). Two aspects are important
here. First, the execution of a use action upon an operation
control involves a synchronous interaction between the agent
and the artifact: action success means that the operation linked
to the control has started its execution. Second, the execution
of the operation is completely asynchronous with respect to
agent activity. Hence, use does not involve any transfer of
control as it happens in the case of remote procedure call
or method invocation in procedure-based or object-oriented
systems.

Besides use, observation is the second main aspect concern-
ing agent-artifact interaction. To perceive the observable events
generated by the artifact two basic modalities are possible,
called here active and passive. In the active modality, the agent
doing a use explicitly indicates a sensor as a parameter. The
sensor is thus meant to collect all the observable events (which
can be reffered to the triggered operation) as soon as they
are generated; then, a further sense action is provided to
the agent to actively fetch those events as percepts, possibly
specifying filtering rules. In so doing the agent actively retrieve
the percepts from the sensor on demand, as soon as it needs
it. Sensors in this case play the role of perceptual memory
explicitly manageable by the agent, who can use them to
organise in a flexible way the processing of the events, possibly
generated by multiple different artifacts that an agent can be
using for different, even concurrent, activities.

In the passive modality events generated by an artifact
are authomatically made observable to the agent directly
as native/internal events, without the explicit mediation of
sensors. In other terms, the bridge mechanism translate the
events coming from the scrutinized artifact into events holding

the agent architecture. Besides, the agent passively receives
those events as native signals to be handled within the rea-
soning cycles. Those events are supposed to contain relevant
information about the occurrence of the originating artifact
event (i.e. , the source of the event, associated labels, contents
etc.).

As an additional interaction modality, besides perceiving
the events related to a previous use, a support for pure
observation – that is, observation without use – is provided,
concerning both observable properties and observable events.
For continuous observation of properties and events a specific
action called focus is provided (see Figure 4): by executing a
focus on a specific artifact, an agent can continuously perceive
the state of artifact observable properties and thus is notified
of all the observable events that the artifact will generate from
that moment on, even if it is not actually using it. Observable
properties are directly mapped onto agent percepts and then,
for cognitive agent architecture in particular, can be related to
percepts or beliefs indicating the situated state of the artifact.
For observable events, the two perceptive (active and passive)
modalities are available also for the focus action, either spec-
ifying or not a sensor. The semantics is the same as in the use
case: by specifying a sensor all the observable events generated
by the artifact are detected by the sensor and eventually fetched
by the agent through a sense internal action. A further action
concerning observation is observeProperty, which makes
it possible read the current value of a specific observable
property, which is returned directly as feedback of the action.

It’s worth noting that continuous observation of properties
and perception of events have different characteristics (and
then purposes, from the designer point of view). In particular,
observable properties represent the state of the environment
(structured in terms of artifacts) and, as such, it could change
with a frequency that could be beyond agent perceiving
(and related) capabilities. Instead, observable events represent
changes in the world and typically are buffered and processed
in some kind of order that could depend on event priorities
or agent actual promptness. This is true in particular for
cognitive agents which can indeed follow adaptable strategies
in allocating their attentive resources.

Agents using mental states are the ideal candidate to manage
complex interactions from agents to artifacts involving inter-
leaved operation calls performed on heterogeneous artifacts
distributed across nodes and workspaces. Based on the various
execution models employed by the various integrated agent
platforms, more complex form of loosely coupled interaction
between agents and artifacts can be suitably conceived. In
what follows we’ll provide a systematization on the functional
terms at which a complex interaction can be conceived in
cognitive terms. Whereas agents perceptive capabilities allow
to dynamically store and situate information which is relevant
for the ongoing purposes, reasoning capabilities may promote
the use of external services provided by artifacts, orchestrating
a tight composition of chained sequences of operation calls.

79

(1) joinWorkspace(+Workspace[,Node])
(2) quitWorkspace
(3) makeArtifact(+Artifact,+ArtifactType[,ArtifactConfig])
(4) lookupArtifact(+ArtifactDesc,?Artifact)
(5) disposeArtifact(+Artifact)
(6) use(+Artifact,+UIControl([Params])[,Sensor][,Timeout][,Filter])
(7) sense(+Sensor,?PerceivedEvent[,Filter][,Timeout])
(8) focus(+Artifact[,Sensor] [,Filter])
(9) stopFocussing(+Artifact)
(10) observeProperty(+Artifact,+Property,?PropertyValue)

TABLE I
ACTIONS INTRODUCED IN AGENT’S REPERTOIRE ALLOWS THE INTERACTION IN CARTAGOWORKING ENVIRONMENT. THEY ARE FUNCTIONALLY

DIVIDED IN FOUR MAIN GROUPS: FOR MANAGING WORKSPACES (1–2), FOR CREATING, DISPOSING AND LOOKING UP ARTIFACTS (3–5), FOR USING

ARTIFACTS (6–7), AND FOR OBSERVING ARTIFACTS (8–10). SYNTAX IS EXPRESSED IN A LOGIC-LIKE NOTATION, WHERE ITALICISED ITEMS IN SQUARE

BRACKETS ARE OPTIONAL. CONCRETE REALISATION OF THE ACTIONS DEPENDS ON THE SPECIFIC AGENT PROGRAMMING PLATFORM WHICH HAS BEEN

INTEGRATED [18], [15]

myOpControl(X)

ValuePropName

ValuePropName
......

AGENT

use
myOpControl(x)

AGENT OPERATION EXECUTION
AGENT

EVENTS
GEN OBS PROPERTIES

CHANGE

myOpControl(X)

ValuePropName

ValuePropName
...

OPERATION EXECUTION

myOpControl(X)

ValuePropName

Value
...

Fig. 3. Using an artifact: by selecting the myOpControl control belonging to the usage interface, a new operation instance starts its execution inside
the artifact. The execution of the operation will eventually generate events observable to the user agents – and to all the agents observing the artifact – and
possibly update artifact observable properties.

AGENT

focus
Belief base
(or alike)

PropName(Value).
PropName(Value).
...

myOpControl(X)

ValuePropName

ValuePropName
...

AGENT

Belief base
(or alike)

PropName(Value).
PropName(Value).
...

myOpControl(X)

ValuePropName

ValuePropName
...

USE

AGENT

myOpControl(X)

ValuePropName

Value
...

observe
property

(+PName,?Value)

Fig. 4. Observing an artifact: by focussing an artifact, an agent is (1) continuously made aware of observable properties value as percepts typically mapped
into agent belief base, and (2) receives all the observable events generated by the artifact in executing operations possibly triggered by other user agents.

III. COGNITIVE USE OF ARTIFACTS

A main aspect of cognitive system study concerns the
investigation of how information is represented and how those
representations are transformed, combined and propagated so
as to form a behavior [24]. In particular, we here refer to
a general explanation of cognitive agents built upon the two
pronged notion of epistemic and motivational states. In this
view, cognitive agents can be described as intentional systems
able to autonomously reason about their resources – mappable
upon internal representations – in order to pro-actively reach a
desired state of affairs. On the epistemic dimension, cognitive
agents are assumed to support their reasoning processes on
the basis of their internal knowledge, namely “beliefs”. Beliefs
can be viewed as those doxastic representation related on the

information agents are able to find, integrate and take into
account. Besides epistemic states, motivational states allow
agents to “pursue” a given course of actions, i.e. by committing
an intention (among the achievable ones) through the execution
of some action or plan they have in repertoire. On these bases,
in this section we refer to artifacts which can be cognitively
used, read and created by cognitive agents.

In this view, artifact are supposed to be (not only) com-
putational components structuring the environment (but also)
resources which can be interactively and cognitively exploited
by agents to attain their goals. Given the model abstractly
described in Section II the following sections provide a deeper
analysis on the cognitive terms underlying interactions from
agents to artifacts. Before detailing the operational and dox-

80

astic use of artifacts, the next section describes the cognitive
use of active and passive perception styles.

A. Active and Passive Interaction Styles

As seen in Subsection II-D, two basic approaches have
been envisaged for agents in order to manage their percep-
tive activities upon scrutinized artifacts, namely active and
one passive modalities. Sensors can be seen as part of an
agent body, logically situating an agent into a workspace and
containing both sensors and effectors to act upon artifacts of
that workspace. Hence, in the active modality sensors play the
role of perceptual memory or external working memory, whose
functionality accounts for keeping track of stimuli arrived
from the CARTAGO environment. Accordingly, sensors can
be programmed by defining rules, filters and specific kinds
of “buffering” policies. This allows agents to retrieve relevant
events, even interleaved and generated by multiple artifacts
that the agent may use for different, even concurrent, purposes.
This approach provides to agent developers the possibility
to customize the perceptive activities at an intentional level.
Percepts generated by artifacts can be situated in the context
of the adopted goals, and thus managed through internal
actions to be executed within the plan workflow. In so doing,
active perception makes it possible for agents developper to
organize perceptive activities – at the programming level –
as flexibly as they wish. For instance, in active modality, a
given sensor can be devoted to filter relevant events coming
from a scrutinized artifact so as to suddenly become aware on
artifact changes. Accordingly, filterd events can be proactively
and intentionally processed, i.e. in order to update beliefs or
check goal achievement.

The passive modality allows the automatic propagation of
native internal events at runtime, generated by translating
on the fly the events coming from the scrutinized artifacts.
This makes it possible for agents to react to observable
event asynchronously, as soon as they are perceived. This
functioning is supposed to ease agent’s reasoning allowing
pivotal processes as goal adoption and plan selection to be
governed by internal events, which in turns can be targeted on
the basis of the events coming from artifacts. This might be the
case when agents perform activities in a reactive fashion, for
instance when they have to check the execution of operations
wich has been externalised in artifacts, as well as a control
activity is being automated in the human case. As showed
in [15], [16], using events coming from artifacts the agent
can handle events so to trigger plans and thus decide the next
course of actions. This has a special importance once the agent
needs to manage low level and routinized interaction activities.
Besides reactive behavior, events coming from artifacts can
signal to the agent situation requiring particular servicing:
once abnormal values are encountered or exceptional situations
arrive, agents can arouse and suitably exploit such signals
for reentering the deliberation process or for reconsider their
intention. Besides, becoming aware about those relevant facts,
agents can elicit reallocation of resources, recovery policies,
exception handling etc.

B. Operational function

Artifact operations, controlled by the usage interface, encap-
sulate artifact’s intended purposes4. From the agent viewpoint,
operations can be suitably used to improve agent repertoire of
actions, providing additional means to achieve agents’ goals.
They can be targeted dynamically by agents so as to exter-
nalise and distribute (part of) their goal-oriented activities. For
doing this, operation outcomes have to be taken into account
by agents in their practical reasoning. In fact, by changing the
actions required for achieving a given goal, artifact operations
change agent means-end reasoning5 stages.

This aspect can be tackled at different conceptual levels. The
first, most obvious, solution is to integrate artifacts functional-
ities in the agent’s developing phases. In so doing artifacts use
can be defined at the language level, by defining the operation
control in an off-line fashion, at design time. Referring to the
bounded-inventory example introduced in Subsection II-B, an
agent having the goal to produce a new item and put it in the
buffer may use the following intention (agent’s specification
is provided with Jason language):
+!produceItems : nextItemToProduce(Item)
<- cartago.lookupArtifact("my-inventory", InvID)

cartago.use(InvID,put(Item),5000).

-!produceItems: true
<- cartago.use(console,

println("Insertion failed due to timeout.")).

The agent here selects the intention to store an item on the
inventory once an Item has been prepared and is available
in the belief base. Then the adopted intention first lookups
the my-inventory artifact to retrieve its system identifier
InvID and then stores the item by selecting the put control
provided by the artifact usage interface. Notice here the
presence of a 5000 milliseconds timeout, after which the action
(and the plan) is considered failed and a message is printed
on the console by the goal deletion plan -!produceItems.

Besides, a consumer agent can cyclically adopt the follow-
ing plan to attain an item on the inventory:
+!consume
: myInventory(InvID) & mySensor(S)
<- cartago.use(InvID, get, S, 1000);

cartago.sense(S, new_item(Item));
!consumeItem(Item);
!consume.

+!consumeItem(Item) : true <- ...

Notice that a sensor identified by S is explicitly used by
the consumer to detect and manage the final event of type
new item(Item) generated by the artifact at the end of the
get operation. This event represents for the agent the signal
indicating a goal achievement.

4Notice that before beeing in the intention of an agent who wants to use the
artifact, the intended purpose is in the mind of artifact designer, who conceive
it in order to serve an operation or a function.

5We here refer to the notion of cognitive agents able to find a successful
sequence of actions, between the ones he has in repertoire, in order to attain an
adopted goal. Several agent architectures founded on this reasoning principle
have been presented in the last decades, many of which can be related to the
conceptual model provided by [2]

81

C. Doxastic function

A secondary function, dual to operational one, is about
informational, observable and retrievable knowledge provided
by artifacts and represented by their observable properties.
In this case, from an agent point of view, artifacts are in-
formational units functioning to maintain, make it observable
and pre-process information which is exploitable in a situated
way. In other terms, by embedding machine-readable repre-
sentations, an artifact can be a target for agents epistemic
actions [10]. This entails for agents the opportunity to use, read
and observe artifacts to attain new information and possibly
update beliefs, solely with the aim to improve the knowledge
base with information which is strategic for their tasks. In
this view, artifacts are supposed to provide observable cues
in order to highlight relevant information (thus improving
agent’s situated cognition). This turns to be important for
shaping goal-supporting beliefs, i.e. those beliefs required
to agents for ruling over deliberation and practical reason-
ing [4]. Accordingly, information available with artifacts can
ease agent reasoning, for instance simplifying and improving
agent’s decision making and remarkably easing belief update
processes.

As a simple example of doxastic use, we consider here
an extension of the producer-consumer scenario in which
two bounded inventories are used instead of one (to avoid
centralisations, for instance). By continuously observing the
number of items of both the inventories, consumer agents must
dynamically decide which artifact to use to consume a new
item, choosing the one with more items so as to minimise
the probability to get stuck because of the inventory is empty.
To this end the continuous observation of artifact observable
properties is exploited:

+!consumeActivity : true
<- +min_items(-1);

cartago.lookupArtifact("my-inventory-1", InvID1);
cartago.focus(InvID1);
cartago.lookupArtifact("my-inventory-2", InvID2);
cartago.focus(InvID2);
+selectedInv(InvID1,0);
!consumeAction.

+n_items(N) [source(percept), artifact(InventoryID)] :
selectedInv(_,N1) & N > N1
<- -+selectedInv(InventoryID,N).

+!consumeAction : selectedInv(InvID,_)
<- cartago.use(InvID, get, mySensor);

cartago.sense(mySensor, new_item(Item));
cartago.use(console,println(" Consumed Item: ", Item));
!consumeAction.

The agent here uses the goal-supporting belief
selectedInv(InventoryID,NItems) to store the
identifier of the inventory with the greatest number of items,
among the observed inventories. Such a belief is initially set
for my-inventory-1 artifact in the consumeActivity
plan, then it is updated by the second plan of the agent each
time a new percept about the actual value of the observable
property n items of any observed inventory is perceived.
In the plan, the annotations [source(percept),
artifact(InventoryID)] make it possible to retrieve

the identifier of the artifact source of the percept.
So, in this case agents are aware of the current state of the

artifacts and can rule their means-end reasoning based on goal-
supporting beliefs which are read on the artifacts. A similar
strategy can be implemented for the producer agents (the code
is here omitted for brevity) that can use a twofold strategy for
choosing the inventory where to put a new item.

D. Discussion

Some final remarks are worth to be taken into account
on these cognitive aspects. A first pivotal aspect in threating
operational functionalities of artifacts relates on the motiva-
tional attitudes of agents. Actually abilities to handle goals are
variously characterized by mainstream agent platforms [22].
The procedural goal approaches can be related to agents
functioning according to transitions within the action selection
policy, where the goal is not explicit in agents specification
and where a behavioral policy is rather constructed by the pro-
grammer through procedures taking into account the intended
goal states. We refer, in the case of agents adopting procedural
goals, to a goal-oriented use of artifacts. On the contrary,
declarative goal approaches refer to agents able to process
goals explicitly represented as internal states, where declara-
tiveness stands for explicit representation of goals described
either in terms of end-states either in terms of execution states
within the reasoning process. As discussed in [15] describing
integration between the Jadex agent platform and CARTAGO,
we refer, in the case of agents dealing declarative goals, to
a stronger notion of usabilty, namely goal-directed use of
artifacts. A more advanced approach in exploiting operational
function envisages an on-line integration, by which agents
are enabled to dynamically discover and afford artifact which
are not known at design time. This approach requires the
additional capability for agents to afford artifacts and map op-
erations, learned form artifact’s machine readable descriptions,
in their planning and means-end processes. As in the human
case, once once an artifact has been acknowledged in terms of
its descriptions (i.e. through manuals), agents can learn to use
operations. In addition, by introducing planning capabilities,
an agent can switch actions of his repertoire with operations
provided by artifacts to achieve goals.

As for the doxastic function, the contribute of artifacts in
easing epistemic activities is remarkable also in the context of
Multi Agent scenario. Here the pivotal aspect is the distribution
of information in the overall society of agents. In particular,
information can be spread over several orthogonal dimensions:
(i) across agents: by organising and making available relevant
information as permanent side-effect of artifact use (modifica-
tion of artifact state); (ii) across platforms: once interactions
between agents are mediated by artifacts, heterogeneous plat-
forms can be integrated at the same domain level. Moreover
agents acquire an additional option to communicate, being
artifacts a suitable alternative to protocols based on message
exchange; (iii) across time: artifacts are designed to hold
strategic information whic can persist also over interleaved
presence of individual agents; (iv) across space: the topological

82

notion of work environments makes it possible for agents to
distribute their activities between many nodes and workspaces.
This entails no need for agents mutual presence within a given
location/place.

IV. CONCLUSION AND RELATED WORKS

In this work we provided a common grounding for theories
and programming approaches based on A&A interaction. In
particular, we investigated cognitive aspects of interactions
between agents and artifacts, describing the terms of the
interaction since the definition of the perceptive activities
needed for agents to cognitively operate with artifacts. By
adopting a functional approach, we described the twofold
role played by artifact once they are used by a cognitive
agent. On the one side artifacts are supposed to provide
operations, wich agents can exploit to perform activities and
attain goals (operational function). On the other side artifacts
embeds information which is readable by agents to improve
their epistemic states and can be considered as repositories
of relevant information in working environments (doxastic
function).

Nevertheless the role of the environment as first-class ab-
straction in designing complex MAS has been largely ac-
knowledged in literature (see [25] for a survey), few works
consider the issue of cognitive agents interacting in properly
designed environments. Among others, Brahms [23] is a
programming language and platform to develop and simulate
multi-agent models of human and machine behavior, based
on a theory of work practice and situated cognition. Another
approach has been developed by Holvoet and Valckenaers [7],
who introduce Delegate MAS as a mean to design environment
in BDI-based agent architectures. A further work is GOLEM
[3], that introduces a platform for modeling situated cognitive
agents in distributed environments by declaratively describing
the representation of the environment in a logic-based form.

REFERENCES

[1] Rafael Bordini, Jomi Hübner, and Mike Wooldridge. Programming
Multi-Agent Systems in AgentSpeak Using Jason. John Wiley & Sons,
Ltd, 2007.

[2] M. Bratman. Intention, Plans, and Practical Reason. Harvard University
Press, 1987.

[3] Stefano Bromuri and Kostas Stathis. Situating Cognitive Agents in
GOLEM. In Engineering Environment-Mediated Multiagent Systems
(EEMMAS’07), 2007.

[4] C. Castelfranchi and F. Paglieri. The role of beliefs in goal dynamics:
Prolegomena to a constructive theory of intentions. Synthese, 155:237–
263, 2007.

[5] R.W. Christopherson. Geosystems: An Introduction to Physical Geog-
raphy. 1996.

[6] Richard Dawkins. The Selfish Gene. Oxford University Press, 1976.
[7] Tom Holvoet and Paul Valckenaers. Beliefs, desires and intentions

through the environment. In AAMAS’06, Proceedings, pages 1052–1054,
New York, NY, USA, 2006. ACM.

[8] Jomi F. Hübner, Olivier Boissier, and Laurent Vercouter. Instrumenting
multi-agent organisations with reputation artifacts. In Virginia Dignum
and Eric Matson, editors, Coordination, Organizations, Institutions and
Norms (COIN@AAAI), held with AAAI 2008, 2008.

[9] Rosine Kitio, Olivier Boissier, Jomi Fred Hübner, and Alessandro Ricci.
Organisational artifacts and agents for open multi-agent organisations:
“giving the power back to the agents”. In J. Sichman, P. Noriega, J. Pad-
get, and S. Ossowski, editors, Coordination, Organizations, Institutions,
and Norms in Agent Systems III, LNCS. Springer, 2008.

[10] Paul P. Maglio and David Kirsh. Epistemic action increases with skill.
In 18th Annual Conference of the Cognitive Science Society, pages 391–
396. Erlbaum, 1996.

[11] Thomas Malone and Kevin Crowston. The interdisciplinary study of
coordination. ACM Computing Surveys, 26(1):87–119, 1994.

[12] B. A. Nardi. Context and Consciousness: Activity Theory and Human-
Computer Interaction. MIT Press, 1996.

[13] Andrea Omicini, Alessandro Ricci, and Mirko Viroli. Artifacts in the
A&A meta-model for multi-agent systems. Autonomous Agents and
Multi-Agent Systems, 17 (3), December 2008.

[14] Andrea Omicini, Alessandro Ricci, Mirko Viroli, Cristiano Castel-
franchi, and Luca Tummolini. Coordination Artifacts: Environment-
based Coordination for Intelligent Agents. In Proceedings of AAMAS’04,
volume 1, pages 286–293, New York, USA, 2004.

[15] M. Piunti, A. Ricci, L. Braubach, and A. Pokahr. Goal-Directed
Interactions in Artifact-Based MAS: Jadex Agents playing in CARTAGO
Environments. In 2008 IEEE/WIC/ACM Conferences on Web Intelli-
gence and Intelligent Agent Technology (IAT-2008). IEEE, 2008.

[16] Michele Piunti and Alessandro Ricci. Cognitive Artifacts for Intelligent
Agents in MAS: Exploiting Relevant Information residing in Environ-
ments. In Workshop on Knowledge Representation for Agents and Multi-
Agent Systems (KRAMAS 2008). Sydney, 2008.

[17] A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: A BDI Reasoning
Engine, chapter Chapter of Multi-Agent Programming. Kluwer Book,
2005.

[18] A. Ricci, M. Piunti, L. D. Acay, R. Bordini, J. Hubner, and M. Dastani.
Integrating Artifact-Based Environments with Heterogeneous Agent-
Programming Platforms. In AAMAS’08, Proceedings, 2008.

[19] Alessandro Ricci, Michele Piunti, Mirko Viroli, and Andrea Omicini.
Environment programming in CARTAGO. In R. H. Bordini, M. Dastani,
J. Dix, and A. El Fallah Seghrouchni, editors, Programming Multi-
Agent Systems. To appear. The draft of the chapter is available at:
http://137.204.107.188/ aricci/Drafts/chapter-mas-programming.pdf.

[20] Alessandro Ricci, Mirko Viroli, and Andrea Omicini. The A&A
programming model & technology for developing agent environments
in MAS. In ProMAS’07,Post-proceedings, volume 4908 of LNAI, pages
91–109. Springer, 2007.

[21] Alessandro Ricci, Mirko Virolil, and Giulio Piancastelli. simpA: A sim-
ple agent-oriented Java extension for developing concurrent applications.
In Mehdi Dastani, Amal El Fallah Seghrouchni, Joao Leite, and Paolo
Torroni, editors, Languages, Methodologies and Development Tools for
Multi-Agent Systems (LADS 2007, volume 5118 of LNAI, pages 176–
191. Springer-Verlag, Durham, UK, 2007.

[22] M. Birna Van Riemsdijk, Mehdi Dastani, and Michael Winikoff. Goals
in agent systems: A unifying framework. In Intern. Conf. on Autononous
agents and Multi-Agent Systems (AAMAS08), 2008.

[23] Marteen Sierhuis and William J. Clancey. Modeling and simulating work
practice: A human-centered method for work systems design. IEEE
Intelligent Systems, 17(5), 2002.

[24] Herbert Alexander Simon. The Sciences of the Artificial. MIT Press,
Cambridge, Mass., 1981.

[25] Danny Weyns and H. Van Dyke Parunak. Special issue on environments
for multi-agent systems. Autonomous Agents and Multi-Agent Systems,
14(1):1–116, February 2007.

83

Abstract. This document shortly describes powerJADE, an

improved JADE framework [4] which provides the primitives to
manage organizations and roles .

I. THE MODEL OF ORGANIZATIONS AND ROLES
Organizations are the subject of many recent papers in the

MAS field, and also among the topics of workshops like
COIN, AOSE, CoOrg and NorMAS. They are used for
coordinating open multiagent systems, providing control of
access rights, enabling the accommodation of heterogeneous
agents, and providing suitable abstractions to model real
world institutions [12].

Many models have been proposed [16], applications
modeling organizations or institutions [22], software
engineering methods using organizational concepts like roles
[26]. However, up to now, on the one hand, despite the
development of several agent programming languages among
which 3APL [25], few of them have been endowed with
primitives for modeling organizations and roles as first class
entities (exceptions are MetateM [15], J-Moise+ [19], and the
Normative Multi-Agent Programming Language in [24]). On
the other hand, frameworks for modelling organizations like
S-Moise+ [20] and MadKit [17] offer limited possibilities to
program organizations.

The heterogeneity of solutions show a lack of a common
agreement upon a clear conceptual model of what is an
organization; the ontological status of organizations has been
studied only recently and thus it is difficult to translate the
organizational model in primitives for programming
languages.

Our proposal, the introduction of primitives for
organizations and roles in JADE, is mainly based on the
ontological model of organizations and roles of [7]. However,
since this model disregards the problem of how agents play
roles in organizations, in [6] we integrated our model with the
model of role playing of [11]. The model of [7] is focused on
the definition of the structure of organizations, given their
ontological status, which is only partly different from the one
of agents or objects. On the one hand, roles do not exist as
independent entities, since they are linked to organizations.
Thus they are not components like objects. Moreover,
organizations and roles are not autonomous and act via role
players. On the other hand, organizations and roles are
description of complex behaviours: in the real world,
organizations are considered legal entities, so they can even
act like agents, albeit via their representative playing roles.

So, they share some properties with agents, and, in some
respects, can be modelled using similar primitives.

Thus, in our model, roles are entities, which contain both

state and behaviour: we must distinguish with the term “role”,
the role instance associated with a player, while the general
specification of a role is defined as a “role type”. For each
agent, when it asks to an organization to play a role of a given
type, an instance is created, representing the possibility for
the player of interacting with the organization, and with the
other roles, and the state of the interaction between the agent
and the organization. As recognized by [10] this feature is
quite different from other approaches which use roles only in
the design phase of the system, as, e.g., in [26].

The goals, together with the beliefs, attributed to a role (as
also in [11]) describe the behaviour expected from the player
of the role, since an agent pursues his goals based on his
beliefs. The player should be aware of the goals attributed to
the roles, since it is expected to follow them (if they do not
conflict with other goals of the agent).

Most importantly, roles work as “interfaces” between
organizations and agents: they give so called “powers” to
agents, extending their abilities, allowing them to operate
inside the organization and inside the state of other roles. An
example of such powers, called “institutional powers” in [21],
is the signature of a director which counts as the commitment
of the entire institution. If, on the one hand, roles offer powers
to agents, they request from agents who want to play roles a
set of requirements, abilities that the agents must have, like
also in [9]. Thus, the set of roles an agent can play is not
determined a priori, but it depends on which abilities are
required by the role of an institution.

Powers are invoked by players on their roles, but they are
executed by the roles, since they have both state and
behaviour. Boella and van der Torre’s [7] model focuses on
the dynamics of roles in function of the communication
process: role instances evolve according to the speech acts of
the interactants , where speech acts are an example of powers
which change not only the state of the role making the speech
act, but also of other roles (see [5]). E.g. the commitments
made by a speaker of a promise or by commands made by
other agents playing roles which are empowered to give
orders. In this model, sets of beliefs and goals (as [11] does)
are attributed to the roles. They are the description of the
expected behaviour of the agent. The powers of roles specify
how the state of the roles changes according to the moves
played in the interactions by the agents enacting other roles.
Roles are a way to structure the organization, to distribute
responsibilities and a coordination means.

powerJADE: Organizations and Roles as Primitives
in the JADE Framework

Matteo Baldoni, Guido Boella, Mauro Dorni, Andrea Mugnaini, and Roberto Grenna

84

Roles allow to encapsulate all the interaction between an
agent and an organization and between agents in their roles.
The powers added to the players can be different for each role
and thus represent different affordances offered by the
organization to other agents to interact with it [2].

Using the distinction of Omicini [22], we use our model [7]
as an objective coordination mechanism, like for example
artifacts: organizations are first class entities of the MAS
rather than a mental constructions which agents use to
coordinate themselves.

However, this model leaves unspecified, how, given a role,
its player will behave. In Dastani [11], the problem of
formally defining the dynamics of roles, is tackled identifying
the actions that can be done in an open system such that
agents can enter and leave. In [11] four operations to deal
with role dynamics are defined: enact and deact, which mean
that an agent starts and finishes to occupy (play) a role in a
system, and activate and deactivate, which means that an
agent starts executing actions (operations) belonging to the
role and suspends the execution of the actions. Although is
possible to have an agent with multiple roles enacted
simultaneously, only one role can be active at the same time:
when an agent performs a power, he is playing only one role
in that moment.

II. ORGANIZATIONS, ROLES, AND PLAYERS IN JADE

In this section we describe how we use our model in [7] to
extend the JADE framework with primitives for programming
organizations and roles.

JADE, to program a MAS, offer as basic elements the class
Agent , different classes of behaviours (like finite state
machines), and protocols with the relative speech act
definitions, compliant with FIPA [13]. We have to introduce
organizations and roles as first class entities, located in
another platform with respect to their member agents, with
behaviours - albeit not autonomously executed - and
communication abilities. Thus, organizations and roles can be
implemented using the same primitives as agents. In JADE
this amounts to having special extensions of the Agent class,
Organizatio n and Role respectively, which can be further
extended to program organizations and roles. Analogously, to
implement agents who are able to play roles, the Player class
is defined, which extends the JADE Agent class. Differently
from Organization and Role, this class is used to implement
autonomous agents. The behaviours and the communication
protocols - described in the next section - which allow
organizations to work, are inherited from these three classes.
E.g. all organizations must offer a suitable protocol to allow
an agent to ask playing a role, to verify if the agent fulfills the
requirements of the role, and to enact the role. The extensions
of the Role class, like, e.g., Buyer, represent the role types.
Their instances, the role instances associated with an instance
of the Agent . Organizations and roles, however, differ in two

ontological aspect s: first, roles are associated to players,
second, roles are not independent from the organization
offering them. Thus, the Role class is subject to an invariant,
stating that it can be instantiated only when an instance of the
organization offering the role is present. Conversely, when an
organization is destroyed all its roles must be destroyed too.

A further difference of role classes is that to define
“powers” as described in the previous section, they must
access the state of the organization they belong too: only in
this way it is possible that the signature of a role has the effect
of modifying the private state of the organization adding a
commitment. To avoid making the state of the organization
public, the standard solution offered by Java is to use the so -
called “inner classes”, which are classes defined inside other
classes (called “outer classes”).

Fig. 1 - UML representation

An inner class shares the namespace of the outer class and

of the other inner classes, thus being able to access private
variables and methods. Thus the class Role is defined as an
inner class of the Organization class. Class extending the
Role class must be inner classes of the class extending the
Organization class (see Figure 1). E.g., the Buyer class

85

extending the Role class must be an inner class of the Shop
class extending the Organization class. In this way the role
can access the private state of the organization and of the
other roles. Note that this access is not unregulated, since a
specific role cannot access the entire private state of the
organization and other roles, but only those features which
have been decided by the programmer of the role (who is the
same as the programmer of the organization, since the role is
contained in it). E.g., the methods of the Buyer class can
access the private state of both the Shop class and of other
roles of Shop, like Seller .

If roles are implemented as inner classes, albeit extension
of the Agent class, this means two facts: first, the role instance
must be on the same platform as the organization instance it
belongs to; second, the role agent can be seen as an object
from the point of view of the organization and of the other
roles which can have a reference to it, besides sending
messages to it. In contrast, outside an organization the role
agent is accessed by its player (which can be on a different
platform) only as an agent via messages, and no reference to
it is possible. So not even its public methods can be invoked.
The inner class solution for roles is inspired to the use of
inner classes to model roles in object oriented programming
languages like in powerJava [3]. The use of inner classes is
coherent with the organization of JADE, where behaviours
are often defined as inner classes with the aim to better
integrate them with the agent containing them.

Organizations. To implement an organization it’s
necessary to extend Organization, subclass of Agent, which
offers protocols necessary to communicate with agents who
want to play a role, and the behaviours to manage the
information about roles and their players.

Moreover, the Organization class includes the definition of
the Role inner class that can be extended to implement new
role classes in specific organizations. To support the creation
and management of roles the Organization class is endowed
with the data structures and methods to create new role
instances and to keep the list of the AIDs (Agent ID) of role
instances which have been created, associated with the AIDs
of their players. However, these methods are private, to avoid
the misuse by the programmer who could violate the
organization invariants (e.g., to instantiate a role first there
must be a player, etc.).

The Enact protocol allows starting the interaction between
player and organization. What happens is that the player
sends a message to the organization requesting to play a role
of a certain type; if the organization considers the agent
authorized to play that role type, it sends to the caller a list of
powers (what the role can do) and requirements (what the role
can ask to player to do). At this point, the player can compare
his requirement list with the one sent from organization and
communicate back if he can play the role or if he can’t. Here,
in fact, we can also consider that a not honest player could lie

to play a role for which he doesn’t have all the requirements.
Only in a second time, and only if the player will show his
limits, some player recovering a controlling role could apply
sanctions to the dishonest one. It’s important to note that only
the player can begin the Enact protocol; the organization, in
fact, is intended as a collection of roles that players can play.
The only way in which an organization could begin an
enactment protocol is to be a player that want to play a role
inside another organization.

Each organization has to maintain the list of agents playing
roles in it, associating with the player agent AID the role type
and the role AID. While the association of a player and a role
is done automatically during the enactment of a role (see next
section), the programmer may query which role instances an
agent is playing (specifying the role type) or which is the
player of a given role. Finally, the operation of leaving a role
(deact), is asked by the player to the role itself, so the class
organization does not offer any method or protocols for that.

Since roles are Java inner classes of an organization, the
organization code can be written in Java mostly disregarding
what is a JADE application. Moreover, the inner class
mechanism allows the programmer to access the role state
and viceversa, while maintaining the modularity character of
classes. For helping players to find quickly one or more
organizations offering a specific role, Yellow Pages, a JADE
feature, are used. They allow to register a pair (Organization ,
RoleType) for each role in each organization; the interested
player will only have to query the Yellow Pages to obtain a
list of these couples and choose the best for itself.

Then the candidate player can start the enactment protocol
with the selected organization.

Roles. As discussed above, a role is implemented by
extending the Role class, thus, inheriting the facilities offered
by that class. In particular, the Role class offers the protocols
to communicate with the player agent and the methods for the
role programmer to use these protocols.

To program a role, it is necessary to extend, inside a class
extending the Organization class, the inner class Role of the
Organization class.

In particular, the communication protocol with the player
essentially allows (see Figure 2): (1) To receive the request of
invoking powers. (2) To receive the request to deact the role.
(3) To send to the player the request to execute a requirement.
(4) To receive from the player the result of the execution of a
requirement. (5) To notify the player the failure of executing
the invoked power or the failure to receive all the results of
the requested requirements. The role programmer, thus, has to
define the methods which are the powers which can be
invoked by the player, and to specify them in a suitable data
structure used by the Role class to select the requests of
powers which can be executed.

86

Fig. 2 - (a) The states of role playing. - (b) The behaviour
of roles - A: ManagePwRequest (manages the request
from player); B: ManageReqRequest (if a requirement is
needed); C: Execute (executes the called power); D:
MatchReq (checks if all requirements are ok); E:
InformResult (sends results to player); F: InformFail
(sends fail caused by requirement missing); G: Inform-
PowerFail (sends fail caused by power failure)

Allowing a player to invoke a power (which results in the
execution of a method by the role) could seem a violation of
the principle of autonomy of agents, since it seems that the

player delegates to the role the execution. However, two
things must be noted: (1) The powers are the only way the
players have to act on an organization. (2) The execution of
an invoked power may request, in turn, the execution by the
player of requirements needed to carry on the power, so the
result of the power execution still depends on the player.

The second point is important, since the player may refuse
to execute a requested requirement, and the requirements
determine the outcome of the power, which thus varies from
invocation to invocation and from player to player.

Since roles are not autonomous, the invocation of a power
is not subordinated to the decision of the role to perform it or
not. In contrast with powers, a requirement cannot be
invoked. Rather it is requested by the role, and the player
autonomously decides to execute it or not. In the latter case
the player is not complying anymore with its role and it is
deacted.

To remark this difference we will use the expression
“invoking a power” versus “requesting a requirement”.
Requests for the execution of requirements are not necessarily
associated with the execution of a power. They can be
requested to represent the fact that a new goal has been added
to the role. For example, this can be the result of a task
assignment when the overall organization is following a plan
articulated in subtasks to be distributed among the players at
the right moments, as in [20].

In case the new goal is a requirement of the player, the
method requestRequirement is executed, otherwise, if it is a
power of the role, a requestResponsibility is executed.

• requestResponsibility(String): this method asks to the
player to invoke a power of the role.

• requestRequirement(String): this method invokes a
requirement of the player. It returns the result sent by
the player if he complies with the requirement. The
failure of executing of a requirement results in the
deactment of the role.

Analogously to requirements when the role notifies its
player about the responsibility, it cannot be taken for granted
that it will invoke the execution of the power. Note that both
the requestRequirement method and the requestResponsibility
can be invoked also by other roles or by the organization
itself, due to the role’s limited autonomy. Other methods are
available only when agents endowed with beliefs represented,
e.g., as Jess knowledge bases:

• sendInform(String) : this method is used to inform the
player that the beliefs of the roles are changed. This
does not assume that the player adopts the conveyed
beliefs as well.

• addBelief(Belief) and addGoal(Goal): they are invoked
by the role’s behaviours or by other roles’ to update
the state of the role.

Besides the connection with its player, which is regulated
by the protocols described in the next section, the role is an

87

agent like any other, and it can be endowed with further
behaviours and further protocols to communicate with other
roles of the organization or even with other agents. At the
same time it is a Java object as any other and can be
programmed, accessing both other roles and the organization
internal state to have a better coordination.

Players. Players of roles in organizations are JADE agents,
which can reside on different platforms with respect to the
organization. However, since to play a role special behaviour
is needed, the Player class is offered.

An agent which can become a player of roles extends the
Player class, which, in turn, extends the Agent class. This
class allows to model the states of the role playing (enact,
active, deactivated, deacted), the transitions from one state to
the others, and offers the protocols for communicating with
the organization and with the role. A player agent can play
more than one role. Thus, an instance of the protocols and
behaviours is needed for each role played. The list of roles
played by the agent, and the state of each role (activated,
deactivated), is kept in an hashtable.

The enactment procedure, described in the next section,
takes the AID of an organization and of a role type and, if
successful, it returns the AID of the role instance associated
to this player in the organization. From that moment the agent
can activate the role and play it. The activate state allows the
player to receive from the role requests for requirement
execution and responsibilities (power invocation).
Analogously, the Player class allows an agent to deact and
deactivate a role.

The behaviour of playing a role is modelled in the player
agent class by means of a finite state machine behaviour. The
behaviour is instantiated for each instance of the role the
agent wants to play, by invoking the method enact and
specifying the organization AID and the role type. The states
are inspired to the model of [11]:

• Enact. The communication protocol (which contains
another finite state machine itself) for enacting roles is
entered. If it ends successfully with the reception of the
new role instance AID the deactivated state is entered.
The hashtable containing the list of played roles is
updated. Otherwise, the deacted state is reached.

• Activate. This state is modelled as a finite state
machine behaviour which listens for events coming
from outside or inside the agent:

o If another behaviour of the agent decides to
invoke a power of the role by means of the
invokePower method (see below), the
behaviour of the activated state checks if the
power exists in the role specification, and
sends an appropriate message to the role
agent. Otherwise an exception is raised. If
another behaviour of the agent decides to

deactivate the role, the deactivated state is
entered.

o If a message requesting requirements or to
invoke powers arrives from the role agent it
plays, the agent will decide whether to
comply with the new request sent by the role.
First of all it checks that the required
behaviour exists, or there has been a
mismatch at the moment of enacting a role. If
the role communicates to its player that the
execution of a power is concluded, and sends
the result of the power, this information is
stored waiting to be passed back to the
behaviour which invoked the power upon its
request (see receivePowerResult).

The cyclic behaviour associated with this state blocks
itself if no event is present and waits for an event.

• Deactivated . The behaviour stops checking for the
invocation of requirements or powers from
respectively the role and the player itself, and blocks
until another behaviour activates the role again. The
messages from the role and the power invocations
from other behaviours pile up in the queue waiting to
be complied with, until an activation method is called
and the active state is entered.

• Deact . The associated behaviour informs the role that
the agent is leaving the role and cleans up all the data
concerning the played role in the agent.

One instance of this finite state machine, that can be seen in
Figure 2, is created for each role played by the agent. This
means that, for a role, only one power at time is processed,
while the others wait in the message queue. Note that the
information whether a role is activated or not is local to the
player: from the role’s point of view there is no difference.
However, the player processes the communication of the role
only as long as it is activated, otherwise the messages remains
in the buffer. More sophisticated solutions can be
implemented as needed, but they must be aware of the
synchronization problems (e.g., what happens if in the same
moment a role sends a request to its player and the player puts
the role in a deactivated state?).

The Player class offers some methods. They can be used in
programming the other behaviours of the agent when it is
necessary to make changes in the state of role playing or to
invoke powers.We assume that invocations of powers to be
asynchronous. The call returns a call id which is used to
receive the correct return value in the same behaviour if
necessary. It is left to the programmer how to manage the
necessity of blocking of the behaviour till an answer is
returned with the usual block instruction of JADE. This
solution is coherent with the standard message exchange of
JADE and allows to avoid using more sophisticated

88

behaviours based on threads. The methods offered by this
class are the following.

• enact(organizationAID, roleClassName) : to request to
enact a role an agent has to specify the AID of the
organization and the name of the class of the role. It
returns the AID of the role instance or an exception is
raised.

• invokePower(roleAID, power): to invoke a power it is
sufficient to specify the role AID and the name of the
behaviour of the role which must be executed. It
returns an integer which represents the id of the
invocation.

• receivePowerResult(int): to receive, if needed, the
result of the invocation of a power (which is identified
by means of the id).

• deact(roleAID), activate(roleAID) ,
deactivate(roleAID) respectively definitively deacts
the role, killing it and managing the data structure to
remove all references to it, activates a role agent that is
in the deactivate state, and temporarily deactivates the
role agent (e.g., immediately after a successfully enact,
the role agent goes in the deactivate state).

• addRequirement(String): when extending the Player
class it is necessary to specify which of the behaviours
defined in it are requirements. I.e., the list of
behaviours which can be requested by a role which is
played by the agent. This information is used in the
canPlay private method which is invoked by the enact
method to check if the agent can play a role. This list
may contain non truthful information, but the failure to
comply with the request of a commitment may result
in the deactment to the role as soon as the agent is not
able to satisfy the request to execute a cert ain
requirement.

Moreover, defining a player requires to implement an
abstract method to decide whether to execute the
requirements upon request from the roles. The decision about
the implementation of the method is

• adoptGoal(String): it is used to make the player
autonomous with reference to requests of role he plays:
when the execution of a requirement is requested by
the role, this method returns true if the agent decides to
execute it.

III. INTERACTION BETWEEN OUR ACTORS

In this section we describe the different protocols used in
the interaction between agents who want to play roles and
organizations, and between players and their roles. All
protocols use standard FIPA messages, to enable also non
JADE agents to interact with organizations without further
changes. Note that the protocols are always split in two part:
the side of the initiator and the one of the responder. While

the organization is only the responder of a protocol, roles and
players can be both initiators and responder.

We refer to Figure 3, that describes the sequence diagram
for interaction.

Agents and the organization. Behind the enacting state of
the player described in the previous section, there is an
enactment protocol inherited, respectively, as concerns the
initiator and the receiver, from the classes Player and
Organization . It forwards from the player to the organization
the request of enacting a specified role, and manages the
exchange of information: sending the specification of
requirements and powers of the roles and checking whether
the player complies with the requirements.

The organization listens from messages from any agent
(even if some restrictions can be posed at the moment of
accepting to create the role), while the subsequent
communication between player and role is private. After a
request from an agent, the behaviour representing the protocol
forks creating another instance of itself to be ready to receive
requests of other agents in parallel. The first message is sent
by the player as initiator and is a request to enact a role. The
organization, if it considers the agent authorized to play the
role, returns to the candidate player a list of specifications
about the powers and requirements of the requested role
which are contained in its knowledge base, sending an inform
message containing the list; otherwise, it denies to the player
to play the role, answering with an inform message,
indicating the failure of the procedure.

In case of positive answer, the player, invoking the method
canPlay using the information contained in the player about
the requirements, decides whether to respond to the
organization that it can play the role (agree) or not (failure).
The first answer results in the creation of a new role instance
of the requested type (e.g., Buyer) and in the update of the
knowledge base of the organization with the information that
the player is playing the role. To the role instance the
organization passes the AID of the role player, i.e., the
initiator of the enactment, so that it can eventually filter out
the messages not coming from its player. An inform is sent
back to the player agent, telling him the played role instance’s
AID (since it is implemented as an agent it has an AID), The
player, in this way, can address messages to the role and it
can identify the messages it receives from the role it plays.
Then the agent updates its knowledge base with this
information, labeling the role as still deactivated. The
protocol terminates in both the player and the organization.
This completes the interaction with the organization: the rest
of the interaction, including deacting the role, passes through
the role instance only. The final part of the protocol shows
how the player and the role communicate, for example, for a
power request. The role can require the execution of one or
more requirements, from which can depend the power
execution.

89

Players and their roles. The interaction between a player
and its role is regulated by three protocols: the request by the
role of executing a requirement, the invocation of a power by
the player, and the request of the role to invoke a power. In all
cases, the interaction protocol works only between a player
and the role instances it plays. Messages following the
protocol, but which do not respect this constraint are
discharged on both sides.

We start from the first case since it is used also in the
second protocol during the execution of a power. According
to Dastani et al. [11], if a role is activated, the player should
(consider whether to) adopt its goals and beliefs. Since our
model is distributed, the role is separated from its player: the
goals (i.e., the requirements) and beliefs of the role have to be
communicated from the role to its player by means of a
suitable communication protocol. Each time the state of the
role changes, since some new goal is added to it, the agent is
informed by the role about it: either a requirement must be
executed or a power must be invoked. In this protocol, the
initiator is the role, which starts the behaviour when its
method requestRequirement is invoked.

Fig. 3 - The interaction protocol

First of all, the agent checks if the requested requirement is

in the list of the player’s requirements, but this does not mean
that it will be executed. Since the player agent is autonomous,

before executing the requirement, it takes a decision by
invoking the method adoptGoal which is implemented by the
programmer of the player.

The protocol ends by informing the role about the outcome
of the execution of the requirement or the refusal of executing
it, using an “inform” (see bottom of Figure 2 b). This protocol
is used inside the protocol initiated by the player for invoking
a power of the role. After a request from the player, the role
can reply with the request of executing some requirements
which are necessary for the performance of the power.

In fact, in the behaviour corresponding to the power, some
invocation of the method requestRequirement can be present.
The protocol ends with the role informing the agent about the
outcome of the execution of the power. A third protocol is
used by the role to remind the agent about its responsibilities,
i.e., the role asks its player to invoke a power executing the
method requestResponsibility. In this case, the object of the
request is not a requirement executable by the player, but a
power, i.e., a behaviour of the role. So the player has to
decide whether and when to invoke the power.

In principle, the programmer could have invoked a power
directly from the role, instead of requesting it by means of
requestResponsibility. However, with this mechanism we
want to model the case where the player is obliged to invoke
the power, but the decision of invoking the power is left to the
player agent, who can have more information about when and
how in voke the power. It is left to the programmer of the
organization to handle the violation of such obligations.

The final kind of interaction between a player and its role is
the request of a player to deact the role. While deactivation is
an internal state of the player, which is not necessarily
communicated to the role, deacting requires that the role
agent is destroyed and that the organization clears up the
information concerning the role and its player, removing the
couple (Player, Role) from its data structures.

IV. FUTURE DEVELOPMENTS

Our extension of JADE is inspired to the model of [7]
which has been implemented in Java creating the language
powerJava [3]. With respect to powerJava, there are
similarities and differences, which are due to the fact that in
powerJava agents have been reduced to objects, losing some
features.

Few agent languages are endowed with primitives for
modeling organization. MetateM [14] is one of these, and
introduces the notion of group by enlarging the notion of
agent with a context and a content. The context is composed
by the agents (also groups are considered as agents , like in
our model organizations are agents) which the agent is part
of, and the content is a set of agents which are included. The
authors propose to use these primitives to model
organizations, defining roles as agents included in other
agents and players as agents included in roles. This view risks

90

to forget the difference between the play relation and the role-
of relation which have different properties (see, e.g., [23]).

Moreover it does not distinguish between powers. Finally
MetateM is a language for modeling BDI agents, while JADE
has a wider applicability and is built upon on the Java general
purpose language. About S-Moise+ features [20], we will
improve our system with agent sets and subset s as particular
inner classes in the Organization class. Very interesting is the
matter of cardinality, constraint that we will implement
considering both minimum than maximum cardinality
allowed for each group. Concerning J-Moise+ [19], that is a
combination of Jason [8] and Moise+ [18], we will enrich our
platform integrating it with a rule engine (like Jess),
becoming able to write beliefs and goals as rules. Very
interesting is the matter of groups and schemes, that we will
consider to implement.

The principles of permission will be implemented through
a specific new protocol, called Permissions, which will allow
to a role a call to another role’s power, if and only if the first
role’s player can show (at the time of execution) his
credentials (additional requirements); if no additional
requirement is given, the other role’s power invocation cannot
be done. Another future work is related to Obligations [20];
we are going to implement them by particular requirements
that have to produce some result in a fixed time. If no result is
produced, then a violation occours and this behaviour is
sanctioned in some way.

Planning goals too will be realized by requirements, that
can be tested one after another to play single missions.

V. CONCLUSIONS

In this paper we use the ontological model of organizations
proposed in [7] to program organizations. We use as agent
framework JADE since it provides the primitives to program
the MAS in Java. We define a set of Java classes which
extends the agent classes of JADE to have further primitives
for building organizations structured into roles.

Organizations and roles are implemented as extension of
the Agent JADE class: this allows to communicate remotely
with them using protocols based on FIPA speech acts, to
identify organizations and roles with an AID rather than with
a memory reference, to put on yellow-pages services the
information about them, and to program them using JADE
Behaviours.

Roles, modelled as inner classes in Java, can be viewed as
agents and as objects at the same time , depending on the
perspective: for the external world they are agents with an
AID and communication capabilities, from the perspective of
the organizations they are objects which can be programmed
in the traditional way. Being inner classes, all roles of an
organization can be programmed as a single program, since
they all belong to the same namespace.

Organizations and roles are agents with a limited
autonomy, since they can act only via the actions of the
players of the roles. The interaction between them is made via
a set of protocols: a protocol between the organization and an
agent to start enacting a role, a protocol between the player
and its role to invoke powers of a role, a protocol between the
role and its player to invoke the requirements, etc. The
interaction among roles can happen via normal agent protocol
or directly by method invocation, since they belong to the
same namespace.

To play a role, an agent has first to contact the organization
and then to execute the requirements requested by the role.
These requests for requirements represent the expected
behaviour of an agent in its role. The agent who plays a role
can be in different states with respect to the roles: enacting it,
activated, deactivated and deacted.

It is possible to verify that a player fulfills the requirements
during the execution and not only before the enactment of a
role. In the JADE framework, it is up to the programmers to
decide which requirements to provide to an agent
implementation at design time by extending the class that
contains the role specification. The advantage of our proposal
is that we only verify the presence of those requirements that
are actually used by the agent during the specific execution,
without considering all those requirements that are not
necessary to achieve the current goal. In perspective, if the
protocol specification were available for inspection before the
decision of playing a role, an agent could verify a priori if it
owns all the requirements needed for achieving its goal,
disregarding all the others, in the line of what presented in
[1]. This approach is also important whenever an agent is
allowed to decide whether satisfying a requirement depending
on the context of the execution. In some cases, it might either
decide not to use a requirement that it actually has, or select
which requirement to use among a set of available
requirements.

To define the organizational primitives, JADE offered
advantages , but also posed some difficulties. First of all,
being based on Java, it allowed to reapply the methodology
used to implement roles in powerJava [3] to implement roles
as inner classes. Moreover, being based on Java it provides a
general purpose language to create new organizations and
roles. Finally, being based on FIPA speech acts, it allows
agents programmed in other languages to play roles in
organizations, and viceversa, JADE agents to play roles in
organizations not implemented in JADE. However, the
decision of using JADE has some drawbacks. For example,
the messages used in the newly defined protocols can be
intercepted by other behaviours of the agents. This shows that
a more careful implementation should use a more complex
communication infrastructure to avoid this problem.
Moreover, since JADE behaviours, differently from methods,

91

do not have a proper return value, they make it difficult to
define requirements and powers.

Finally, due to the possible parallelism of behaviours inside
an agent, possible synchronization problems can occur. Under
the programming and debugging point of view, an objection
could be that the (possible) execution of player and role on
different platform (and, then, in a separate way), can create
difficult during the debugging phase. To solve this problem it
is necessary to develop a new debugging protocol, based on
message passing, that will be used to communicate, for
example, when an exception is raised by a power. This
solution is perfectly lined up to the JADE philosophy.

In this paper we do not consider the problem of structuring
organizations in suborganizations nor to model federated
organizations residing on different platforms. A prototype
implementation has been constructed, as described in the
paper. The requirements mechanism will be used to
implements many other important features for MAS:
obligations and permissions, groups (sets) and subgroups
(subsets), plans.

REFERENCES

[1] M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and C. Schifanella.
Reasoning on choreographies and capability requirements. International
Journal of Business Process Integration and Management IJBPIM, 2(4),
2007.

[2] M. Baldoni, G. Boella, and L. van der Torre. Modelling the interaction
between objects: Roles as affordances. In Knowledge Science, Engineering
and Management, First International Conference, KSEM 2006, volume 4092
of LNCS, pages 42–54. Springer, 2006.

[3] M. Baldoni, G. Boella, and L. van der Torre. Interaction between
Objects in powerJava. Journal of Object Technology, 6(2):7 –12, 2007.

[4] F. L. Bellifemine, G. Caire, and D. Greenwood. Developing Multi-
Agent Systems with JADE. Wiley, 2007.

[5] G. Boella, R. Damiano, J. Hulstijn, and L. van der Torre. ACL
semantics between social commitments and mental attitudes. In International
Workshops on Agent Communication, AC 2005 and AC 2006, volume 3859
of LNAI, pages 30–44. Springer, Berlin, 2006.

[6] G. Boella, V. Genovese, R. Grenna, and L. der Torre. Roles in
coordination and in agent deliberation: A merger of concepts. In Proceedings
of Multi-Agent Logics. PRIMA 2007. Lecture Notes in Computer Science,
Springer, 2007.

[7] G. Boella and L. van der Torre. Organizations as socially constructed
agents in the agent oriented paradigm. In Engineering Societies in the Agents
World V, 5th International Workshop (ESAW’04), volume 3451 of LNAI,
pages 1 –13, Berlin , 2005. Springer.

[8] R. H. Bordini, J. F. Hubner, and M. Wooldrige. Programming Multi-
Agent Systems in AgentSpeak using Jason. Wiley, 2007.

[9] G. Cabri, L. Ferrari, and L. Leonardi. Agent roles in the brain
framework: Rethinking agent roles. In The 2004 IEEE Systems, Man and
Cybernetics Conference, session on “Role-based Collaboration”, 2004.

[10] A. Colman and J. Han. Roles, players and adaptable organizations.
Applied Ontology, 2007.

[11] M. Dastani, B. van Riemsdijk, J. Hulstijn, F. Dignum, and J.-J.
Meyer. Enacting and deacting roles in agent programming. In Procs. of
AOSE’04, pages 189–204, New York, 2004.

[12] J. Ferber, O. Gutknecht, and F. Michel. From agents to organizations:
an organizational view of multiagent systems. In Agent-Oriented Software
Engineering IV, 4th International Workshop (AOSE’03), volume 2935 of
LNCS, pages 214–230, Berlin, 2003. Springer.

[13] FIPA. FIPA ACL message structure specification. Technical Report
XC00061, Foundation for Intelligent Physical Agents, 2001.

[14] M. Fisher. A survey of concurrent metatem - the language and its
applications. In ICTL, pages 480–505, 1994.

[15] M. Fisher, C. Ghidini, and B. Hirsch. Organising computation
through dynamic grouping. In Objects, Agents, and Features, pages 117–136,
2003.

[16] D. Grossi, F. Dignum, M. Dastani, and L. Royakkers. Foundations of
organizational structures in multiagent systems. In Procs. of AAMAS’05,
pages 690–697, 2005.

[17] O. Gutknecht and J. Ferber. The madkit agent platform architecture.
In Agents Workshop on Infrastructure for Multi-Agent Systems, pages 48 –
55, 2000.

[18] J. F. Hubner, J. S. Sichman, and O. Boissier. Developing organised
multi-agent systems using the moise+ model: Programming issues at the
system and agent levels. International Journal of Agent-Oriented Software
Engineering., 2007.

[19] J. F. Huebner. J-Moise+ programming organizational agents with
Moise+ and Jason. In http://moise.sourceforge.net/doc/tfg-eumas07-
slides.pdf, 2007.

[20] J. F. Huebner, J. S. Sichman, and O. Boissier. S-moise+: A
middleware for developing organised multi-agent systems. In O. Boissier, J.
A. Padget, V. Dignum, G. Lindemann, E. T. Matson, S. Ossowski, J. S.
Sichman, and J. Vzquez-Salceda, editors, AAMAS Workshops, volume 3913
of Lecture Notes in Computer Science, pages 64–78. Springer, 2005.

[21] A. Jones and M. Sergot. A formal characterisation of institutionalised
power. Journal of IGPL, 3:427–443, 1996.

[22] A. Omicini, A. Ricci, and M. Viroli. An algebraic approach for
modelling organisation, roles and contexts in MAS. Applicable Algebra in
Engineering, Communication and Computing, 16(2-3):151–178, 2005.

[23] F. Steimann. On the representation of roles in object -oriented and
conceptual modelling. Data and Knowledge Engineering, 35:83–848, 2000.

[24] N. Tinnemeier, M. Dastani, and J.-J. C. Meyer. Orwell’s nightmare
for agents? programming multi-agent organisations. In Sixth international
Workshop on Programming Multi-Agent Systems PROMAS’08, 2008.

[25] W. van der Hoek, K. Hindriks, F. de Boer, and J.-J. C. Meyer. Agent
programming in 3APL. Autonomous Agents and Multi-Agent Systems,
2(4):357–401, 1999.

[26] F. Zambonelli, N. Jennings, and M. Wooldridge. Developing
multiagent systems: The Gaia methodology. IEEE Transactions of Software
Engineering and Methodology, 12(3):317– 370, 2003.

Matteo Baldoni is Associated Professor at the Dipartimento of

Informatica, Università di Torino, Corso Svizzera 185, Torino, 10149, Italy.
E-mail: baldoni@di.unito.it .

Guido Boella is Associated Professor at the Dipartimento of Informatica,
Università di Torino, Corso Svizzera 185, 10149, Torino, Italy. E-mail:
guido@di.unito.it.

Mauro Dorni is student at the Dipartimento of Informatica, Università di
Torino, Corso Svizzera 185, 10149, Torino, Italy. E-mail:
sp064535@educ.di.unito.it.

Andrea Mugnaini is student at the Dipartimento of Informatica, Università
di Torino, Corso Svizzera 185, 10149, Torino, Italy. E-mail:
sp064278@educ.di.unito.it.

Roberto Grenna is PhD student at the Dipartimento of Informatica,
Università di Torino, Corso Svizzera 185, 10149, Torino, Italy E-mail:
grenna@di.unito.it.

92

Supporting the Design of Self-Organizing Ambient
Intelligent Systems Through Agent–Based

Simulation
Stefania Bandini, Andrea Bonomi, Giuseppe Vizzari

Complex Systems and Artificial Intelligence research center, University of Milano–Bicocca
Viale Sarca 336/14, 20126 Milano, Italy

{stefania.bandini,andrea.bonomi,giuseppe.vizzari}@csai.disco.unimib.it

Abstract— The ambient intelligence scenario depicts electronic
environments that are sensitive and responsive to the presence
of people. The aims of this kind of system is not necessarily
to provide some form of electronic service to its users, but also
to enhance the everyday experience of people moving inside the
related physical environment. For this second type of application,
computer simulation represents a useful way to envision the
behaviour of responsive environments without actually bringing
them into existence in the real world. This paper will describe
the simulation of an adaptive illumination facility, a physical
environment endowed with a set of sensors that perceive the
presence of humans (or other entities such as dogs, bicycles,
cars) and interact with a set of actuators (lights) that coordinate
their state to adapt the ambient illumination to the presence and
behaviours of its users. This system is made up of a model man-
aging the self-organization of the adaptive illumination facility
and an agent–based model to simulate pedestrian dynamics in
the physical environment in which the system is deployed.

I. INTRODUCTION

The ambient intelligence scenario [14] depicts future human
environments endowed with a large number of electronic
devices, interconnected by means of wireless communication
facilities, able to perceive and react to the presence of people.

The goals of these facilities can be very different, from
providing electronic services to humans accessing these en-
vironment through computational devices (such as personal
computers or PDAs), to simply providing some form of am-
bient adaptation to the users’ presence (or voice, or gestures),
without thus requiring him/her to employ a computational
device. Ambient intelligence comprises thus those systems that
are designed to autonomously adapt the environment to the
people living or simply passing by in it in order to improve
their everyday experience.

Besides the specific aims of the ambient intelligent sys-
tem, there is an increasing interest and number of research
efforts on approaches, models and mechanisms supporting
forms of self-organization and management of the components
(both hardware and software) of such systems. The latter are
growingly viewed in terms of autonomous entities, managing
internal resources and interacting with surrounding ones so
as to obtain the desired overall system behaviour as a result
of local actions and interactions among system components.
Examples of this kind of approach can be found in both in
relatively traditional pervasive computing applications (see,

e.g., [8]), but also in a new wave of systems developed in the
vein of amorphous computing [2] such as the one on paintable
computers described in [7]. In this rather extreme application
a whole display architecture is composed of autonomous and
interacting graphic systems, each devoted to a single pixel,
that must thus interact and coordinate their behaviours even
to display a simple character.

Computer simulation plays an important role in supporting
the design and realization of adaptive, self-organizing ambient
intelligence systems. In fact, traditional design and modeling
instruments can provide a suitable support for evaluating
static properties of this kind of environment (e.g. through the
construction of 3D models representing a mock-up, proof of
concept of the desired appearance or also adaptation effect
but in a single specific situation), but they are not designed
to provide abstractions and mechanisms for the definition
and simulation of reactive environments and their behaviours.
Through specific models and simulators it is possible to obtain
an envisioning of the static features of the ambient intelligence
system as well as its dynamic response to the behaviour
of humans and other relevant entities situated in it. This
allows performing a face validation [13] of the adaptation
mechanisms and also to perform a tuning of the relevant
parameters.

This paper describes the application of a modeling and
simulation approach to support the design of an adaptive
illumination facility that is being designed and realized by the
Acconci Studio1 in Indianapolis. In particular, the designed
system should be able to locally enhance the overall illu-
mination of a tunnel in order to highlight the position and
close surrounding area of pedestrians (as well as other entities
such as dogs, bicycles, cars). In this case, the simulation
offers both a support to the decisions about the number and
positioning of lights and, more important, it encapsulates the
self-organization mechanisms guiding the adaptive behaviour
of lights reacting the the presence of pedestrians and other
relevant entities in the environment. By providing the current
state of the environment, in terms of simulated outputs of
sensors detecting the presence of pedestrians, as an input
to the self-organization model it is possible to obtain its
simulated response, and the current state of lights. A schema

1http://www.acconci.com

93

CA model for
adaptive illuminationPedestrian simulation Visualization system

Actual sensors
(motion or presence)

Simulated
data

Field data CA model for
adaptive illumination

Actuators'
states

Actual actuators
(lights)

Actuators'
states

Design
support
configuration

System
management
configuration

Parameters

Parameters

Fig. 1. A schema describing the modules of the design support system
prototype.

of the overall simulation system is shown in Figure 1: it
must be noted that the self-organization model adopted for
the simulator could be effectively used to manage the actual
system, simply providing actual inputs from field sensors and
employing its outputs to manage actual lights rather that a
virtual visualization of the actual environment.

The following section will introduce more in details the
specific scenario in which this research effort is set, describing
the requirements for the adaptive illumination system and
the environment adaptation model. Section IV introduces the
pedestrian modeling approach, while the self-orga-nization
model guiding the adaptive illumination facility is described
in Section III. A description of the developed environment
supporting designers will follow, then conclusions and future
works will end the paper.

II. THE SCENARIO

The Acconci Studio, partner of the described research effort,
has recently been involved in a project for the renovation
of a tunnel in the Viginia Avenue Garage in Indianapolis.
The tunnel is currently mostly devoted to cars, with relatively
limited space on the sidewalks and its illumination is strictly
functional. The planned renovation for the tunnel includes a
set of interventions, and in particular two main effects of
illumination, also depicted in a graphical elaboration of the
desired visual effect shown in Figure 2: an overall effect of
uniformly coloring the environment through a background,
ambient light that can change through time, but slowly with
respect to the movements and immediate perceptions of people
passing in the tunnel; a local effect of illumination reacting to
the presence of pedestrians, bicycles, cars and other physical
entities.

The rationale of this local and dynamic adaptive illumi-
nation effect is better explained by the following narrative
description of the desired effect:

The color is there to make a heaviness, a thick-
ness, only so that the thickness can be broken. The
thickness is pierced through with something, theres
a sparkle, its you that sparkles, walking or cycling
though the passage, this tunnel of color. Well no,
not really, its not you: but its you that sets off the
sparkle a sparkle here, sparkle there, then another
sparkle in-between one sparkle affects the other,

Fig. 2. A visual elaboration of the desired adaptive illumination facility (the
image appears courtesy of the Acconci Studio).

pulls the other, like a magnet a point of sparkle is
stretched out into a line of sparkles is stretched out
into a network of sparkles.
These sparkles are above you, below you, they
spread out in front of you, they light your way
through the tunnel. The sparkles multiply: its you
who sets them off, only you, but – when another
person comes toward you in the opposite direction,
when another person passes you, when a car passes
by some of these sparkles, some of these fire-flies,
have found a new attractor, they go off in a different
direction.

The first type of effect can be achieved in a relatively simple
and centralized way, requiring in fact a uniform type of illu-
mination that has a slow dynamic. The second point requires a
different view on the illumination facility. In particular, it must
be able to perceive the presence of pedestrians and other phys-
ical entities passing in it, in other words it must be endowed
with sensors (detecting either the presence or the movement
of relatively big objects). Moreover, it must be able to exhibit
local changes as a reaction to the outputs of the aforemetioned
sensors, providing thus for a non uniform component to the
overall illumination. The overall environment must be thus
split into parts, cells that represent proper subsystems: Figure 3
shows a schema of the approach we adopted to subdivide the
physical environment into autonomous units, provided with
motion/presence sensors (able to detect the arrival/presence of
relevant entities) and lights (to adapt the ambient illumination,
highlighting the presence of pedestrians).

However, the effect of the presence of a pedestrian in a
portion of space should extend beyond the borders of the
occupied cell. In fact, the illumination effect should “light
the way” of a pedestrian through the tunnel. Cells must
thus be able to interact, in order to influence neighboring
ones whenever a pedestrian is detected, to trigger a (maybe
less intense) illumination. The model we adopted to manage
this form of self-organization of the illumination facility is a
Cellular Automata (CA) [15], whose transition rule defines and

94

Motion
Sensor

Neighbor
Controlled

area

Controller
Communication

line

Controlled
area

Light

Neighbor

Fig. 3. A schema of the CA model for the adaptive illumination facility.

manages the interaction among cells and thus the influence of
the presence of a pedestrian on neighboring ones.

III. ADAPTIVE ILLUMINATION MODEL

We employed a Cellular Automata model to realize the
local effect of illumination as a self-organized reaction to
the presence of pedestrians. CA cells, related to a portion
of the physical environment, comprise sensors and actua-
tors, as schematized in Figure 3. The former can trigger
the behaviours of the latter, both through the interaction of
elements enclosed in the same cell and by means of the local
interaction among adjacent cells. The transition rule models
mechanisms of reaction and diffusion, and it was derived by
previous applications to reproduce natural phenomena such as
percolation processes of pesticides in the soil, in percolation
beds for the coffee industry and for the experimentation of
elasticity properties of batches for tires [3]. In this specific
application the rule manages the interactions of cells arranged
through a multilayered architecture based on the Multilayered
Automata Network model [6], schematized in Figure 3.

Multilayered Automata Network have been defined as a
generalization of Automata Networks [10]. The main feature
of the Multilayered Automata Network is the explicit intro-
duction of a hierarchical structure based on nested graphs, that
are graphs whose vertexes can be in turn be a nested graph
of lower level. A Multilayered Automata Network is directly
obtained from the nested graph structure by introducing states
and a transition function.

The irregular nature of the cellular space is not the only
difference between the adopted approach and the traditional
CA models. In fact, CAs are in general closed and synchronous
systems, in which cells update their state in parallel triggered
by a global clock. Dissipative Cellular Automata (DCA) [16]
differ from the basic CAs mainly for two characteristics:
while CA are synchronous and closed systems, DCA are
open and asynchronous. DCA cells are characterized by a
thread of control of their own, autonomously managing the
elaboration of the local cell state transition rule. DCA can
thus be considered as an open agent system [12], in witch the

Level 2
Inter-controller
communication

Level 1
Intra-controller
communication

Level 0
Actuators Layer

Level 0
Sensors Layer

Fig. 4. The proposed automata network for the D-MAN.

cells update their state independently of each other and they
are directly influenced by the environment.

The model we defined and adopted, Dissipative Multilay-
ered Automata Network (D-MAN), takes thus the advan-
tages of both the Multilayered Automata Network and the
Dissipative Cellular Automata. An informal definition this
model describes D-MAN as Multilayered Automata Network
in which the cells update their state in an asynchronous way
and they are open to influences by the external environment.

The multilayered cellular structure of the D-MAN is com-
posed of three layers: the first level is related to the basic
discretization of the physical environment into cells, corre-
sponding to a local controller. Each of these cells comprises
two additional levels, respectively devoted to the perception
and actuation responsibilities of the higher level cell. This
structure is schematized in Figure 4. Specific transition rules
must thus be defined to manage different interactions and
influences that take place in this structure, and mainly (i)
the direct influence of a sensor that detected a pedestrian
to the actuators in the same cell, and (ii) the influence of
a high level cell to the neighboring ones (given the internal
structure of each cell, due to the presence of a specific level of
actuators inside it, this interaction effectively affects a part of
a neighboring cell). Moreover, the effect of external stimuli
must gradually vanish, and lights must fade in absence of
pedestrians.

The adaptive illumination model is thus characterized by
several features that make it difficult to predict how it will
react to particular stimuli (i.e. patterns of pedestrian movement
in the related environment), from the number and positioning
of sensors and actuators, to the parameters of the transition
rule. To couple this model with a pedestrian simulation model
sharing the discrete representation of the spatial aspect of the
environment allows to simulate the behaviour of the adaptive
illumination facility as a response to specific patterns of usage
of the environment by pedestrians.

A. Model Architecture

The designed system is an homogeneous peer system. As
shown in Figure 3, every controller has the responsibility of
managing the sensors and actuators belonging to a fixed area of

95

the space. Controllers are homogeneous in terms of hardware
and software capabilities. Every controller is connected to a
motion sensor, which roughly covers the controlled area, some
lights (about 40 LED lights) and neighbouring controllers.

As shown in Figure 4, the external layer (level 2) is the
communication layer between the controllers of the system.
Every controller is an automata network of two nodes, one
node is a sensor communication layer and represents a space
in which every sensor connected to the microcontroller has a
correspondent cell. The other node represents the actuators’
layer in which the cells pilot the actuators (lights, in our
case). Since the external layer is a physical one and every
cell is an independent microcontroller, it cannot be assumed
that the entrire network is synchronized. In same cases, a
synchronous network can be constructed (for example, a single
clock devices can be connected to each microcontrollers or the
microcontrollers can be synchronized by a process without a
master node), but the most general case is an asynchronous
network.

B. Sensors Layer

The Sensor Layer is a Level 0 Dissipative Automata. As
previously introduced, it is composed of a single cell, since
only one sensor is connected to each microcontroller. It is a
Dissipative Automata because the internal state of the cell is
influenced by the external environment. The state of the cell
is represented by a single numerical value vs ∈ N8bit, where

N8bit ⊂ N0,∀x : x ∈ N8bit ⇒ x < 28

The limit value was chosen for performance reasons because
8-bit microcontrollers are widely diffused and they can be
sufficiently powerful to manage this kind of situation. The
value of vs is computed as

vs(t+ 1) = vs(t) ·m+ s(t+ 1) · (1−m)

where m ∈ R, 0 ≤ m ≤ 1 is the memory coefficient that
indicates the degree of correlation between the previous value
of vs and the new value, s(t) ∈ N8bit is the reading of the
sensor at the time s(t). If the sensor is capable of distance
measuring, s(t) is inverse proportional to the measured distance
(so, if the distance is 0, the value is 255, if the distance is ∞
the value is 0). If the sensor is a motion detector sensor (it
able to signal 1 if an object is present or 0 otherwise) s(t),
s(t) is equal to 0 if there is not detected motion, c in case of
motion, where c ∈ N8bit is a constant (in our tests, 128 and
192 are good values for c).

C. Diffusion Rule

In this section we describe the diffusion rule, that is used to
propagate the sensors signals through the system. At a given
time, every level 2 cell is characterized by an intensity of
the signal, v ∈ N8bit. Informally, the value of v at time t+ 1
depends of the value of v at time t and on the value of vs(t+1),
to capture both the aspects of interaction with neighbouring
cells and the memory of the previous external stimulus caused

t = 0 t = 10

t = 20 t = 30

Fig. 5. An example of the dynamic behaviour of a diffusion operation. The
signal intensity is spread throughout the lattice, leading to a uniform value;
the total signal intensity remains stable through time, since evaporation was
not considered.

by the presence of a physical entity in the area associated to
the cell.

The intensity of the signal decreases over time, in a process
we call evaporation. In particular, let us define εevp(v) as the
function that computes the quantity of signal to decrement
from the signal and is defined as

εevp(v) = v · e1 + e0

where e0 ∈ R+ is a constant evaporation quantity and e1 ∈
R, 0 ≤ e1 ≤ 1 is the evaporation rate (e.g. a value of 0.1
means a 10% evaporation rate).

The evaporation function evp(v), computing the intensity
of signal v from time t to t+ 1, is thus defined as

evp(v) =
{

0 if εevp(v) > v
v − εevp(v) otherwise

The evaporation function is used in combination with the
neighbours’ signal intensities to compute the new intensity of
a given cell. We first present the formula for a regular neigh-
bourhood and than we generalize to the irregular structure.

1) Regular neighbourhood: The automaton is contained in
the finite two-dimensional square grid N2. We suppose that the
cell Ci,j is located on the grid at the position i, j, where i ∈ N
and j ∈ N. According to the von Neumann neighbourood [11],
a cell Ci,j (unless it is placed on the border of the lattice) has 4
neighbours (as shown in figure 6), denoted by Ci−1,j , Ci,j+1,
Ci+1,j , Ci,j−1.

For simplicity, we numbered the neighbours of a cell from
1 to 4, so for the cell Ci,j , N1 is Ci−1,j , N2 is Ci,j+1, N3 is
Ci+1,j , and N4 is Ci,j−1

96

C(i,j-1)

C(i-1,j) C(i,j) C(i+1,j)

C(i,j+1)

X

Y

V1

V2

V3

V4

Fig. 6. On the left, the von Neumann neighbourhood of the cell Ci,j , on
the right, the internal structure of a cell of the regular automaton.

At a given time, every cell is characterize by an intensity of
the sensor signal. Each cell is divided into four parts (as shown
in Figure 6), each part can have a different signal intensity,
and the overall intensity of the signal of the cell is the sum
of the parts intensity values. The state of each cell Ci,j of
the automaton is defined by Ci,j = 〈v1, v2, v3, v4〉 where
v1, v2, v3, v4 ∈ N8bit represent the intensity of the signal of
the 4 subparts. Vi,j(t) represents the total intensity of the
signals (i.e. the sum of the subparts signal intensity) of the
cell i, j at time t. The total intensity of the neighbours are
denoted by VN1, VN2, VN3, and VN4. The signal intensity
of the subparts and the total intensity are computed with the
following formulas:

vj(t+ 1) =

{
evp(V (t))·q+evp(VNj(t))·(1−q)

4 if ∃Nj
evp(V (t))

4 otherwise

V (t+ 1) =
4∑
i=1

vi(t+ 1)

where q ∈ R, 0 ≤ q ≤ 1 is the conservation coefficient (i.e. if
q is equals to 0, the new state of a cell is not influenced by
the neighbours values, if it is equals to 0.5 the new values is a
mean among the previous value of the cell an the neighbours
value, if it is equals to 1, the new value does not depend on the
previous value of the cell but only from the neighbours). The
effect of this modeling choice is that the parts of cells along
the border of the lattice are only influenced through time by
the contributions of other parts (that are adjacent to inner cells
of the lattice) to the overall cell intensity.

2) Irregular neighbourhood: The irregular structure au-
tomata is a generalization of the regular one. The automaton
is composed of cell numbered from 1 to N , so we use Ci for
0 ≤ i ≤ N to indicate the i-th cell. Every cell Ci can have
an arbitrary number of neighbours Li, 0 ≤ Li ≤ L ≤ N − 1
where Li is the numbers of neighbours of the cell Ci and
L = max(Li) is the maximum numbers of neighbours of every
cell the system. Neighbouring cells of cell i can be denoted
as Ni,l.

As for the regular neighbourhood case, each cell is divided
into L parts, each part can have a different signal intensity,
and the overall intensity of the signal of the cell is the sum
of the parts intensity values. The state of each cell Ci of the
automaton is defined as Vi =

∑Li

l=0 vi,l where vi,l ∈ N8bit

represent the intensity of the signal of the L subparts. Finally,

the intensity of each neighbouring cell of Ci is denoted by
Vi,l.

The signal intensity of the subparts and the total intensity
can thus be computed according to the following formulas:

vi,l(t+ 1) =

{
evp(Vi(t))·q+evp(Vi,l(t))·(1−q)

L if ∃Ni,l
evp(Vi(t))

Li
otherwise

Vi(t+ 1) =
Li∑
l=1

vi,l(t+ 1)

In the real system, the maximum number of neighbours
(L) is constrained by the number of available inputs on the
microcontrollers.

D. Actuators Layer

The cells of the actuator layer determinate the actuators
actions. In this project the actuators are LED lamps that are
turned on and of according the the state of the cell. Instead of
controlling a single LED from a cell, every cell is related to
a group of LEDs disposed in the same (small) area.

In the case of regular neighbourhood, each controlled area in
divided into 9 sub-areas and each sub-area contains a group of
LEDs controlled by the same actuators layer cell. The state of
each cell is influenced only by the state of the signal intensity
of the upper layer cell. The correlation between the upper layer
cell subparts and the actuators layer cells is shown in Figure
7.

The state of the actuators cells A1..A9, Aj ∈ N8bit is
computed with the following formula:

Ai(t+ 1) =



vi(t+ 1) 1 ≤ i ≤ 4
v4(t+ 1) + v1(t+ 1)

2
i = 5

v1(t+ 1) + v2(t+ 1)
2

i = 6
v2(t+ 1) + v3(t+ 1)

2
i = 7

v3(t+ 1) + v4(t+ 1)
2

i = 8

1
4

4∑
j=1

vj(t+ 1) i = 9

There are differents approache to associtates the LEDs to the
cells. A first approach consists to directly connected the lights
intensity to the signal levels of the correspondent cell. Another
approach consists to turn on a numbers of LEDs proportionals
to the signal intensity of the controller cell.

IV. PEDESTRIAN SIMULATION MODEL

The adopted pedestrian model is based on the Situated
Cellular Agent model, a specific class of Multilayered Multi-
Agent Situated System (MMASS) [4] providing a single
layered spatial structure for agents environment. A thorough
description of the model is out of the scope of this paper,
but we briefly introduce it to give some basic notion of
the elements that are necessary to describe the SCA crowd
modeling approach.

97

A5 A1 A6

A4 A9 A2

A8 A3 A7

v1

v2

v3

v4

v1

v2

v3

v4

v1 + v2

2

v2 + v3

2

v3 + v4

2

v + v1

2

∑vn
n=1

4

4

Fig. 7. Correlation between the upper layer cell subparts and the actuators
layer cells.

A. Situated Cellular Agents

A Situated Cellular Agent system is defined by the triple〈
Space, F,A

〉
where Space models the environment where the

set A of agents is situated, acts autonomously and interacts
through the propagation of the set F of fields and through
reaction operations. Space consists of a set P of sites arranged
in a network (i.e. an undirected graph of sites). The structure of
the space can be represented as a neighborhood function, N :
P → 2P so that N(p) ⊆ P is the set of sites adjacent to p ∈
P ; the previously introduced Space element is thus the pair〈
P,N

〉
. Focusing instead on the single basic environmental

elements, a site p ∈ P can contain at most one agent and is
defined by the 3–tuple

〈
ap, Fp, Pp

〉
where:

• ap ∈ A ∪ {⊥} is the agent situated in p (ap = ⊥ when
no agent is situated in p that is, p is empty);

• Fp ⊂ F is the set of fields active in p (Fp = ∅ when no
field is active in p);

• Pp ⊂ P is the set of sites adjacent to p (i.e. N(p)).
A SCA agent is defined by the 3–tuple < s, p, τ > where

τ is the agent type, s ∈ Στ denotes the agent state and can
assume one of the values specified by its type (see below
for Στ definition), and p ∈ P is the site of the Space
where the agent is situated. As previously stated, agent type
is a specification of agent state, perceptive capabilities and
behaviour. In fact an agent type τ is defined by the 3–tuple〈
Στ , P erceptionτ , Actionτ

〉
. Στ defines the set of states

that agents of type τ can assume. Perceptionτ : Στ →
[N ×Wf1] . . . [N ×Wf|F |] is a function associating to each
agent state a vector of pairs representing the receptiveness
coefficient and sensitivity thresholds for that kind of field.
Actionτ represents instead the behavioural specification for
agents of type τ . Agent behaviour can be specified using a
language that defines the following primitives:
• emit(s, f, p): the emit primitive allows an agent to start

the diffusion of field f on p, that is the site it is placed
on;

• react(s, ap1 , ap2 , . . . , apn , s
′): this kind of primitive al-

lows the specification of a coordinated change of state
among adjacent agents. In order to preserve agents’
autonomy, a compatible primitive must be included in
the behavioural specification of all the involved agents;
moreover when this coordination process takes place, ev-
ery involved agents may dynamically decide to effectively
agree to perform this operation;

• transport(p, q): the transport primitive allows the defi-
nition of define agent movement from site p to site q (that

must be adjacent and vacant);
• trigger(s, s′): this primitive specifies that an agent must

change its state when it senses a particular condition in
its local context (i.e. its own site and the adjacent ones);
this operation has the same effect of a reaction, but does
not require a coordination with other agents.

For every primitive included in the behavioural specification
of an agent type specific preconditions must be specified;
moreover specific parameters must also be given (e.g. the
specific field to be emitted in an emit primitive, or the
conditions to identify the destination site in a transport) to
precisely define the effect of the action, which was previously
briefly described in general terms.

Each SCA agent is thus provided with a set of sensors
that allows its interaction with the environment and other
agents. At the same time, agents can constitute the source
of given fields acting within a SCA space (e.g. noise emitted
by a talking agent). Formally, a field type t is defined by〈
Wt,Diffusiont, Comparet, Composet

〉
where Wt denotes

the set of values that fields of type t can assume; Diffusiont :
P ×Wf × P → (Wt)+ is the diffusion function of the field
computing the value of a field on a given space site taking into
account in which site (P is the set of sites that constitutes the
SCA space) and with which value it has been generated. It
must be noted that fields diffuse along the spatial structure of
the environment, and more precisely a field diffuses from a
source site to the ones that can be reached through arcs as
long as its intensity is not voided by the diffusion function.
Composet : (Wt)+ → Wt expresses how fields of the same
type have to be combined (for instance, in order to obtain
the unique value of field type t at a site), and Comparet :
Wt × Wt → {True, False} is the function that compares
values of the same field type. This function is used in order
to verify whether an agent can perceive a field value by
comparing it with the sensitivity threshold after it has been
modulated by the receptiveness coefficient.

B. SCA Based Pedestrian Model

The above introduced SCA model has beed applied to
represent a very simple tunnel with two ends and some
columns in it; pedestrians enter the tunnel from one end and
they move towards the other end, avoiding obstacles either
immobile (i.e. columns), and mobile (i.e. other pedestrians
moving in the opposite direction).

The SCA Space is the same cellular space defined for the
D-MAN described in Section III. To support agent navigation
in this space, in each end of the tunnel we positioned an addi-
tional site in which a “beacon” agent (a static agent emitting
a simple presence field) is situated. In the environment, thus,
only two types of field are present.

To exploit this environmental specification in order to obtain
the above overall system behaviour, we defined two types
of agent, respectively interpreting the one type of field as
attractive and ignoring the other one. This can be achieve
through a simple transport primitive, specifying that the
agent should move towards the free adjacent site in which
the intensity of the field considered attractive is maximum.

98

The behavioural specification of these agents is completed
by an obstacle avoidance rule (another transport that moves
the agent towards a random different lane whenever the best
possible destination is occupied by an obstacle). Finally, agents
reaching their destination, that is, one of the tunnel ends, are
removed from the environment and they are positioned at the
other end, so they start over their crossing of the tunnel.

V. THE DESIGN SUPPORT ENVIRONMENT

The design of human environments (e.g. buildings, stores,
squares, roads) is a complex task, composed of several sub-
task evolving the initial idea into a detailed project, through the
production of intermediate and increasingly detailed models.

After the initial phases, in which the designer usually
expresses his/her creativity with sketches on the paper or on
the computer, a Computer-Aided Design (CAD) software is
used to develop the project in details. CAD softwares (e.g
AutoCAD), and also 3D modelling applications (e.g. Autodesk
3DStudio Max, Blender) are used to create the digital models
for the projects and to generate photo realistic renderings and
animations. For a compact overview of the typical design
process see [9].

Together with these software applications supporting de-
signers in the definition of general architectural spaces, other
tools supporting designers in very specific tasks can also be
adopted: these tools vary from presenting the elaboration of
the building shadows, to elaborating their impact on wind
conditions, up to the simulation of vehicles and pedestrian
movements in the designed scenario.

The proposed design environment is one of these tools;
in particular, it helps the designers in the definition and
specification of an adaptive illumination facility through the
simulation of its dynamic behaviour. The output of the system
is not only a graphical simulation but also a static configuration
of the illumination facility (number of lights and their posi-
tioning) and an unambiguous specification of their dynamic
behaviour (general lights self-organization model plus specific
parameters).

The design environment is composed of two main modules:
a simulation environment (that is in turn decomposed into
a pedestrian simulation module and an adaptive illumination
module) and a visualization facility. In the following para-
graphs these modules will be described.

A. The Simulation Environment

The simulation environment actually comprises two models,
one managing the network of controllers (with sensors and
actuators), the other simulating the environment in which the
adaptive illumination facility is situated and the pedestrians
situated in it. The two simulations are connected: in particular,
the state of sensors of is influenced by the state of the
environment simulation.

The environment simulator, that is based on the MMASS
[5], can be used to perform pedestrian simulation. This module
actually feeds the self-organization model with simulated field
data. The previously described CA model managing the self-
organization of the illumination facility will react according

to the current occupation of the space in the environment and
according to its own parameters.

In this way, the designer can effectively envision the interac-
tion between the people an the specified adaptive environment.
The simulation environment allows the designer in configuring
the network, defining the type, number, position of the sensors
and actuators, and in specifying the behavior of the controllers,
by means of defining the parameters of the CA model.

B. The Visualization Facility

The system supports both a 2D and 3D visualization of
the simulated environment and the state of the two different
enclosed models. The 2D visualization can be interactive, so
it is possible to define an action event to be fired on a click
(e.g. simulate the perception of a pedestrian when the designer
clicks on a cell). This is useful because allows the designer
to test the system behavior before specifying in an extensive
way a pedestrian simulation scenario.

The 3D visualization is useful to understand the behavior of
the system. It is not a photo realistic rendering but a real-time
representation of simulated system. During the simulation,
the user can navigate the 3D space, changing his/her point
of view, for instance, taking the perspective of one of the
pedestrians walking in the environment. It is possible to load
3D models both for the space and for pedestrian agents. The
3D visualization is based on the jMonkey engine2; the API
of this open source project allows loading several 3D model
formats. A screenshot of the visualization system is shown in
Figure 8.

VI. FUTURE DEVELOPMENT

The paper introduced a simulation approach to supporting
the design of an ambient intelligence infrastructure aimed at
improving the everyday experience of pedestrians and people
passing through the related environment. A specific scenario
related to the definition and development of an adaptive
illumination facility was introduced, and a CA-based model
specifying its dynamic behaviour was defined. An agent-
based pedestrian model simulating inputs and stimuli to the
adaptation module was also introduced. A prototype of a
system supporting designers in the definition of the relevant
parameters for this model and for the overall illumination
facility was finally described.

The renovation project is currently under development on
the architectural and engineering side, whereas the CA-based
model has shown its adequacy to the problem specification,
both in order to provide a formal specification of the behaviour
for the system components and possibly as a centralized
control mechanism. The realized prototype explored the pos-
sibility of realizing an ad hoc tool that can integrate the
traditional CAD systems for supporting designers in simu-
lating and envisioning the dynamic behaviour of complex,
self-organizating installations. It has been used to understand
the adequacy of the modeling approach in reproducing the
desired self-organized adaptive behaviour of the environment

2http://www.jmonkeyengine.com/

99

Fig. 8. Screenshot of the simulation environment: on the left, the top panel shows the position of pedestrians in the environment, while the bottom one
shows the intensity of cells. The right panel shows a 3D visualization of the environment, including columns, lights and pedestrians.

to the presence of pedestrians. We are currently improving
the prototype, on one hand, to provide a better support for
the Indianapolis project and, on the other, to realize a more
general framework for supporting designers of dynamic self-
organizing environments.

ACKNOWLEDGEMENTS

The work presented in this paper has been partially funded
by the University of Milano-Bicocca within the project “Fondo
d’Ateneo per la Ricerca - anno 2007”.

REFERENCES

[1] Proceedings of the First International Conference on Self-Adaptive and
Self-Organizing Systems, SASO 2007, Boston, MA, USA, July 9-11, 2007.
IEEE Computer Society, 2007.

[2] H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T. F. K.
Jr., R. Nagpal, E. Rauch, G. J. Sussman, and R. Weiss. Amorphous
computing. Commun. ACM, 43(5):74–82, 2000.

[3] S. Bandini, G. Erbacci, and G. Mauri. Implementing Cellular Automata
Based Models on Parallel Architectures: The CAPP Project. In V. E.
Malyshkin, editor, PaCT, volume 1662 of Lecture Notes in Computer
Science, pages 167–179. Springer, 1999.

[4] S. Bandini, S. Manzoni, and C. Simone. Dealing with space in multi-
agent systems: a model for situated MAS. In Proceedings of the first
international joint conference on Autonomous agents and multiagent
systems, pages 1183–1190. ACM Press, 2002.

[5] S. Bandini, S. Manzoni, and G. Vizzari. Towards a Platform for
Multilayered Multi Agent Situated System Based Simulations: Focusing
on Field Diffusion. Applied Artificial Intelligence, 20(4–5):327–351,
2006.

[6] S. Bandini and G. Mauri. Multilayered Cellular Automata. Theor.
Comput. Sci., 217(1):99–113, 1999.

[7] W. Butera. Text display and graphics control on a paintable computer.
In SASO [1], pages 45–54.

[8] A. E. S. Filho, E. C. Lupu, N. Dulay, S. L. Keoh, K. P. Twidle,
M. Sloman, S. Heeps, S. Strowes, and J. Sventek. Towards supporting
interactions between self-managed cells. In SASO [1], pages 224–236.

[9] J. Frazer. Computing without computers. Architectural Design,
75(2):34–43, 2005.

[10] E. Goles and S. Martinez. Neural and Automata Networks: Dynamical
Behavior and Applications. Kluwer Academic Publishers, 1990. ISBN
0-792-30632-5.

[11] H. Gutowitz. Cellular Automata: Theory and Experiment. MIT
Press/Bradford Books, Cambridge Mass., 1991. ISBN 0-262-57086-6.

[12] N. R. Jennings. On agent-based software engineering. Artif. Intell.,
117(2):277–296, 2000.

[13] F. Klügl. A Validation Methodology for Agent-Based Simulations. In
R. Menezes and M. Viroli, editors, Symposium on Applied Computing,
pages 39–43. ACM Press, 2008.

[14] N. Shadbolt. Ambient Intelligence. IEEE Intelligent Systems, 18(4):2–3,
2003.

[15] J. von Neumann. Theory of Self-Reproducting Automata. University of
Illinois Press, 1966.

[16] F. Zambonelli, M. Mamei, and A. Roli. What can cellular automata tell
us about the behavior of large multi-agent systems? In A. F. Garcia,
C. J. P. de Lucena, F. Zambonelli, A. Omicini, and J. Castro, editors,
SELMAS, volume 2603 of Lecture Notes in Computer Science, pages
216–231. Springer, 2002.

100

Applying Tropos to Socio-Technical System Design
and Runtime Configuration

Fabiano Dalpiaz∗, Raian Ali∗, Yudistira Asnar∗, Volha Bryl∗ and Paolo Giorgini∗
∗Dipartimento di Ingegneria e Scienza dell’Informazione

Università degli Studi di Trento
Email: {dalpiaz,ali,yudis.asnar,bryl,pgiorgio}@disi.unitn.it

Abstract—Recent trends in Software Engineering have intro-
duced the importance of reconsidering the traditional idea of
software design as a socio-tecnical problem, where human agents
are integral part of the system along with hardware and software
components. Design and runtime support for Socio-Technical
Systems (STSs) requires appropriate modeling techniques and
non-traditional infrastructures. Agent-oriented software method-
ologies are natural solutions to the development of STSs, both
humans and technical components are conceptualized and an-
alyzed as part of the same system. In this paper, we illustrate
a number of Tropos features that we believe fundamental to
support the development and runtime reconfiguration of STSs.
Particularly, we focus on two critical design issues: risk analysis
and location variability. We show how they are integrated and
used into a planning-based approach to support the designer in
evaluating and choosing the best design alternative. Finally, we
present a generic framework to develop self-reconfigurable STSs.

I. INTRODUCTION

Socio-technical systems, introduced by Emery and Trist [1],
[2], identify a particular class of systems characterized by an
interplay between their social and technical components; in
other words, a socio-technical system is composed not only
of hardware and software, but also of human agents. STSs
present specific properties, among which [3]:
• emergent properties arising from the system as a whole,

rather than from the individual components;
• non-determinism, since humans do not always react in

the same way;
• dynamic organizational objectives, because objectives can

have different (subjective) interpretations and may vary
over time.

A particularly relevant and promising application area for
socio-technical systems is Ambient Intelligence (AmI). Fig-
ure 1 presents an AmI scenario concerning crisis management,
which we will use further in the paper as a motivating case
study. A camera detects a possible fire in a building and,
in order to avoid false alerts, it asks another camera for
confirmation (1). A sound alert cannot be activated, because
the (in-place) alarm ring is out of order (2). The system should
therefore self-reconfigure: the alternative is to call the firemen
(3), check the current traffic status to support the rescue teams
(4), and alert the fire warden (6). The socio-technical nature of
this scenario becomes clear during this reconfiguration step:
calling firemen and alerting the fire warden involves human

activities, whose outcome is unpredictable, whereas checking
the traffic status involves humans only in a further step, when
traffic should be re-routed (5). Even in such a simplified sce-
nario, the interplay between humans and technical subsystems
is manifest, and shows the complex nature of designing and
supporting STS at runtime.

Fig. 1. An Ambient Intelligence crisis management scenario for Socio-
Technical Systems.

The use of agents, with sociality, autonomy, and proactivity
as key characteristics, can be beneficial for socio-technical
systems (and, consequently, AmI systems) design and runtime
support. Indeed, in an STS the social interaction among the
computational units is essential in pursuing the system goals.
System components (both technical and social) need autonomy
to take decisions locally, to choose when and how they need
to achieve their objectives.

Tropos [4] is an agent-oriented software engineering
methodology, which bases on the Belief-Desire-Intention
(BDI) paradigm [5], [6]. Tropos models the system as a set of
interacting agents1. Each agent has a set of goals to fulfill, and
a number of tasks that describe how to achieve goals. An agent
can provide or require resources to execute tasks. Soft-goals
represent those goals, such as software qualities, for which
fulfillment there is no clear-cut criteria. Goal-to-goal connec-
tions can be set through (a) and-decomposition to split a goal
into a number of concurrent sub-goals; (b) or-decomposition

1An agent can be a human or an artificial agent.

101

to represent a number of alternative sub-goals. Goals are
connected to tasks through means-end decomposition: the task
is a means to achieve an end (the goal). Contribution relations
link goals, tasks, and resources to soft-goals; a contribution
from an element x to a soft-goal s represents how well x
contributes to the satisfaction of s. Finally, agents depend on
each other – via dependencies – for goal achievement, task
execution, and resource provision.

These aspects of Tropos appear useful for the development
of socio-technical systems, where hardware/software agents
coexist with human actors. However, the original [4] Tropos
modeling framework alone is not sufficient to capture all
aspects of STSs, and in this paper, we illustrate a collection
of Tropos extensions that can be used to better address both
the development and the support of STSs at runtime. The
first design-time extension concerns the modeling of location
variability; the location where an agent is situated can requires
specific strategies to be used at runtime. The second extensions
we introduce is a framework to handle uncertainty in the
development of STSs: the Goal-Risk (GR) framework is a
modeling technique, accompanied by analysis tools, whose
objective is the minimization of risk. These extensions to the
original Tropos framework can be integrated in a planning-
based framework that can support a designer in exploring the
design-time space of alternatives. The framework allows the
designer to look at all possible designs and on the base of
a number of criteria decide on such alternatives. Finally, we
introduce two approaches to support self-reconfigurable STSs.
Essentially, we propose two approaches to use the Tropos goal
diagrams to monitor the execution of a system. The former
adopts a centralized reconfiguration engine, while the latter a
decentralized reconfiguration enacted by each agent.

The paper is organized as follows: Section II discusses
two concerns which are relevant in the design of STSs in an
AmI setting: location variability and risk; Section III shows
how AI planning techniques can be used to automate design-
time analysis; Section IV analyzes autonomic STSs and the
property of runtime self-reconfiguration. Finally, Section V
presents final remarks and future work.

II. MODELING STS IN AMI SETTINGS

We present two different techniques to support the design of
socio-technical systems. The rationale behind these proposals
comes from two important aspects in STSs, and whose impor-
tance gets even wider when considering Ambient Intelligence
settings; these concerns are location-based variability and risk.

A. Modeling Location-based Variability

The rationale of an agent often contains behavioral variabil-
ity, where the agent can choose among alternative strategies
(tasks) to fulfill the same objective (goal). A proper variability
modeling should include means to represent how the selection
between these alternatives is performed, specifying when and
where a certain alternative is applicable. STSs are charac-
terized by a dynamic location, in which both technical and
social components vary over time. We claim that location is

an important criteria that can constrain and guide the selection
of the most suitable alternative.

Figure 2a shows a partial goal model for a software agent
working on behalf of a victim of a crisis (e.g., a fire). To ensure
victim safety, the software has to be aware of the crisis, which
can be done through an explicit request from the victim by a
voice or typed command or through the continuous automated
analysis of the signal that comes from some sensing system.
To ensure safety, the victim might need to wear special dress
(e.g. anti-fire coat). Then, the victim has to be guided to a safe
place through an automatic tracing and directing, or through
the help of a fireman.

The original Tropos goal model supports modeling alterna-
tives for satisfying goals, but lacks tools for specifying the
locations where specific alternatives are applicable. (see the
model in Figure 2a). In our previous work [7], [8], [9], we
extended Tropos goal model to represent the relation between
goal satisfaction alternatives and location. Our modeling en-
ables an agent to answer several important questions such as:
what are the possible, impossible, or recommended alternatives
to satisfy a goal in a specified location. In our approach, (i)
a location property is a boolean predicate evaluated against
the current location; (ii) a location-based variation point is an
element in the goal model to which a location property (Li on
Figure 2b) can be associated. We defined five location-based
variation points:

1) Location-based Or-decomposition: Or-decomposition is
the basic variability construct; the choice of a specific
Or-alternative might be based on a location properties
that inhibits, allows, or recommends some alternatives.
E.g. having crisis awareness through communicating
with a sensing system requires both that a sensing
system exists and the user’s PDA has the ability to
connect to it (L1).

2) Location-based contribution to softgoals: the value of the
contributions to the softgoals can vary from one location
to another. We need to specify the relation between the
location and the value of the contribution. E.g. receiving
the user request through voice recognition contributes
positively to the softgoal “Preciseness” when the level
of noise is low and the system is trained enough for
recognizing that user voice (L2), while it contributes
negatively in the opposite case (L3).

3) Location-based dependency: in some locations, an actor
might be unable to satisfy a goal using its own alterna-
tives. In such case, the actor might delegate this goal to
another actor that is able to satisfy it. E.g. guiding the
person in crisis by a fireman is an alternative that needs
a free and skilled fireman that is close to and can reach
that person (L4).

4) Location-based goal / task activation: an actor, and de-
pending on the location settings, might find necessary or
possible triggering (or stopping) the desire of satisfying
a goal / the execution of a task. E.g. notifying a person
about crisis has to be triggered when the analysis of
the signal that comes from the sensing system addresses

102

(a) Modeling with Tropos (b) Modeling with location-based Tropos

Fig. 2. Partial goal model for the crisis management scenario.

some potential danger (L5).
5) Location-based And-decomposition: a sub-goal might

(or might not) be needed in a certain location, that is
some sub-goals are not always mandatory to fulfil the
top-level goal in And-decomposition. E.g. the need of a
person in crisis to wear special equipments depends on
the category of the crises, and the skills the person in
danger has (L6).

The analysis of the location properties will lead to the
definition of the location model that can be modeled using
class diagram as we did in [8]. In [9], we described a
process to derive a location model – describing the location
in terms of its entities and the links between them – from
the location properties in a goal model. The location model
can be instantiated to represent a certain location and enable
automated reasoning. The evaluation of the location properties
will enable an agent to derive the possible alternatives for
satisfying its goals. The proposed extension of Tropos goals
modeling constructs are colored in gray in the metamodel of
Figure 3.

By formalizing the goal model, the location model, and the
location preperties, it becomes possible performing several
kinds of analysis. We outline now three types of automated
analysis:

1) Location-based goal satisfiability (LGS): it verifies
whether a goal is achievable by choosing a certain
alternative in a specific location.

2) Location properties satisfiability (LPS): this analysis
checks if the current location structure is compliant with
a set of goals. This techniques can be used to identify
what is missing in a particular location where some top-
level goals have been identified as unsatisfiable by LGS.

3) Preferences analysis (PA): this type of analysis requires
the specification of preferences over alternatives. Pref-
erences can be modeled using soft-goals as in [10]. We
need this analysis in two cases:

a) when there are several alternatives to satisfy a goal:
the selection will be based on the contributions to

Fig. 3. Metamodel showing the extension of Tropos with location.

preferred soft-goals.
b) when there is no applicable alternative: in this

case, LPS might provide several proposals about
the needed location modifications.

The adopted modifications are those leading to better
satisfaction of the preferences expressed over soft-goals.

B. Modeling Uncertainty through Risk Analysis

STSs are exposed to a wide range of uncertainty during their
development, runtime, and maintenance. Some uncertainties
can result into system failures, and can even put human lives

103

in danger. There is no such systems that are free of failure: if
something can go wrong then it will go wrong [11]. Therefore,
designers should consider uncertainties that could lead to
failures that harm the system and treat them.

In [12], we proposed the Goal-Risk (GR) modeling frame-
work, that extends Tropos by providing modeling constructs
to represent uncertain events that may affect the organization
negatively (called risks) or positively (called opportunities).
Indeed, it is hardly possible to nullify the risks that threaten a
system since the system can fail as well in case of normal op-
erations (e.g., operator errors, bad maintenance) or malicious
intentions (e.g., attacks, frauds).

������������

	
������

��������
��

����������

�������
����

����
���

�
������

��
�������

�
�����

	
��
�����

�

���
�

����
�������

�����������

��
����������

�������������
�

���

��������

������
��
�

	
��
�

!����
���"������
�

�
�����
�

#���$

%���������

��������

�
�����
�

#���������

������

���	

������

���	

�
�������

���	

&�

��#

&&�

&�

��#

&&�

#�

&�

Fig. 4. The Goal-Risk Framework

Conceptually, a Goal-Risk (GR) model (see Figure 4) is
composed by three-layers: asset to capture the goals of the
stakeholders (e.g., firefighter intends to stop a fire), and tasks
and resources required to achieve the goals (e.g., “Go to
warehouse to obtain the logistic”), event (pentagons) to model
uncertainty events (e.g., risks, opportunities) that affect the as-
set layer (e.g., having a traffic jam), and treatment, depicted as
tasks, to capture additional measures that are required to treat
the risks (e.g., spread firefighter units around the city). This
framework is equipped with two basic reasoning mechanisms
to help designers in making decisions. First, forward reasoning
aims at calculating the risk level of an organization for a
given setting (e.g., value of goals, adopted treatments) and
inputs (e.g., likelihood-severity of event). Second, backward
reasoning aims at eliciting the possible solutions (e.g., strategy
to achieve the goals and necessary treatments to mitigate the
risks) for a given set of constraints (e.g., tolerable risk level).

A socio-technical system is composed by several agents,
each having its own goals, tasks, resources, and, moreover,

each exposed to different risks. An agent often cannot fulfill
all its goals, and needs to depend on others to satisfy some
subgoals, execute some tasks, or provide resources. Thus, a
system can be viewed as a network of agent dependencies. In
secure and dependable systems, this phenomena emerges as
one of the critical points because a vulnerable agent can put
the entire system at risk.

In [13], we extend the GR framework to the case of a
multi-agents setting and illustrate how risks are propagated
from an agent across the organization. In certain cases, agents
should depend on other agents that they do not trust due to
some reasons (e.g., there are not other choices, the regulation
orders to do it). In such a setting, the agents often perceives
a higher level of risk as if they depend on the ones they
trust. Essentially, we can infer how much risks that an agent
perceives is based on its trust relations [14] and evaluate
whether adopted treatments are perceived to be effective by
agents in mitigating the risks.

Finally, considering risks is critical to ensure the socio-
technical systems being dependable and operating securely.
Risk analysis is a continuous process, and therefore risks must
be monitored during runtime and be reviewed regularly as long
as the system is still in use.

III. AUTOMATING THE DESIGN: A PLANNING-BASED
APPROACH

The planning-based extension of Tropos [15] has been
proposed to support a designer in exploring the space of
alternative designs of a socio-technical system. Indeed, the
fulfillment of each of the system goals is related to a number of
choices of how the goal is decomposed and which are the ac-
tors the goal (or its subgoals) are delegated to. The idea behind
planning-based framework is that the task of constructing a
requirements model for a socio-technical system, i.e. a network
of delegations among actors for goals, can be framed as a
planning problem where selecting a suitable social structure
corresponds to selecting a plan that satisfies the stakeholders
goals.

This work adopts AI (Artificial Intelligence) planning [16]
techniques to the domain of requirements engineering. AI
planning is about automatically determining a course of ac-
tions (i.e., a plan) needed to achieve a certain goal where
an action is a transition rule from one state of the world to
another. To define a planning problem, one should specify (i)
the initial state of the world, (ii) the desired state of the world,
and (iii) the actions. In our planning-based framework, goal
decomposition, delegation and fulfillment are seen as actions
that the designer ascribes to the actors of the system-to-be and
of its organizational environment. We use PDDL (Planning
Domain Definition Language) 2.2 [17] to formally specify the
initial organizational setting and actions of the domain. An
off-the-shelf planning tool, LPG-td [18], is adopted for the
implementation of the planning domain.

In [15] we have presented the basic set of first-order
predicates used to formalize the organizational setting in terms

104

of actors and goals, their properties (e.g. actor capabilities),
and social dependencies among actors.

The flexibility of the PDDL specification language makes
it possible to accommodate various criteria into the planning
problem definition. In the following, we list the extensions
of our framework related to three different aspect of socio-
technical system development and deployment.

An application of our planning-based framework to the
domain of secure system design presented in [19] supports
trust and permission concepts of Secure Tropos [20]. The plan-
ning domain is defined so that it guarantees that the resulting
socio-technical model satisfied the trust and permission related
constraints imposed on it (e.g., no goal is delegated along an
untrusted link). In the crisis management scenario, presented
in Section I, the examples of such security constraints can be
related to the permission to activate the alarm, which only a
limited set of actors possess, or to trust relations between the
firemen and the fire warden of the building.

Yet another extension of our framework [21] uses risk-based
evaluation metrics for selecting a suitable design alternative,
and aims at agent-based safety critical applications. In this
work, the risk-based criteria (e.g. related to the criticality of a
goal satisfaction or minimum acceptable level of trust between
agents) and the respective framework discussed in Section II-B
of the present paper, are incorporated into the planning-based
procedure which supports a socio-system design (as well as
a system redesign at runtime). This work aims at proposing
a design that maintain the risk level within the acceptable
limits. In the crisis management scenario, the examples of
risk constraints are the ones related to the way to alert the
workers about the danger (the most reliable one should be
chosen among the available alternatives), or to the level of
trust between the firemen and the fire warden of the building
and, accordingly, the goals that can be delegated between these
actors.

Location can be used as a metrics for evaluating alternatives,
as well. As we showed in Section II-A, location properties
associated to variation points can be used to (a) limit the
range of alternatives an agent can choose among; (b) ex-
press location-dependent contribution to soft-goals. In such
a way, the planning-based approach we suggest here can be
customized to discard unavailable options and to exploit soft-
goal satisfaction for ranking available alternatives.

IV. AUTONOMIC SOCIO-TECHNICAL SYSTEMS: RUNTIME
SELF-RECONFIGURATION

The previous sections focused on various facets of the
design of STSs, proposing both modeling languages and
analysis/reasoning techniques. The design of an STS is a
fundamental activity, which helps preventing the development
of a system that violates its requirements (both functional and
non-functional) at runtime.

Nevertheless, design-time support is not sufficient to provide
a comprehensive support for socio-technical systems. Runtime
violation of requirements [22] is recognized as an open
problem and has been explored since several years. Feather

et al. [23] propose an approach to reconcile requirements with
runtime behavior, where both the design- and run-time phases
are covered: (a) anticipate as many violations as possible at
specification time, and (b) detect and resolve the remaining vi-
olations at runtime. Though Feather’s work is not targeted for
socio-technical systems, it points out problems and proposes
solutions which apply also in the context of STSs.

There is hence a clear need for a runtime framework which
complements the design-time techniques we have presented.
An STS exhibits particular properties that set specific require-
ments for the execution infrastructure:

• humans play an active role and should interact with the
technical sub-systems at runtime;

• the location (both the physical and the social aspects of
location) is in continuous evolution;

• the system should self-reconfigure adapting to the chang-
ing environment where it operates;

• failures should be compensated and an alternative plan
should replace the failed plan.

Multi-agent system infrastructures represent a good candi-
date to support socio-technical systems at runtime. In particu-
lar, those based on the BDI paradigm are particularly suitable,
since Tropos is founded on BDI. However, STSs exhibit
some features which are not considered in the classical BDI
paradigm, such as the interplay between software and human
agents. Therefore, existing infrastructures need customization
to result an effective solution for STSs.

The approach we have taken in our research is to link
Tropos to BDI-based software architectures. This solution
enables us to combine different state-of-the-art techniques
extending the capabilities of BDI. Agents represent the core
concept at runtime; each agent has a goal-based specification,
executes plans to achieve its active goals, and depends on
other agent for plan execution, goal achievement, and resource
provision. Two different but complementary approaches can
drive the self-reconfiguration process, with distinct properties
and application scenarios:

• centralized self-configuration: some types of STS, such
as a scientific institution, can work properly only if a
centralized knowledge of the various agents is available,
and self-reconfiguration is therefore controlled centrally.
We explored this first type of self-reconfiguration in [24].

• decentralized self-configuration: this approach presents
self-configuration from the local perspective of an in-
dividual agent. Each agent commits to achieve its own
goals at best, without having a complete knowledge of
the STS. This solution cannot achieve the same level
of optimality a centralized approach guarantees, but is
the only available solution whenever the internals of the
agents cannot be disclosed to a centralized supervisor. An
example of this situation is two software systems that in-
teract but belong to different companies: the interfaces are
available, but the companies will not disclose the internal
reasoning. We proposed an initial approach supporting
this vision in [25].

105

In [24] we have presented an approach to dynamic recon-
figuration of a socio-technical system structure in response to
internal or external changes. The paper suggests a centralized
reconfiguration mechanism, which aims at making a socio-
technical system self-configuring, and proposes a multi-agent
architecture for its implementation.

The proposed reconfiguration mechanism

• collects and manages the information about the system;
• evaluates both the system state (e.g. the overall work-

load), and the local utilities of each agent to decide
whether the system needs to be redesigned in response
to external or internal changes;

• and, if the above evaluation shows that the reconfigu-
ration is needed, replans the system structure in order
to optimize it with respect to the evaluation criteria of
interest.

The notification about the change is obtained either from the
inside of the system or from the environment. Each system
agent is obliged to communicate to some central point if it
committed to, or achieved a goal. Four types of triggering
events are supported, namely, the situations when a new agent
enters the system, or the existing one leaves, when a new
system goal is introduced, or one of the old ones is satisfied.
However, due to the flexibility of the PDDL representation, it
is possible to extend the formalization to support the changes
in the agents’ capabilities and commitments, failures when
achieving goals, etc.

This framework can be applied to the organization of
firemen rescue teams, where different alternatives are available
(truck type, fire fighting approach, firemen equipment) and
several agents are involved. In this scenario, finding the
optimal solution is fundamental, and the centralized planning-
base approach is the best choice.

Talos [25] is an architectural approach to self-
reconfiguration based on a decentralized reconfiguration
mechanism, where self-reconfiguration is seen from the
perspective of each agent/component. Three different sub-
systems are the core of the self-reconfiguration process each
agent performs:

• Monitor: the agent should continuously monitor both
its internal state and the location where it is running
(similarly to what happens for the centralized approach).
The internal state is evaluated verifying the status of
the agent’s goals, detecting new goals, failures, and
fulfillments. A mailbox is exploited to figure out the
incoming requests from other agents, who want to in-
teract to achieve their own goals. The external context is
monitored receiving events from the set of artifacts which
can be seen or are used by the agent.

• Diagnose: monitored events are linked to the goal model
by traceability links, triggering new top-level goals and
notifying failures or achievements. Diagnosis provides
different levels of detail depending on the chosen goal
monitoring granularity; in Talos we exploit a variant of
Wang’s goal monitoring switches [26]: the closer the

monitoring switches are to the plans, the more detailed
diagnosis we can obtain. A particular kind of diagno-
sis is related to the enactment of dependencies, where
other agents provide information concerning dependency
requests (e.g., refuse, contract, accept).

• Compensate: after detecting and diagnosing a failure, the
following step consists of taking a countermeasure to this
failure. We propose the execution of two sub-tasks to
properly carry out this activity:

– A compensation plan should be executed to “undo”
the effects of the failed plan. An important informa-
tion from diagnosis is to understand which action of
the plan failed, or if the plan failed to achieve the
goal though it terminated correctly.

– A self-reconfiguration process is enacted to choose
another strategy to achieve the goal of which a failure
event was generated. A variant of goal analysis is
used to perform this step.

The decentralized solution is suitable in the fire fighting
scenario, as well. In the scene described in Figure 1 the
out-of-order bell inhibits the best overall alerting strategy
(playing a sound alarm), and this failure requires a prompt
local reconfiguration (e.g., alerting the fire warden). Involving
a central control unit would produce delays and could result in
a failure, especially if the fire damaged the physical network
enabling the communication with the central unit.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented and analyzed a number
of extensions to the Tropos methodology to support the
development and the runtime operation of a complex class of
modern systems, namely socio-technical systems. The design
and runtime emergent properties of these systems present a
lot of challenges for developers and there is a clear need for
innovative engineering tools and techniques.

We have presented two design-time modeling and reasoning
techniques, focused on location properties of an STS and risk
analysis, respectively. Also, the problem of runtime reconfigu-
ration of a socio-technical structure was addresses in the paper
with two approaches, centralized and decentralized, suitable
each for different application areas.

As future work, we believe it will be important to further
elaborate and better integrate the techniques presented in this
paper. Particularly, we would like to work on the implementa-
tion of an integrated CASE tool for the development of STSs.

VI. ACKNOWLEDGEMENTS

This work has been partially funded by EU Commission,
through the SENSORIA, SERENITY, and MASTER projects,
and by the PRIN program of MIUR under the MEnSA project.

REFERENCES

[1] F. Emery, “Characteristics of socio-technical systems,” London: Tavis-
tock, 1959.

[2] F. Emery and E. Trist, “Socio-technical systems,” Management Science,
Models and Techniques, vol. 2, pp. 83–97, 1960.

106

[3] I. Sommerville, Software Engineering. Addison-Wesley Longman
Publishing Co., Inc. Boston, MA, USA, 2006, ch. Socio-Technical
Systems.

[4] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos,
“Tropos: An agent-oriented software development methodology,” Au-
tonomous Agents and Multi-Agent Systems, vol. 8, no. 3, pp. 203–236,
2004.

[5] A. Rao and M. Georgeff, “An abstract architecture for rational agents,”
Proceedings of Knowledge Representation and Reasoning (KR&R-92),
pp. 439–449, 1992.

[6] ——, “Bdi agents: From theory to practice,” Proceedings of the First
International Conference on Multi-Agent Systems (ICMAS-95), pp. 312–
319, 1995.

[7] R. Ali, F. Dalpiaz, and P. Giorgini, “Location-based variability for
mobile information systems,” Proceedings of the 20th International
Conference on Advanced Information Systems Engineering (CAiSE’08),
2008.

[8] ——, “Modeling and analyzing variability for mobile information sys-
tems,” Proceedings of the 4th Ubiquitous Web Systems and Intelligence
Workshop (UWSI 2008), 2008.

[9] ——, “Location-based software modeling and analysis: Tropos-based
approach,” Proceedings of the 27th International Conference on Con-
ceptual Modeling (ER 2008), 2008.

[10] S. Liaskos, S. McIlraith, and J. Mylopoulos, “Representing and reason-
ing with preference requirements using goals,” Tech. rep. CSRG-542,
Computer Science Department, University of Toronto, Tech. Rep., 2006.

[11] B. Schneier, Beyond Fear: Thinking Sensibly about Security in an
Uncertain World. Springer, 2003.

[12] Y. Asnar and P. Giorgini, “Modelling Risk and Identifying Countermea-
sures in Organizations,” in Proc. of CRITIS’06, ser. Lecture Notes in
Computer Science, vol. 4347. Springer, 2006, pp. 55–66.

[13] Y. Asnar, R. Moretti, M. Sebastianis, and N. Zannone, “Risk as Depend-
ability Metrics for the Evaluation of Business Solutions: A Model-driven
Approach,” in Proc. of ARES’08. IEEE Press, 2008.

[14] Y. Asnar, P. Giorgini, F. Massacci, and N. Zannone, “From Trust to
Dependability through Risk Analysis,” in Proc. of ARES’07. IEEE
Press, 2007.

[15] V. Bryl, P. Giorgini, and J. Mylopoulos, “Designing Cooperative IS:
Exploring and Evaluating Alternatives,” in CoopIS’06, 2006, pp. 533–
550.

[16] D. S. Weld, “Recent Advances in AI Planning,” AI Magazine, vol. 20,
no. 2, pp. 93–123, 1999.

[17] S. Edelkamp and J. Hoffmann, “PDDL2.2: The Language for the
Classical Part of the 4th International Planning Competition,” University
of Freiburg, Tech. Rep. 195, 2004.

[18] LPG Homepage, “LPG-td Planner,” http://zeus.ing.unibs.it/lpg/.
[19] V. Bryl, F. Massacci, J. Mylopoulos, and N. Zannone, “Designing

Security Requirements Models Through Planning,” in CAiSE’06, 2006,
pp. 33–47.

[20] P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone, “Modeling Se-
curity Requirements Through Ownership, Permission and Delegation,”
in Proc. of RE’05. IEEE Press, 2005, pp. 167–176.

[21] Y. Asnar, V. Bryl, and P. Giorgini, “Using risk analysis to evaluate
design alternatives.” in AOSE, ser. Lecture Notes in Computer Science,
L. Padgham and F. Zambonelli, Eds., vol. 4405. Springer, 2006, pp.
140–155.

[22] A. van Lamsweerde, “Divergent views in goal-driven requirements
engineering,” Foundations of Software Engineering, pp. 252–256, 1996.

[23] M. Feather, S. Fickas, A. Van Lamsweerde, and C. Ponsard, “Recon-
ciling system requirements and runtime behavior,” Proceedings of the
9th International Workshop on Software Specification and Design, pp.
50–59, 1998.

[24] V. Bryl and P. Giorgini, “Self-Configuring Socio-Technical Systems:
Redesign at Runtime,” in SOAS’06, 2006.

[25] F. Dalpiaz, P. Giorgini, and J. Mylopoulos, “Talos: an architecture for
self-reconfiguration,” DISI-08-026, Tech. Rep., 2008.

[26] Y. Wang, S. McIlraith, Y. Yu, and J. Mylopoulos, “An automated
approach to monitoring and diagnosing requirements,” Proceedings of
the 22nd IEEE/ACM international conference on Automated software
engineering, pp. 293–302, 2007.

107

Advancing Object-Oriented Standards Toward
Agent-Oriented Methodologies: SPEM 2.0 on

SODA
Ambra Molesini∗, Elena Nardini†, Enrico Denti∗ and Andrea Omicini†

∗

Alma Mater Studiorum – Università di Bologna
Viale Risorgimento 2, 40136 Bologna, Italy

Email: {ambra.molesini, enrico.denti}@unibo.it
†

Alma Mater Studiorum – Università di Bologna a Cesena
Via Venezia 52, 47023 Cesena, Italy

Email: {elena.nardini, andrea.omicini}@unibo.it

Abstract—Building ad-hoc design processes and methodologies
has become a key challenge in Software Engineering, and several
efforts are being made for developing appropriate meta-models
both for methodologies and development processes. The Software
Process Engineering Meta-model (SPEM) – an OMG object-
oriented standard – is a natural candidate for representing,
comparing and reusing design processes in a uniform way.

In this paper we apply SPEM 2.0 to Agent-Oriented Software
Engineering methodologies, so as to assess its strengths and
limitations. To this end, we take the SODA methodology as a
significant case study, and compare the meta-model of its process
obtained from SPEM 2.0 with the former meta-model obtained
from SPEM 1.0.

I. INTRODUCTION

In the Software Engineering (SE) research field, several
efforts are underway for developing appropriate meta-models
for SE methodologies and processes. According to Cernuzzi et
al. [1], a Development Process is an ordered set of steps that
involve all the activities, constraints and resources required
to produce a specific output which satisfies a set of input
requirements. Typically, a process is composed of different
stages/phases in relation with each other: each stage/phase
identifies a portion of the work to be done, the resources to be
exploited and the constraints to be obeyed for that purpose.

The relation between methodologies and processes is well
studied in the literature: as pointed out in [1], methodologies
focus more explicitly on how an activity or task should be
performed in specific stages of the process, while processes
may also cover more general management aspects about who,
when, how much, etc.

Software development processes and methodologies have
always been described in suitable terms for developers [2]: in
fact, they talk about what tasks and techniques should be used,
what sort of lifecycle is appropriate, and how these process
elements should be organised in time and assigned to people.
These aspects are often described in a manual or book that the
project manager and his/her team of developers closely follow
[2]. However, such manuals are not suitable for the automatic

tools that typically support the designer’s work, such as CASE
tools that need specific rules for supporting methodologies and
processes—rules stating, for instance, that it is a nonsense to
put in a sequence two activities, three techniques and four
roles: these rules are usually captured by a meta-model.

Although it is possible to describe a methodology / process
without an explicit meta-model, formalising their underpinning
ideas is valuable for checking consistency, or when planning
extensions or modifications: there, meta-models can be ex-
ploited to check both the software development process and
the completeness and expressiveness of methodologies. More
generally, the relevance of meta-model becomes clear when
studying the completeness and the expressiveness of a method-
ology / process, and when comparing or integrating different
methodologies / processes together. For these reasons, research
efforts are being made to define unified meta-models, aimed
at representing the existing methodologies and processes in a
uniform way, so as to promote their mutual comparison, their
composition and reuse—this area is sometimes referred to as
Method Engineering [3], [4].

SPEM (Software Process Engineering Meta-model, [5]) is
one of the key references for this purpose: as it could be
expected, SPEM is conceived for an object-oriented context,
since most current methodologies adopt this paradigm as their
reference.

SPEM seems a natural candidate for representing the meta-
models of Software Engineering methodologies, both because
it is an OMG standard, and because it is based on formal
descriptions that can lead to consistent, comparable models:
so, an interesting challenge is to test its applicability to other,
non object-oriented Software Engineering domains. Despite
its origin in the object-oriented context, SPEM can be ap-
plied to the agent-oriented process quite naturally, since the
process of software development is mostly independent of the
computational paradigm adopted, and has essentially the same
phases in any methodology. However, AOSE methodologies
introduce a richer set of abstractions and mechanisms, which

108

naturally lead to a more articulated definition of the software
development process.

In a previous work [6] we explored the applicability of
SPEM to the Agent-Oriented Software Engineering (AOSE)
domain, whose abstractions and mechanisms are particularly
suited to the design and development of complex software
systems. There, we highlighted several limitations (briefly
recalled in Section IV), exploiting the SODA methodology
as a significant case study for stressing SPEM 1.0’s strengths
and weaknesses because of its focus on modelling the social
issues and the application environment, and its mechanisms
for capturing the layered structure of complex systems. Other
AOSE methodologies modelled by SPEM [7] apparently do
not suffer from such limitations (mainly because they do not
include some mechanisms, like the SODA layering which
is discussed below), so it seems quite difficult to determine
general metrics and criteria for assessing the SPEM meta-
modelling power.

So, in this paper we explore SPEM 2.0 by modelling the
SODA methodology process and comparing the results with
the previous ones—in particular, aiming to discover whether
and how the previous limitations have been addressed: in a
sense, to check whether the extension of the SPEM object-
oriented standard has gone farther in addressing the many
issues of agent-oriented methods and techniques.

Accordingly, the paper is structured as follows. Section II
briefly presents SPEM 2.0 and some considerations about the
adoption of SPEM in the AOSE field (Subsection II-A), while
Section III presents the corresponding SODA process. Then,
Section IV compares the meta-modelling power of SPEM 1.0
and SPEM 2.0, by taking the SODA process as its running
example. Conclusions are reported in Section V.

II. SPEM

SPEM is an OMG standard meta-model for formally defin-
ing software and systems development processes [5]. The
goal of SPEM 2.0 is not only to support the representation
of one specific development process ore the maintenance of
several unrelated processes, but to provide process engineers
with mechanisms to consistently and effectively manage whole
families of related processes promoting process reusability
[5]. To this end, its meta-model introduces a clear separa-
tion between reusable methods content and its application in
processes: the first item provides step-by-step explanations of
how the development goals are achieved, independently of the
placement of these steps within a development lifecycle; then,
processes take these methods content elements and relate them
into partially-ordered sequences that are customized to specific
types of projects.

More in detail, SPEM 2.0 is structured into seven packages:
Core, Process Structure, Process Behaviour, Manage Content,
Method Content, Process With Method, and Method Plugin.

The Core package defines the base classes and abstractions
for all other meta-model packages, while Process Structure
provides the base for creating flexible process models —
in particular, defining a process model as a breakdown or

decomposition of nested Activities, with the related Roles and
input / output Work Products. In addition, this package enables
process reuse by providing mechanisms such as dynamic
binding of process patterns (or capability patterns), which are
reusable best practices for quickly creating new development
processes.

The Process Behavior package supports the extension of the
static breakdown structure of a process by externally-defined
behaviour models. Manage Content, then, introduces the con-
cepts to document and manage development processes through
natural language description—indeed, practice of processes
techniques and methods often cannot be formalised, but can
only be expressed in natural language. In its turn, Method
Content makes it possible to build a reusable development
knowledge base which is independent of any specific devel-
opment process: in particular, this package comprises textual
step-by-step explanations, describing how specific fine-grain
development goals are achieved by which roles, with which
resources and results, independently of the placement of these
steps within a specific development lifecycle. Process With
Method provides what is needed to integrate processes with
instances of Method Content concepts. Finally, the Method
Plugin package introduces concepts for ‘designing’ and man-
aging maintainable, large scale, reusable, and configurable
libraries or repositories of method content and processes. In
the next Subsection we outline some of the main issues in the
use of SPEM in the AOSE context.

A. SPEM&AOSE

As introduced above, AOSE methodologies introduce a
richer set of abstractions and mechanisms then OO systems, so
the software development process is more articulated; in turn,
the wide range of peculiarities of each methodology makes it
difficult to define some general metrics and criteria for SPEM
testing and evaluation.

Yet, some points can be put in evidence. First, each process
and subprocess resulting from methodology representation
should be reasonably clear and easy to understand, since
failing to do so would make the SPEM representation itself
little useful. SPEM’s separation between Method Contents
and Processes is a natural candidate to support this aspect,
although the limited set of symbols offered by SPEM might
lead to difficulties in representing elements or state changes.
Second, since most methodologies exploit some iterative /
incremental processes, the SPEM representation should be
able to support such aspect. Third, since methodologies for
complex systems typically include conceptual mechanisms
for complexity management (such as some form of in/out
zooming, the ability to view the system by levels at different
abstraction levels, etc), some support should be provided by
SPEM in order to capture such aspects in a satisfactory way.

In the following section we will try to exploit SODA as a
testbed for evaluating SPEM 2.0’s expressiveness with respect
to such issues.

109

III. THE SODA PROCESS

SODA (Societies in Open and Distributed Agent spaces)
[8], [9] is an agent-oriented methodology for the analysis and
design of agent-based systems, which adopts the Agents &
Artifacts meta-model (A&A) [10], and introduces a layering
principle as an effective tool for scaling with the system com-
plexity, applied throughout the analysis and design process.

SODA abstractions are logically divided into three cate-
gories: i) the abstractions for modelling/designing the system’s
active part (task, role, agent, etc.); ii) those for the reactive part
(function, resource, artifact, etc.); and iii) those for interaction
and organisational rules (relation, dependency, interaction,
rule, etc.). In its turn, the SODA process is organised in
two phases (Figure 1), each structured in two sub-phases:
the Analysis phase, which includes the Requirements Analysis
and the Analysis steps, and the Design phase, including the
Architectural Design and the Detailed Design steps. Each sub-
phase models (designs) the system exploiting a subset of the
SODA abstractions: in particular, each subset always includes
at least one abstraction for each of the above categories—that
is, at least one abstraction for the system’s active part, one for
the reactive part, and another for interaction and organisational
rules.

In order to represent the whole SODA process in a simple
yet effective way, we exploited SPEM’s separation between
Method Contents and Processes (Section II): first, we modelled
each sub-phase as a separate and independent Method Content,
then we defined a specific process for each sub-phase – see
Figures 3, 4, 5 and 6 for details – and re-used these processes
to create the whole SODA process presented in Figure 1. In
this way the whole process is reasonably easy to understand,
since each sub-phase in the Activity Diagram is depicted as a
simple activity, hiding the internal complexity of that process
portion.

In addition, since the SODA process (Figure 1) is iterative
and incremental, each step can be repeated several times, by
suitably exploiting the layering principle: so, for instance,
if, during the Analysis step, the System Analyst – one of
the roles involved in the SODA process – recognises some
omissions or lacks in the requirements’ definition, he/she can
restart the Requirements Analysis step adding a new layer
in the system or selecting a specific layer and then refining
it. Analogous considerations could be made for both the
Architectural Design step – where the Analysis step can be
restarted from the layering – and the Detailed Design step—
which leads to restart the Architectural Design step.

The layering in Figure 1 is represented as a simply Activity
of the process: actually, it is a capability pattern (Section II),
i.e., a reusable portion of the process, as shown in Figure
2 where the layering process is detailed. In particular, the
layering presents two different functionalities: (i) the selection
of a specific layer for refining / completing the abstractions
models in the methodology process, and (ii) the creation of
a new layer in the system by in-zooming (i.e., increasing
the system detail) or out-zooming (i.e., increasing the system

Requirements Analysis

Analysis

Layering

Architectural Design

Layering

Detailed Design

Is the problem well specified?

no

Is the system well specified?

yes

yes no

Are there problems in the system?

yes

no

Fig. 1. Activity Diagrams of the whole SODA process.

abstraction) activities. In latter case, the layering process
terminates with the projection activity needed to project the
abstractions from one layer to another “as they are”, so as to
maintain the consistency in each layer.

The layering pattern is also used within sub-phases—except
in the Detailed Design, where the layering principle is, by
definition, not applicable. For instance, Figures 3, 4 and
5 report the sub-process of the Requirements Analysis, of
Analysis and of Architectural Design steps, respectively: the
layering activity is applied multiple times, both as a refinement
or layer selecting technique in the single models (activities)
– e.g., task layering, role layering, resource layering, space
layering interaction layering, etc. . . – and as a way for re-
starting the stage if some problems arise in the models or just
for triggerring a new iteration of the stage. In the following,
each sub-phase is presented in short.

a) Requirements Analysis.: Several abstract entities and
models are introduced for this purpose. Each model is repre-
sented in Figure 3 as an activity, related to the corresponding
Task in the Requirements Analysis Method Content. The latter
specifies the steps to be completed to achieve the task, as well
as the Workproducts to be produced—i.e., the SODA tables

110

In-zoom Out-zoom

Projection

Select Layer

increases detail increases abstraction

new layer?

no

yes

Fig. 2. Activity Diagram of the Layering Pattern.

describing the abstract entities of the Requirements Analy-
sis. During the Requirements modelling activity (Figure 3),
requirement and actor are used for modelling the customers’
requirements and the requirement sources, respectively, while
the external-environment notion is used as a container of
the legacy-systems that represent the legacy resources of
the environment in the Environment modelling activity. The
relationships between requirements and legacy systems are
modelled in the Relation modelling activity in terms of a
suitable relation.

Requirements modelling Environment modelling

Relations modelling

Requirements layering Environment layering

Relations layering

Layering

another layer? another laye?

another layer?

yes

start

no

yes

no

yes

Are the models well specified?

yes
no

new iteration

Fig. 3. Activity Diagram of the Requirements Analysis step.

b) Analysis.: The first activity in the Analysis step is
Moving from Requirements (Figure 4), where the abstractions
identified in the previous step are mapped onto the abstractions
adopted in this stage to generate the initial version of the
Analysis models. In particular, the Analysis step expresses the
requirement representation in terms of more concrete entities
such as tasks and functions. Tasks are activities requiring
one or more competences and are analysed in the Task
analysis activity, while functions are reactive activities aimed
at supporting tasks analysed in the Function analysis activity.
The structure of the environment, analysed in the Topology
analysis activity, is also modelled in terms of topologies—
i.e., topological constraints over the environment. The relations
highlighted in the previous step are here the starting point for
the definition of dependencies among such abstract entities in
the Dependency analysis activity.

Moving from requirements

Task analysis Function analysis Topology analysis

Dependency analysis

Task layering
Function layering

Topology layering

Dependency layering

Layering

Layering

other layer?

another layer?
another layer?

another layer?

another layer?

new iteration

no

yes

yes

 no

yes

no

yes

yes

no

no

Are the models well specified?

yes

Fig. 4. Activity Diagram of the Analysis step.

c) Architectural Design.: This stage (Figure 5) is one of
the more complex sub-phases in SODA. The first activity is
Transition (Figure 5), where the abstractions identified in the
previous step are mapped onto the abstractions adopted in this
stage so as to generate the initial version of the Architectural
Design models. The main goal is to assign responsibilities
for achieving tasks to roles – Role design activity – and for
providing functions to resources—Resource design activity.
In order to attain one or more tasks, a role should be able
to perform actions – Role design activity –; analogously, the

111

resource should be able to execute operations providing one
or more functions—Resource design activity. The topology
constraints lead to the definition of spaces, i.e., conceptual
places structuring the environment in the Space design activity.
Finally, the dependencies identified in the previous phase
become here interactions and rules. Interactions represent
the acts of the interaction among roles, among resources
and between roles and resources, and are designed in the
Interaction design activity; rules, instead, enable and bound the
entities’ behaviour and are designed in the Constraint design
activity.

Transition

Role design Resource design

Space design

Interaction design

Constraint design

Role layering
Resource layering

Space layering

Interaction layering

Constraint layering

Layering

Layering

other layer?

another layer? another layer?

another layer?

another layer?

need another layer?

yes
yes

yes

yes

yes

new iteration

no

yesno

no
no

no

no

are all the models well specified?

yes

Fig. 5. Activity Diagram of the Architectural Design step.

d) Detailed Design.: The Detailed Design step (Figure 6)
is the only stage where the layering principle is not applicable,
since its goal is to choose the most adequate representation
level for each architectural entity, thus leading to depict
one (detailed) design from the several potential alternatives
architectures outlined in the previous step. So, as shown in
Figure 6, the first activity of this sub-process is Carving, which
represents a sort of boundary between the Architectural Design
and the Detailed Design, where the chosen system architecture
is “carved out” from all the possible architectures. We also
provide some SPEM’s Guidelines for performing the carving
activity properly. The next activity is Mapping (Figure 6),
where the carved abstractions are mapped onto the abstractions
adopted in this stage, thus generating the initial version of the
Detailed Design models. These models are expressed in terms

Carving

Mapping

Agent design Environment design Workspace design

Interactions design

noyes

is the system well specified?

Fig. 6. Activity Diagram of the Detailed Design step.

of agents, agent societies, composition, artifacts, aggregates
and workspaces for the abstract entities, while the interactions
are expressed by means of uses, manifests, speaks to and
links to concepts. More precisely, agents are intended here
as autonomous entities able to play several roles, while a
society can be seen as a group of interacting agents and
artifacts whose overall behaviour is essentially autonomous
and proactive: they are designed during the Agent design
activity. The resources identified in the previous step are here
mapped onto suitable artifacts, while aggregates are defined as
a group of interacting agents and artifacts whose overall be-
haviour is essentially functional and reactive: they are designed
during the Environment design activity. Workspaces take the
form of an open set of artifacts and agents: artifacts can be
dynamically added to or removed from workspaces, and agents
can dynamically enter (join) or exit workspaces. Workspaces
are designed in the Workspace design activity. Finally, the uses,
manifests, speaks to and links to concepts are designed during
the Interactions design activity.

IV. DISCUSSION

In [6], the SPEM 1.0 meta-modelling power was put to test
in the context of AOSE methodologies. There, SODA was
taken as a case study to assess the strengths and limitations
of SPEM, given its peculiar focus on the modelling and
engineering (i) social issues, (ii) application environments, and
(iii) complexity management—essential aspects for complex
software systems. In order to simplify the comparison among
the two versions of SPEM, Figure 7 reports the Activity
Diagram of the Architectural Design stage as it was modelled

112

in SPEM 1.0. Three major problems were put in evidence at
that time:

1) Activity Diagrams and abstractions did not easily cap-
ture the SODA layering principle: this is quite clear
in Figure 7, where layering is represented as a simply
activity and there is no way to detail the layering sub-
process without reporting in the Activity Diagram all the
layering sub-activities;

2) WorkProduct elements are characterised by a unique
symbol, which makes it difficult to model the state
changes of a WorkProduct during the process evolution
(Figure 7);

3) UML Diagrams often become unreadable due to the
too many elements required to represent a process: for
instance, Figure 7 shows how Activities, Roles, Inputs
and Workproducts are depicted in the same diagram.

(if exists)

(if exists)

(if exists)

(updated)

Fig. 7. Activity Diagram of the Architectural Design step (SPEM 1.0).

These limits depend on the fact that SPEM 1.0 does not offer
sufficient abstractions for effectively managing the representa-
tion complexity of articulated processes like those underpinned
by SODA. From this viewpoint, SPEM 2.0 seems to overcome
the limits of the previous version. In fact, the first issue is
now addressed by providing the capability pattern mechanism

(Section II) that makes it possible to represent a process
pattern as a single activity, hiding its internal structure. As
seen in Section III, such a pattern is suitable for modelling
the layering principle, and allows engineers to realise more
understandable and readable diagrams by hiding the process
complexity behind the Activity abstraction. So, the different
activities composing the Layering can now be detailed without
reporting them in the Activity Diagrams each time, leading to
a great simplification (compare Figures 5 and 7).

The second issue is addressed in SPEM 2.0 by extending
both the UML Activity Diagrams so as to represent the input
and output parameters of an Activity, and the UML State
Diagrams so as to annotate the State elements [5]. Such
extensions enable UML State Diagrams to model the lifecycle
of each WorkProduct, and relate each State element to the
corresponding Activity that causes the state change.1 This
makes it unnecessary to represent the Workproducts inside the
Activities Diagrams as it was in SPEM 1.0.

The last issue is already partially addressed by the solution
adopted for the first issue, since capability patterns simplify
the Diagrams structure; in addition, as seen in Section II,
SPEM 2.0 introduces the concept of process reusability and
allows Method Contents to be defined independently of their
application in the development lifecycle. So, Method Contents
can be re-used by relating their elements into a process that is
customised for the specific type of project. As a result, each
UML Diagram is now more readable, as it can focus only on
a given portion of the Method Content / Process, and does not
contain all the “unusable” entities which are not related to the
considered portion of the meta-model.

In Section III, for instance, we defined a Method Content
for each SODA stage, relating them to the corresponding
processes. The Method Content defines the involved Roles,
the Tasks to be performed with the corresponding steps, the
Inputs and Workproducts, and the relation between the Inputs
/ Workproducts and Tasks; processes, in their turn, specify the
Activities responsible for the tasks achievement and their order
inside processes. The resulting Activities Diagrams in SPEM
1.0 and SPEM 2.0 for the Architectural Design stage are
shown in Figure 7 and 5, respectively: the latter appears more
readable, as it does not contain the Roles and Workproducts
that are not necessary in this Diagram.

Summing up, SPEM 2.0 seems to overcome the major
limits of its previous version, providing the right abstractions
and mechanisms to model articulated process like SODA’s,
perhaps finding its way in the AOSE context.

V. CONCLUSIONS AND FUTURE WORK

In this paper we took the SODA methodology as a case
study for testing the applicability of SPEM 2.0 to AOSE
methodologies. Moving from a previous work [6] where the
SODA process was modelled in SPEM 1.0, we explored here
whether SPEM 2.0 addressed the weaknesses and limits of ex-
pressiveness that had clearly emerged—mainly, the readability

1Example concerning WorkProduct elements are not reported here for
obvious limitations in space.

113

of UML diagrams, both for the intrinsic complexity of Agent-
Oriented methodologies, and for the lack of suitable ad-hoc
entities.

Our experience indicates that SPEM 2.0 addresses such lim-
its, by introducing a clear separation between Method Contents
and Processes, adding capability patterns, and making it possi-
ble to express the ties between the Workproducts’states and the
Activities that produce the changes in the Workproducts’states.
Our next plans include testing SPEM in other contexts such
as modelling the processes underpinned by MAS infrastruc-
tures, with the purpose of integrating AOSE methodologies
and MAS infrastructures according to the Situational Method
Engineering technique [11].

VI. ACKNOWLEDGEMENTS

This work has been supported by the MEnSA project
(Methodologies for the Engineering of complex software
Systems: Agent-based approach) funded by the Italian Min-
istry of University and Research (MUR) in the context of the
National Research ‘PRIN 2006’ call.

REFERENCES

[1] L. Cernuzzi, M. Cossentino, and F. Zambonelli, “Process models for
agent-based development,” Engineering Applications of Artificial Intel-
ligence, vol. 18, no. 2, pp. 205–222, March 2005.

[2] B. Henderson-Sellers and C. Gonzalez-Perez, “A comparison of four
process metamodels and the creation of a new generic standard,”
Information & Software Technology, vol. 47, no. 1, pp. 49–65, 2005.

[3] S. Brinkkemper, K. Lyytinen, and R. Welke, Method engineering:
Principles of method construction and tool support. Kluwer Academic
Publishers, 1996.

[4] J. Ralyté and C. Rolland, “An approach for method reengineering,”
in Conceptual Modeling. London, UK: Springer-Verlag, 2001, pp.
471–484, 20th International Conference (ER 2001), Yokohama,
Japan, 27-30 Nov. 2001. Proceedings. [Online]. Available:
http://www.springerlink.com/content/pbtbr52cwya7qyd4/

[5] Object Management Group, “Software & Systems
Process Engineering Meta-Model Specification 2.0,”
http://www.omg.org/spec/SPEM/2.0/PDF, Apr. 2008.

[6] E. Nardini, A. Molesini, A. Omicini, and E. Denti, “SPEM on test: the
SODA case study,” in 23th ACM Symposium on Applied Computing
(SAC 2008), R. L. Wainwright, H. M. Haddad, R. Menezes, and
M. Viroli, Eds., vol. 1. Fortaleza, Ceará, Brazil: ACM, 16–20 Mar.
2008, pp. 700–706, special Track on Software Engineering. [Online].
Available: http://portal.acm.org/citation.cfm?id=1363686.1363853

[7] IEEE-FIPA Methodology Working Group, “Home page,”
http://www.fipa.org/activities/methodology.html.
[Online]. Available: http://www.fipa.org/activities/methodology.html

[8] A. Molesini, A. Omicini, E. Denti, and A. Ricci, “SODA: A roadmap
to artefacts,” in Engineering Societies in the Agents World VI, ser.
LNAI, O. Dikenelli, M.-P. Gleizes, and A. Ricci, Eds. Springer,
Jun. 2006, vol. 3963, pp. 49–62, 6th Inter. Workshop (ESAW 2005),
Kuşadası, Aydın, Turkey, 26–28 Oct. 2005. Revised Paper. [Online].
Available: http://www.springerlink.com/link.asp?id=j68l84713542525p

[9] SODA, “Home page,” http://soda.apice.unibo.it. [Online].
Available: http://soda.apice.unibo.it

[10] A. Omicini, “Formal ReSpecT in the A&A perspective,” Electronic
Notes in Theoretical Computer Sciences, vol. 175, no. 2, pp. 97–
117, Jun. 2007, 5th Inter. Workshop on Foundations of Coordination
Languages and Software Architectures (FOCLASA’06), CONCUR’06,
Bonn, Germany, 31 Aug. 2006. Post-proceedings.

[11] M. Cossentino, S. Gaglio, N. Gaud, V. Hilaire, A. Koukam, and V. Sei-
dita, “A MAS metamodel-driven approach to process composition,” in
9th International Workshop on Agent Oriented Software Engineering
(AOSE’08), M. Luck and J. Gómez-Sanz, Eds., AAMAS 2009, Estoril,
Portugal, 12–13 May 2008.

114

Towards filling the gap between AOSE
methodologies and infrastructures:

requirements and meta-model
Fabiano Dalpiaz∗, Ambra Molesini†, Mariachiara Puviani‡ and Valeria Seidita§

∗Dipartimento di Ingegneria e Scienza dell’Informazione
Università di Trento

Email: dalpiaz@disi.unitn.it
†Dipartimento di Elettronica, Informatica e Sistemistica

Università di Bologna
ambra.molesini@unibo.it

‡Dipartimento di Ingegneria dell’Informazione
Università di Modena e Reggio Emilia

mariachiara.puviani@unimore.it
§Computer Science and Artificial Intelligence Laboratory

Università degli Studi di Palermo
seidita@dinfo.unipa.it

Abstract—Many different methodologies have been proposed
in Agent Oriented Software Engineering (AOSE) literature, and
the concepts they rely on are different from those adopted when
implementing the system. This conceptual gap often creates
inconsistencies between specifications and implementation. We
propose a metamodel-based approach that aims to bridge this
gap, resulting in an integrated meta-model that merges the best
aspects of four relevant AOSE methodologies (GAIA, Tropos,
SODA and PASSI). The meta-model assembly followed a well-
defined process: for each methodology to be integrated in the
meta-model, we elicited the requirements, identified a set of
process fragments, thoroughly compared the concepts belonging
to the various fragments, and finally composed the meta-model.

I. INTRODUCTION

The trend towards agent-oriented software engineering
(AOSE) is motivated by the need for a new engineering
paradigm to face the increasing complexity and openness of
computational systems. Object-oriented software engineering
is adequate for the development of a variety of systems, but it
falls short when applied to the development of open complex
systems. This class of systems introduces the need for a
new computing paradigm based on distributed intelligent units
– agents –, whose characteristics are intrinsically different
from objects [1]. This paradigmatic shift involves both the
conceptual and the technical levels of the development cycle,
ranging from the requirements analysis to the implementa-
tion and the deployment over an infrastructure. The work
we present here is in the context of the “Methodologies
for the Engineering of complex Software systems: Agent-
based approach” (MEnSA) project1, which aims at filling the

1http://www.mensa-project.org

conceptual gap between AOSE methodologies and multi-agent
systems (MAS) infrastructures.

This gap is well known: Molesini et al. [2] examined this
problem and proposed a case study concerning the SODA
methodology [3]. Integrating an AOSE methodology with
a MAS infrastructure requires to compare and relate the
concepts, to provide a set of methodological guidelines, and
to introduce a set of new concepts acting as a glue to make
the integration successful. This task is not trivial, and one of
the main reasons that make it complex is the difference in
perspectives of methodologies and infrastructures developers.
AOSE methodologies follow a top-down approach starting
from a real world problem and moving towards a solution
(the architecture of a MAS); thus, the concepts and techniques
developed are mainly suitable for the use at analysis and design
phases. On the other hand, the developers of MAS infras-
tructures follow a bottom-up approach starting from already
existing programming paradigms, often an object-oriented one,
and build upon it to form higher level programming constructs
that make the development of the agent-based software easier.

MEnSA’s “filling the gap” objective requires a complex
process, made up of several sub-tasks, whose common element
is the usage of a meta-model approach, and will ultimately
produce an integrated methodology. This paper is focused on
the work we have done concerning the integration of a number
of AOSE methodologies; the integration of infrastructures is
ongoing, and it will be presented in future publications. The
AOSE methodologies taken into consideration by MEnSA are
GAIA [4], Tropos [5], SODA [2], and PASSI [6]: they mainly
differ in the typical scenarios they are designed to support, and
in the phases they better cover. For instance, Tropos exploits
a well established technique for requirements analysis (goal

115

modeling), SODA provides an exhaustive characterization of
the environment, PASSI has an extensive coverage of the im-
plementation phase, and GAIA is well suited for the modeling
of organizational aspects.

Our approach is founded on the work done by Cossentino
et al. [7], [8] and starts from the definition of a set of require-
ments for the meta-model we want to assembly. Then, we
elicit a set of fragments fulfilling the identified requirements,
define a semantic conceptual map to precisely relate concepts
belonging to various methodologies, and finally compose the
fragments into an integrated meta-model.

This paper is structured as follows: Section II discusses
the requirements we identified to lead the assembly of the
meta-model; Section III describes the selected fragments and
presents the conceptual map to compare the methodologies;
Section IV focuses on the meta-model, describing the current
version of meta-model; Section V terminates the paper by
proposing conclusions and future work.

II. REQUIREMENTS AND PRINCIPLES FOR ASSEMBLING
THE META-MODEL

In order to obtain a good meta-model – and a good
methodology – we followed a path similar to that adopted
in the engineering of a (software) system and proposed in [7],
[9]. After defining the requirements for our product (the meta-
model), we identified the fragments that better contribute to
the satisfaction of the requirements.

In this section we illustrate how the integrated meta-model
was conceived (Section II-A), and describe the requirements
that led to a new methodology (Section II-B).

A. Assembling a meta-model

A meta-model describes the structure of all the elements that
should be designed when following a specific methodology.
Relationships between elements have specific meanings, and
they should reflect the phases in the methodology. Different
methodologies are built according to specific design philoso-
phies, and comparing their meta-models is not a trivial task:
often, the described concepts and relationships share the name
but have different semantics.

Previous experiences in meta-models creation (e.g., [8], [9])
made it clear that this activity is much more than the mere
selection and composition of concepts from the existing meta-
models. Different composition patterns can be encountered:

1) selected elements from existing meta-models present
the same name but have different meanings. This is
the most common and difficult situation to be faced; a
deep analysis of the collected elements has to be done,
possibly some new elements have to be introduced, some
others have to be modified in order to fill the presented
differences;

2) selected elements have the same meaning but different
names (the opposite of the previous case): renaming
some elements is necessary;

3) all the selected elements present totally disjoint names
and definitions, requiring just a simple composition; this

is the best situation we could encounter, though the most
unusual.

Given the consistency and coherence problems enumerated
above, an integrated meta-model normally needs to be com-
pleted by concepts and relations acting as glue, introduced to
ensure the important features of the original methodologies are
not lost. After a sufficient refinement of the meta-model, it is
possible to start the new methodology definition by assembling
a set of selected process fragments according to the chosen
life-cycle. If the selected fragments do not completely cover
all the life-cycle phases and the requirements, new fragments
will be selected, modified (if needed) and added.

B. The methodology requirements

The definition of a new methodology has to start by speci-
fying the requirements to be satisfied. For the construction of
a new integrated methodology, we decided to start from the
requirements, choose the more suitable fragments belonging
to existing methodologies, and assemble them in a proper
way. The evaluation of the resulting integrated methodology
is the verification of the extent to which the requirements are
satisfied.

Now we list and describe the requirements and sub-
requirements for our integrated AOSE methodology:

1) Fill the gap between design and implementation:
a) Transformational approach from requirements elic-

itation to design and implementation, which refines
high-level abstractions into low-level more con-
crete entities.

b) Support for traceability: the path from each re-
quirement to the corresponding source code should
be clear and easy to identify.

c) Powerful abstractions during the design phase are
needed to provide an appropriate design of the
system; they should be close to the infrastructure-
level abstractions, but attention should be paid to
avoid too fine-grained designs.

2) Good requirements elicitation and analysis:
a) Support for both functional and non-functional

requirements.
b) Support for both goal-oriented and functional-

oriented analysis.
3) Different abstractions in the different phases should

make the comprehension of the design process easier.
4) Enabling an easy transition towards the new method-

ology for designers who are expert with one or more of
the input methodologies.

5) Precise and compact modeling constructs for the
concept of agency:

i Agent: the definition of what an agent is and what
it is supposed to do during its lifetime.

ii Agent’s rationale: the rationale an agent follows to
achieve its objectives, that is the general reasoning
principles leading the agent’s behavior.

116

iii Situated agents: the environment where agents live
requires an explicit representation throughout the
whole methodology.

iv Social agents: agent-to-agent and agent-to-
environment interactions are essential to engineer
a multi-agent system.

Considering these requirements we started the analysis
of the four selected methodologies (Tropos, Gaia, SODA,
and PASSI), and we discovered more specific and detailed
requirements. These requirements are listed below:

1) Transformational process: this need comes from re-
quirements 1 and 3. The model-driven engineering
paradigm [10] will be therefore adopted. Transforma-
tions between the elements of different domains should
be clearly defined. For example, the notion of agent
exists in different development phases and methodolo-
gies with (slightly) different meanings. Following a
transformational approach, we can define several types
of agent (requirements agent, design agent, . . .), and
define the way a certain agent transforms (or refines)
into another one.

2) Layering: the management of different abstraction lev-
els simplifies the design (requirements 1 and 3). SODA
supports layering by means of the zooming and projec-
tion mechanisms. Zooming makes it possible to pass
from an abstract layer to another, while projection
projects the entities of a layer into another [3].

3) Goal-oriented analysis should be performed before
functional-oriented analysis. The latter should start
from results of the former. The goal-oriented analysis
stands as a basis for Tropos, where agents are defined
in terms of the functional and non-functional goals they
want to achieve. Functional-oriented analysis is then
used by eliciting the tasks to be executed to achieve
the goals.

4) Interaction:
a) Agent interactions should support semantic com-

munications for removing or minimizing the am-
biguity of messages contents.

b) An ontology should be used to model agent knowl-
edge in order to provide a conceptual background
to all the agents belonging to a MAS.

c) Compliance with FIPA ACL (Agent Communica-
tion Language) [11] specifications at the commu-
nication level is necessary.

d) Agent interactions with the environment should be
explicitly modeled.

e) Indirect interactions (e.g., blackboard-based)
should be supported.

5) Organizational rules proved to be a useful approach
for modeling some social aspects. Gaia and SODA are
examples of methodologies based on (organizational)
rules to constrain and direct the agents behaviors.

6) Environment and topology modeling can be done
by adopting abstractions like SODA’s artifacts and

workspaces in order to explicitly distinguish between
active entities (agents) and passive entities (artifacts),
and for organizing the conceptual places – workspaces
– structuring the environment.

7) Non-functional requirements should be explicitly
modeled (requirement 2). Tropos is the first AOSE
methodology supporting explicit modeling of non-
functional requirements, through the concept of soft-
goals.

8) Agent plans should be modeled but they should not
constrain the agent architecture to a specific kind of
agent. In other words, the methodology should provide
an abstract representation of plans, which can be realized
into several implementations.

III. SELECTED FRAGMENTS AND CONCEPTUAL MAP

The starting point for the meta-model creation is the re-
quirements we described in the previous section. Given this,
the approach we used to devise a meta-model is the following.
• Firstly, we have derived a set of fragments (Section III-A)

satisfying the requirements identified in Section II. These
fragments represent the core of the meta-model, which
should be analyzed and refined in order to provide a better
integration of the fragments.

• Secondly, we built a glossary of terms relevant to the
fragments identified in Section III-A. For space reasons
the dictionary is not reported here and it can be found
in [12].

• Then, based on the glossary, in Section III-B we defined
a conceptual map of terms, identifying synonyms and
similar terms, and pointing out existing conflicts.

• Finally, on the basis of all the previous work, we defined
the first version of the meta-model in Section IV.

A. Selected fragments

Each of the studied methodologies has some strong points,
and should give a significant contribution to formulate the
final MEnSA methodology. Here we list the coarse-grained
fragments we have initially chosen from each methodology,
which we extracted from the FIPA TC repository of fragments
[13]:

1) Tropos
a) Early requirements phase:

i) Organization description.
ii) Analysis.

b) Late requirements phase:
i) System identification.

ii) Environment description.
2) Gaia

a) Analysis phase:
i) System roles identification.

ii) Role model elaboration.
b) Design phase:

i) Service model development.

117

3) SODA
a) Architectural Design:

i) MAS Organisational model.
b) Detailed Design:

i) MAS Interaction model.
c) Environment model.

4) PASSI
a) Agent Society:

i) Domain Ontology design.
ii) Communication Ontology description.

b) Agent Implementation:
i) Multi-agent system design.

c) System Requirement:
i) Agent Identification.

B. Linking methodologies: a conceptual map

In order to propose an integrated meta-model, we built a
conceptual map for eliciting synonyms (or, at least, similar
concepts), and inter-level relations between concepts used at
different abstraction levels. The conceptual map has been built
on the basis of the MEnSA glossary [12], which has provided a
complete and accurate semantic matching schema connecting
the fragments’ abstractions.

The conceptual map is shown in Figure 1; we used different
colors to depict concepts belonging to fragments coming from
distinct meta-models. The concepts are tied by two types of
graphical links that represent two different relationships:
• non-directed links represent horizontal relations, which

relate two concepts that are “synonyms”. Identifying con-
cepts sharing the same definition is very unlikely, and the
resulting integration would be loose and nearly useless.
Therefore we decided to extend the equivalence relation
to include those concepts having a similar definition and
whose usage in practice is equivalent. Horizontal relations
(h) are not transitive: h(c1, c2)∧ h(c1, c3) 9 h(c2, c3) .

• directed links point out vertical relations, which create
“inter-level” links (top-down) between concepts belong-
ing to different abstraction levels. We define abstraction
as the development phase a concept belong to. Since
we use h-relations to express similarity (and not only
sameness), h(c1, c2) ∧ v(c1, c3) 9 v(c2, c3).

In order to explain the conceptual map, in Figure 1 we have
organized the different relations among concepts in various
labeled sets. So, the first diagram chunk (a) concerns non-
agentive concepts, which are typically in the system-to-be
together with the agents. The Tropos concept Resource is hori-
zontally linked to Function and Legacy System in SODA: more
precisely, the former SODA concept is almost equivalent to
Tropos resource, whereas the latter is linked because a legacy
system defines a set of resources that should be modeled.

Aggregation of agents is examined in (b): Gaia Organization
is a very high-level view of a set of agents (analysis phase),
which is vertically linked to the lower-level concept Society
of SODA (detailed design). These concepts are useful to

Fig. 1. Conceptual map linking concepts of different methodologies.

support the multi-level definition of the MEnSA meta-model,
providing two related abstractions at different levels.

Requirements are considered in (c): Tropos Goal and Soft-
goal are horizontally linked to PASSI Requirement, the latter
representing either a functional or a non-functional require-
ment.

Sociality of agents is represented in chunk (d). In this
particular case, we have been able to point out a well
defined hierarchical structure connecting the four examined
methodologies. Tropos Dependency is used to depict linked
actors justifying the reason why they depend on each other
(for a goal, a task, or a resource); dependencies are defined
during requirements analysis, and in our map they are verti-
cally connected to PASSI Communication, which is a design-
time concept defining an abstract interaction between two
agents. We achieve a lower level of abstraction by linking
communication to the Gaia Protocol, which defines the way
in which roles interact with each other. Protocol is linked to
an even lower level to the SODA Speaks To, which refers to
the act of interaction between agents. It is worth noting that
these concepts refer to different types of entity: a dependency
involves actors, a communication is between agents, a protocol
involves roles, a speaks-to is an atomic interaction act between
agents. The meta-model and the derived methodology will
handle this heterogeneity by defining exactly where these
concepts apply.

Another interesting topic is that related to tasks and services

118

(e). Tropos Task is vertically connected to PASSI Implemen-
tation Platform Task, the latter being an implementation-level
realization of the former (which stands at requirements level).
Tropos Task is horizontally linked to PASSI Task. PASSI Ser-
vice has a definition which is very similar to Gaia Service, and
hence these two concepts are horizontally linked, providing an
abstraction during the design phase. PASSI Task is vertically
linked to Gaia Service. Gaia Activity is horizontally linked
both to Tropos and PASSI Task. From these relations, we can
derive a top-down relationship between task (or activity) and
service, the former being higher level than the latter.

A crucial part of the conceptual map is the one related
to agents, actors, and roles (f), because these are the active
entities that glue all the other concepts together. Tropos Agent
is horizontally linked to PASSI Agent, for they are both repre-
sentations of the same concept. Another horizontal relation is
between Tropos and PASSI Actor. Moreover, Tropos Actor is
horizontally linked to PASSI Agent. These four concepts are
not synonymous, but they are at the same level of abstraction.
A third couple of horizontally linked concepts is Gaia and
Tropos Role, with a further horizontal relation between Tropos
Agent and Gaia Role. There is a vertical relation between
Tropos agent and PASSI Implementation Platform Agent.
This diagram chunk is not very precise: many relations have
been identified, but during the meta-model and methodology
definition we will have to make some choices and define the
selected concepts in a more precise way.

Constraints are an important aspect in multi-agents systems,
and our conceptual map contains some related entities and
relations in (g). SODA Rule is a general design-time concept
for regulating agents and their interaction with the environment
they live in. Gaia Permission and Organizational Rule are
analysis-level concepts which define the organization in terms
of rules and permissions, and are linked vertically to SODA
Rule.

The last part of the diagram (h) mainly involves the usage of
entities by agents. SODA Uses is intended to depict a kind of
interaction between an agent and an artifact, whereas Tropos
Means-end is a higher-level abstraction of this behavior, where
there is an intentional relation between a goal (or task)
and a resource: the latter is the means to achieve the end
(the goal or the task). PASSI Action is vertically linked to
Use, whereas PASSI Concept is horizontally linked to SODA
Topology, since a topology is defined in terms of the concepts
constituting and regulating it.

IV. MENSA META-MODEL: A PRELIMINARY VERSION

Starting from the MEnSA glossary and the conceptual map
linking concepts of different methodologies, we have created
a first version of the MEnSA meta-model. This initial effort
is restricted to the phases of requirements and design; the
layering is coarse grained, and implementation-level concepts
are just sketched. The meta-model we present here slightly
refines the initial version described in MEnSA deliverable
1.2 [12].

The key notions around which all the other elements are
placed, are role and agent, which are building blocks for
several AOSE methodologies. The meta-model is presented
in Figure 2, and we describe it in the next two sub-sections,
which refer to (1) requirements phase, and (2) design and
implementation phases of the meta-model. The term “phase” is
here used in order to represent the logical connection between
the three main software process engineering phases and the
meta-model elements a designer instantiates while developing
each phase.

A. Requirements phase

The requirements phase is mainly based on the fragments
of Tropos and Gaia, with some concepts coming from SODA
(environment-related), and ontological aspects extracted from
PASSI. The meaning of the presented concepts and relations
derives from the corresponding methodologies, unless we
specified otherwise in the description.

The main notion in the requirements phase in MEnSA meta-
model is that of Requirements Agent, which is defined in terms
of the concepts it connects to (through association links). A
requirements agent plays one or more Roles, and knows an
Ontology. The concept of Role is defined as Tropos’ role plus
Gaia’s rules and permissions, whereas Ontology comes from
PASSI. An Organization (Gaia) is composed of a set of agents
(made of relation between Organization and Requirements
Agent), and has a set of Organizational rules (Gaia) which
define the regulations of the Organization. Every Role adheres
to the Organizational rules of the Organization where the agent
playing that Role lives.

The element Ontology is specified in a slightly different
way from PASSI’s definition, because we support here a
refinement process of the ontology in different development
phases. At requirements time, the Ontology is made of a set of
Requirements Concepts, which can be hierarchically organized
(self-transition). This is a coarse-grained representation of an
ontology, which will be refined at design-time.

Each Role is responsible for one or more Requirements
(equivalent to Tropos’ abstract goal), and each Requirement
can belong to more than one Role. Requirement is specialized
(concretized) into Goal (hard-goal in Tropos) and NFR (Non-
Functional Requirement) (soft-goal in Tropos). A Goal can be
and/or-decomposed into a set of sub-goals, contribute to Non-
Functional Requirements, and can be means-end decomposed.
The means to achieve a Goal can be either a Resource (in the
Tropos sense, which corresponds to SODA Function) or an
Activity (in Gaia glossary, but we showed this it is horizontally
linked to Tropos and PASSI task). Activities, like Goals,
contribute to the satisfaction of Non-Functional Requirements,
and can be refined through and/or decomposition. Resources
can be viewed as means to carry out an Activity, in the same
manner they are used to achieve Goals.

Another important concept in the requirements phase is that
of Dependency: this notion is taken from Tropos, and connects
a depender role to a dependee role for a certain Dependum
(the object of the dependency). A Dependum can be either a

119

Fig. 2. First version of the MEnSA meta-model.

Goal (the depender wants the dependee to fulfill that Goal),
an Activity (the depender wants the dependee to execute an
activity), or a Resource (the depender wants the dependee to
provide a Resource).

A Role is defined also by expressing which Permissions
it has on certain Resources. This enables the definition of
constraints on the usage of/access to resources.

A Requirement has a relation map to with SODA Topology,
because the achievement of that requirement depends on the
topology definition. The concept of Legacy System (SODA)
map to a topology, as well.

B. Design and implementation phases

In these phases an additional modeling construct is used to
define elements, that is the realization links between concepts
at different abstraction layers, which define the inter-layer
relationships that ensure connections between the various
phases.

The concept Design Agent realizes the Requirements Agent,
and is defined in terms of the associations with other design-
time entities. In the context of communication, it has a set
of Communications active at a certain time (zero or more);
every Communication follows a Protocol, that is the set of

rules that govern the interaction between agents. The Protocol
is in turn composed by a number of Speaks To elements,
which are the elementary (atomic) communication actions,
involving two different Design Agents through the association
participates. A Communication is a top-down realization of
Dependency, implementing in the meta-model the vertical link
of the conceptual map of Figure 1. Moreover, communication
is connected to the abstract class Ontology Element, which
is made concrete by Action, Predicate, and Design concept.
Action and Predicate are connected to Design Concept, as
prescribed by PASSI. The difference between PASSI’s repre-
sentation of Ontologies and our specification is in the realiza-
tion of the requirements concept into a design concept, which
enables a refinement of the Ontology during the development
cycle. Ontology concept has an incoming association from
Design Agent labeled knows, which represents the ontological
knowledge of an agent.

The Design Agent provides a number of Services, which are
design-time realizations of the requirement-level concept Ac-
tivity. The second realization of Activity is the concept of Plan,
which is a common design-time construct to define the behav-
ior of an agent. An Agent also perceives a Workspace, which
realizes Topology, and can be connected to other Topology

120

entities. A Workspace can be connected to other workspaces.
Design Agents use a set of Artifacts, which in turn expose
their interface (manifests relation between Artifact and Design
Agent). Artifacts are the realization of the requirements-time
concept Resource. The relation between agents and Artifacts
comes from SODA, and it is very important to connect active
entities to passive entities in the system. Following SODA
meta-model, an Artifact provides one or more Operations, can
links to other Artifacts, and is allocated to a Workspace.

Composition is another concept derived from SODA: here
it is intended as a design-time realization of Organization.
Composition is made of Design Agents and Artifacts, and
is specialized by Society (a collection of agents and artifacts
exhibiting proactive behavior) and Aggregate (which exhibits
a functional behavior).

The concept of Rule is quite important at design-time,
for it allows constraining a number of other entities. It is
a realization of both Organizational rule, Permission, and
Topology; this way it enables control over disparate concerns
in the multi-agent system. The concept of Rule is linked, via
the association constrains, to many other concepts: it governs
the Communication between agents, puts constraints on the
Design Agent behavior, is encoded into Artifacts to define how
they can be used and accessed, constrains both the Services
provided and the Plans executed by the agents, and regulates
the Workspace where Artifacts are located.

We did not put emphasis to the implementation phase
here, because we believe that the definition of this meta-
model part will be much easier when infrastructures come into
place, providing the suitable abstractions to model this phase.
From the methodologies we introduce just two realization:
Design Agent into the Implementation Agent, and Service into
Implementation Task, both coming from PASSI.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented an initial version of an
integrated agent-oriented meta-model which aims at being the
basis for the creation of a new agent-oriented methodology
integrated with MAS infrastructures through a well interrelated
set of phases from requirements to implementation. The basis
of the meta-model are the fragments selected from the four
AOSE methodologies: Gaia, PASSI, SODA and Tropos.

The process we followed for defining the meta-model starts
from the identification of the requirements for the target
methodology. These requirements helped in the selection of
a list of fragments from the four considered methodologies.
The next two steps were the construction of a glossary, and the
definition of a conceptual map of methodologies abstractions.
This map was built to reflect the relations of similarity (at
the same level of abstraction, that is at the same development
phase) and realization (in the form of “requirements concept
X is realized by design concept Y”) among the abstractions
adopted by each considered methodology.

The most immediate work direction is the definition of the
meta-model’s implementation phase, extracted from a set of

MAS infrastructures. This will likely be done by adopting the
process presented in Section II.

In addition, the meta-model will certainly be refined as
a result of the work on the methodological aspects and the
validation phase over a case study.

Another aspect to be considered for refining the presented
meta-model concerns the meta-model structure: in the current
version we have only two development phases that seem too
coarse-grained. We will refine the meta-model splitting the two
phases into different and more detailed sub-phases, e.g., the
requirements analysis phase could be split into early and late
requirements.

All these directions will lead to the creation of the MEnSA
methodology, which will be based on the meta-model intro-
duced here. In addition, during the definition of the methodol-
ogy there will be bidirectional feedbacks between the method-
ology and the meta-model in order to refine again the meta-
model.

ACKNOWLEDGEMENTS

Part of this work makes use of results produced by the
MEnSA project (PRIN 2006) and by the PI2S2 Project man-
aged by the Consorzio COMETA (PON 2000-2006).

REFERENCES

[1] N. R. Jennings, “On agent-based software engineering,” Artif. Intell.,
vol. 117, no. 2, pp. 277–296, 2000.

[2] A. Molesini, E. Denti, and A. Omicini, “From AO methodologies to
MAS infrastructures: The SODA case study,” in Engineering Societies
in the Agents World VIII, ser. LNAI, A. Artikis, G. O’Hare, K. Stathis,
and G. Vouros, Eds. Springer, 2008, vol. 4995, pp. 300–317, 8th
International Workshop (ESAW’07), 22–24 Oct. 2007, Athens, Greece.

[3] A. Molesini, A. Omicini, E. Denti, and A. Ricci, “SODA: A roadmap
to artefacts,” in Proc. of the 6th International Workshop (ESAW 2005),
Kuşadası, Aydın, Turkey, 26–28 Oct. 2005. Revised, Selected & Invited
Papers, O. Dikenelli, M.-P. Gleizes, and A. Ricci, Eds., 2006, pp. 49–62.

[4] F. Zambonelli, N. R. Jennings, and M. Wooldridge, “Developing Multi-
agent Systems: the Gaia Methodology,” ACM Transactions on Software
Engineering and Methodology, vol. 12, no. 3, pp. 417–470, 2003.

[5] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini,
“Tropos: An agent-oriented software development methodology,” Au-
tonomous Agent and Multi-Agent Systems (8), vol. 3, pp. 203–236, 2004.

[6] M. Cossentino, “From requirements to code with the PASSI method-
ology,” in Agent Oriented Methodologies, B. Henderson-Sellers and
P. Giorgini, Eds. Hershey, PA, USA: Idea Group Publishing, Jun. 2005,
ch. IV, pp. 79–106.

[7] M. Cossentino, S. Gaglio, A. Garro, and V. Seidita, “Method fragments
for agent design methodologies: from standardisation to research,”
International Journal of Agent-Oriented Software Engineering, vol. 1,
no. 1, pp. 91–121, 2007.

[8] M. Cossentino, S. Gaglio, N. Gaud, V. Hilaire, A. Koukam, and V. Sei-
dita, “A MAS metamodel-driven approach to process composition,”
in Proceedings of The 9th International Workshop on Agent Oriented
Software Engineering (AOSE’08), M. Luck and J. Gómez-Sanz, Eds.,
Estoril, Portugal, 12–13 May 2008.

[9] V. Seidita, M. Cossentino, and S. Gaglio, “Adapting PASSI to support
a goal oriented approach: a situational method engineering experiment,”
in Proc. of the Fifth European workshop on Multi-Agent Systems
(EUMAS’07), 2007.

[10] S. Kent, “Model driven engineering,” in IFM, ser. Lecture Notes in
Computer Science, M. J. Butler, L. Petre, and K. Sere, Eds., vol. 2335.
Springer, 2002, pp. 286–298.

[11] FIPA, “Home page,” http://www.fipa.org/.
[12] MenSA Group, “Deliverable 1.2,” http://www.mensa-project.org/

request.php?41.
[13] FIPA Methodologies, “Home page,” http://www.pa.icar.cnr.it/

∼cossentino/FIPAmeth/.

121

Abstract— This paper proposes a multi-coordination approach

for the design of mobile agent interactions. The approach is
founded on the multi-coordination concept, which is a synergic
exploitation of multiple coordination models which best fit
interaction requirements. In particular, the proposed approach is
based on two steps: (i) candidate design solutions are defined
through a procedure which allows to identify the most effective
coordination models for a given mobile agent interaction
scenario; (ii) the defined candidate design solutions are
quantitatively evaluated through a discrete-event simulation
framework which allows for an easy evaluation of mobile agent
interaction scenarios in terms of ad-hoc defined performance
indices.

Index Terms— Agent Interaction Design, Mobile Agents, Multi-
Coordination, Performance Evaluation.

I. INTRODUCTION
ode mobility paradigms have been introduced to support
the design and the implementation of flexible, dynamic

and reconfigurable distributed applications in terms of
software components which are not confined in a single run-
time context for their entire lifecycle but can migrate
autonomously or on-demand across different contexts [1].
Among them, the most fascinating paradigm is represented by
the mobile agents, executing software components capable of
autonomous migration by retaining code, data and execution
state. Although it is advocated that the exploitation of mobile
agents can provide many benefits [2], they have introduced
specific and not yet fully addressed issues that actually limit
their advertised wide-spread use [3]. An interesting issue
concerning with the design of mobile agent interactions
regards how to clearly identify which agents will be
interacting and how their interactions can be modeled. To deal

G. Fortino is with the Department of Electronics, Informatics and Systems

(DEIS), University of Calabria, Rende (CS), 87036 Italy. (corresponding
author; phone: +39.0984.494063; fax: +39.0984.494713; e-mail:
g.fortino@unical.it).

A. Garro is with the Department of Electronics, Informatics and Systems
(DEIS), University of Calabria, Rende (CS), 87036 Italy. (e-mail: garro
@unical.it).

S. Mascillaro is with the Department of Electronics, Informatics and
Systems (DEIS), University of Calabria, Rende (CS), 87036 Italy. (e-mail:
samuele.mascillaro@deis.unical.it).

W. Russo is with the Department of Electronics, Informatics and Systems
(DEIS), University of Calabria, Rende (CS), 87036 Italy. (e-mail: w.russo
@unical.it).

with mobile agent interactions, communication paradigms and
mechanisms as well as coordination models and architectures
for non mobile software components have been enhanced to
be mobility-aware (message-passing, tuple space,
publish/subscribe, etc) and new ones have been purposely
defined for logical and physical mobility (meeting,
blackboard, shared transiently tuple spaces, reactive tuples) [4,
5, 6, 7, 8, 9]. Although some mobile agent frameworks
already offer several mechanisms based on the
aforementioned communication/coordination paradigms and
architectures, in the current practice mobile agent interactions
are designed on the basis of a single paradigm which is mainly
based on message passing or, in some application domains, on
tuple spaces [4]. As single model based
communication/coordination might not be effective for
satisfying all needs of mobile agent interactions in all possible
application scenarios, the exploitation of multiple
communication/coordination paradigms, namely Multi-
Coordination, can enhance design effectiveness, improve
efficiency, and enable adaptability in dynamic and
heterogeneous computing environments [10]. In particular,
Multi-Coordination allows agents to choose among a variety
of different communication/coordination paradigms which
best fit mobile agent interaction needs. Moreover, although
several design patterns have been proposed for driving the
design of mobile agent interactions [11, 12] and
programmable coordination models and related frameworks
(e.g. TuCSoN [13]) are now available, systematic methods for
supporting the development of mobile agent interactions
which specifically take into account an integrated exploitation
of multiple coordination models are surprisingly still lacking.
To overcome this lack, this paper proposes a multi-
coordination approach for the design and evaluation of
mobile agent interactions.

The design is based on a procedure which uses suitable
agent interaction patterns to fulfill agent coordination
requirements. In particular, interaction patterns are first
characterized by appositely defined parameters and associated
to specific coordination models according to such parameters;
then, the most appropriate coordination model is selected for
implementing a given interaction pattern so providing a design
solution for the related coordination requirement.

The evaluation is based on a discrete-event simulation
framework which allows to evaluate the designed solutions in

Using multi-coordination for the design of
mobile agent interactions

Giancarlo Fortino, Alfredo Garro, Samuele Mascillaro, and Wilma Russo

C

122

terms of performance indices with reference to given
application scenarios. In particular, the simulation framework
provides effective abstractions for easily programming mobile
agent interaction scenarios and flexibly supporting
configuration, execution and evaluation of such scenarios.

The proposed multi-coordination approach makes it
possible the definition of alternative design solutions and their
evaluation and comparison from qualitative (i.e. according to
design effectiveness criteria) and quantitative (i.e. according
to performance indices) points of view.

To show a concrete application of the proposed approach, a
significant case study related to mobile agent-based
distributed information retrieval is presented. In particular,
some design solutions, which use different coordination
models (message-passing, Linda-like tuple space,
publish/subscribe), are defined on the basis of specific agent
coordination requirements. Among the designed solutions,
multi-coordination-based and message-passing-based
solutions have been evaluated against significant performance
indices. The evaluation shows that the multi-coordination-
based solution has the best overall performance.

The remainder of this paper is organized as follows. Section
II provides some background concepts about mobile agent
coordination and discusses related work. By using a case
study Section III exemplifies the design of alternative
solutions through a three-step procedure. Section IV briefly
proposes a comparison of the results of the performance
evaluation of two alternative solutions based on multi-
coordination and message-passing. Finally conclusions are
drawn and on-going work is briefly elucidated.

II. COORDINATION AMONG MOBILE SOFTWARE AGENTS
Coordination basically implies the definition of a

coordination model and related coordination architecture or
related coordination language. In particular, in the context of
Agents, an agent coordination model [14] is a conceptual
framework which should cover the issues of creation and
destruction of agents, communications among agents, and
spatial distribution of agents, as well as synchronization and
distribution of their actions over time. In this framework, the
coordinables are the coordinated entities (or agents) whose
mutual interaction is ruled by the model, the coordination
media are the abstractions enabling the interaction among the
agents, and the coordination laws are the rules governing the
interaction among agents through the coordination media as
well as the behavior of the coordination media itself. To date,
agent coordination models have been classified by using
several taxonomies [4, 15]; for example they can be classified
in control-driven and data-driven according to the taxonomy
proposed in [15]. However, in this paper the reference
taxonomy is that proposed in [4] as the focus is on agents
strongly characterized by mobility. It is worth noting that,
although mobility can be an enabling feature for improving
efficiency and effectiveness in distributed systems, mobility
poses further issues on agent coordination as mobile entities

demand for more complex coordination frameworks. The
reference taxonomy [4] for Internet-based mobile agent
coordination takes these issues into consideration and, in
particular, classifies coordination models on the basis of the
degrees of spatial and temporal coupling induced by the
coordination models themselves. Spatial coupling requires
that the entities to be coordinated share a common name space
or, at least, know the identity of their interaction partners;
conversely, spatial decoupling allows for anonymous
interaction, i.e. there is no need for an acquaintance
relationship. Temporal coupling implies synchronization of
the interacting entities whereas temporal decoupling allows
for asynchronous interactions [4].

On the basis of the reference taxonomy the following
coordination models have been classified: Direct, Meeting-
oriented, Blackboard-based and Linda-like.

In Direct coordination models, agents usually coordinate
using RPC-like primitives or asynchronous message passing.
The former coordination method implies temporal and spatial
coupling whereas the latter implies only spatial coupling as
temporal decoupling can be obtained by adopting message
reception queues [16]. The majority of the Java-based mobile
agent systems [17], particularly the most famous ones, namely
Aglets, Voyager, Ajanta and Grasshoppers, rely on this model.

In Meeting-oriented models, agents coordinate using
implicit or known meeting points which allow for partial
spatial decoupling.

In Blackboard-based models, agents coordinate via shared
data spaces to store and retrieve information under the form of
messages so providing only temporal decoupling.

In Linda-like models, agents coordinate through tuple
spaces which allow for insertion and retrieval of tuples by
using associative pattern-matching; this enables both spatial
and temporal decoupling.

Recently new coordination models which can be classified
as spatially and temporally decoupled have emerged in the
context of Internet applications: the reactive tuple space
models which enable programmable coordination spaces [18,
19], transiently shared tuple space models which handle
interactions in the presence of active mobile entities [20], and
the publish/subscribe event-based models [6, 21, 22].

The reactive tuple space model extends the simple tuple
space model by introducing computational capability inside
the coordination media under the form of programmable
reactions, triggered by operations on the tuple space or by
other reactions, which can influence the behavior of agents.
This model also allows for the separation of concerns between
agent computation and coordination issues.

The transiently shared tuple space [20] is another Linda-
like coordination model. As Linda offers a static, persistent
and globally accessible tuple space, which is scarcely usable
in presence of (physical or logical) mobility, the transiently
shared tuple space model attempts to deal with these issues. In
particular, each mobile agent owns a personal tuple space,
named ITS (Interface Tuple Space). Whenever a mobile agent
migrates, its ITS is carried with it and merged to the other co-

123

located agent’s ITS making a transiently shared tuple space.
Shared means that co-located agents can interact through the
merged tuple space and transient means that its contents
changes according to agent migrations.

In the Publish/Subscribe event-based model, agents
coordinate through asynchronous publication and notification
of events so enabling temporal and spatial decoupling [6]. In
particular, to be notified about a published event an agent has
to previously subscribe to the topic/type/context of the
published event.

Each of the aforementioned coordination models has some
features which make them suitable in given interaction
patterns but poorly efficient or not usable at all in other
patterns [15]. In [23] the authors proposed the use of multi-
paradigm to design heterogeneous applications through
different programming paradigms. On the basis of the multi-
paradigm approach, a multi-coordination model [10] for the
design and implementation of coordination among mobile
agents executing in heterogeneous and dynamic distributed
systems has been proposed.

III. A MOTIVATING EXAMPLE FOR THE MULTI-COORDINATION
This section proposes a simple yet effective case study which
motivates the exploitation of multi-coordination for improving
design effectiveness and, notably, system performances. The
defined case study concerns with a distributed information
retrieval task in a distributed computing system which is
carried out through a coordinated set (or task force) of mobile
agents. In particular, a user can search for specific information
over a network of federated information locations by creating
and launching a task force of mobile agents (called searcher
agents) onto different locations. As soon as the task force
finds the desired information, the user is notified with the
found information. The proposed solution for the coordination
of the task force during its information retrieval task implies
that the following coordination requirements (CRs) are to be
fulfilled:
- CR1: every time a searcher agent visits a location not yet

searched by other agents of the same task force, it notifies
the other agents that such location has already been
searched so avoiding unnecessary and resource-
consuming duplicate searches.

- CR2: as soon as a searcher agent finds the desired
information on a given location, it reports the found
information to the user.

- CR3: when a searcher agent finds the desired information
on a given location, it signals such event to all the other
searcher agents to stop them.

These coordination requirements (CR1, CR2, CR3) can be
respectively designed by the following commonly used mobile
agent interaction patterns (LBN, R2O, GBN) [4, 11, 12]:
- Location-based notification (LBN), which involves

agents passing through a given location to be notified
about events occurring/occurred in such location.

- Report to owner (R2O), which involves a child agent
reporting to its owner agent when its task is completed.

- Group-based notification (GBN), which involves an
agent notifying all its peer agents when a given event
occurs.

These interaction patterns must be effectively implemented
by exploiting the most appropriate coordination model/s
which can be identified through the following subsequent
steps:

1. Characterization of the interaction patterns according
to appositely defined parameters by taking into
account some application-level constraints;

2. Matching of the characteristics of the interaction
patterns with the intrinsic features of the considered
coordination models.

3. Selection of the most appropriate coordination model
according to specific criteria using the results of the
Matching step.

The defined parameters for the Characterization step of
mobile agent interactions are:
- Number of participants (PN), which can assume values in

the range [2..N].
- Participant identity (PI), which concerns with the mutual

knowledge among interacting agents. PI can therefore
assume the values known or unknown.

- Locus (L), which indicates remote or local interactions
among agents. L can assume the values local or remote.

- Temporality (T), which refers to the type of temporal
coupling among interacting agents. T can assume two
values: async for time decoupling and sync for time
coupling.

The characterization of the considered interaction patterns
is reported in Table 1 in which the PI characteristic of the
LBN and GBN cannot be fixed as the agents of a task force
may or may not know the identity of each other

TABLE 1. CHARACTERIZATION OF THE INTERACTION PATTERNS
DIMENSIONS INTERACTION

PATTERN PN PI L T
LBN 2..N UNKNOWN /

KNOW
LOCAL ASYNC

R2O 2 KNOWN

REMOTE ASYNC

GBN 2..N UNKNOWN /
KNOW

REMOTE ASYNC

To carry out the Matching step, it is needed to characterize

the considered coordination models with respect to the
characteristics of the interaction patterns to identify what
characteristics they are able to intrinsically support. In
particular the considered coordination models are the
following:

- Queue–based unicast asynchronous message passing
(QUAMP), which supports a variable number of
participants, allows for both local and remote
interactions and does not require temporal coupling
between participants.

- Local Linda-like tuple space (LTS), which supports a
high number of participants, allows temporal
decoupling but only local interaction is supported.

- Topic-based publish/subscribe (TPS), which supports a
high number of participants, allows for both local and

124

remote interactions and does not require temporal
coupling between participants.

The Matching step intersects the characteristics of the
defined interaction patterns with the characteristics supported
by the considered coordination models to identify which
coordination model is more suitable to implement a given
interaction pattern. As the PI characteristic of the LBN and
GBN depends on mutual knowledge among agents (the
considered application-level constraint), the Matching step
produces two possible matchings, reported in Tables 2 and 3,
which are respectively related to the value assumed by the PI
characteristic (unknown or known).

TABLE 2. CHARACTERISTICS OF INTERACTION PATTERNS WHICH CAN BE
DIRECTLY SUPPORTED BY A CORDINATION MODEL

(PI=UNKNOWN FOR LBN AND GBN)
Characteristics IP CM

PN PI L T
LTS X X X X

TPS X X X LBN
QUAMP X X

LTS X X

TPS X X X R2O
QUAMP X X X X

LTS X X X

TPS X X X X GBN
QUAMP X X

TABLE 3. CHARACTERISTICS OF INTERACTION PATTERNS WHICH CAN BE

DIRECTLY SUPPORTED BY A CORDINATION MODEL
(PI=KNOWN FOR LBN AND GBN)

Characteristics IP CM
PN PI L T

LTS X X X X

TPS X X X LBN
QUAMP X X X X

LTS X X

TPS X X X R2O
QUAMP X X X X

LTS X X X

TPS X X X X GBN
QUAMP X X X X

The Selection step, which allows to choose the coordination
model which best supports the characteristics of an interaction
pattern, is based on the following selection criterion: the
coordination models supporting all the characteristics of an
interaction pattern will be the candidate models to implement
such interaction pattern.

TABLE 4. DESIGN SPACE FOR PI=UNKNOWN
IP CM Implementation description

LBN LTS When a searcher agent searches in a location which has not been already searched
by another agent of its task force, it inserts (by using the out primitive) a signaling
tuple into the LTS to signal that this location has been searched. As soon as an
agent visits a location and reads the signaling tuple (by using the non-blocking rd
primitive), it avoids searching.

R2O QUAMP When a searcher agent finds the desired information, it sends a message
containing the found information (by using the send primitive) to its owner.

GBN TPS When a searcher agent finds the desired information, it publishes an event of a
specific topic related to its task force (by using the publish primitive) which
signals the stop of the retrieval task. All the other agents of the task force will be
thus asynchronously notified since they subscribed to the specific topic at creation
time.

According to such criterion the only possible solution if
PI=Unknown (see Table 2) is represented by the following
coordination models: LTS for LBN, QUAMP for R2O and

TPS for GBN. An implementation of such solution is reported
in Table 4 which constitutes the related design space.
Conversely, if PI=Known (see Table 3), the coordination
models which can be selected are LTS and QUAMP for LBN,
QUAMP for R2O, and QUAMP and PS for GBN. The related
design space which contains the implementations of the
interaction patterns through the selected coordination models
is reported in Table 5.

TABLE 5. DESIGN SPACE FOR PI=KNOWN

IP CM Implementation description
LTS *see table 4* LBN

QUAMP A searcher agent to notify that it has searched a given location sends a
message containing the location identifier (by using the send primitive) to
all the other searcher agents of the task force.

R2O QUAMP *see table 4*
TPS *see table 4* GBN

QUAMP A searcher agent which has found the desired information sends a
notification message (by using the send primitive) to all the other searcher
agents of the task force to stop them.

The choice of a specific solution among alternative solutions
(if any) can depend on different criteria bounded to the values
which can be assumed by specific characteristics of the
interaction patterns. In particular, this choice can be driven by
qualitative considerations or by performance evaluation of the
alternative design solutions.
With reference to Table 5, the following qualitative
considerations based on the values of the PI characteristics
can be considered:
- if the number of participants is very large (PI>>2), the

GBN interaction pattern could be better supported by TPS
as an agent to notify all the others through TPS always
needs to send just one notification whereas the same
notification based on QUAMP needs the generation of as
many messages as the number of the participants. Thus
the use of QUAMP leads to a bottleneck at the agent
location both for the agent execution and network
performances.

- if the number of participants is small, QUAMP could be a
more effective choice as TPS requires a distributed
middleware-level infrastructure more complex than that
required by QUAMP.

The abovementioned considerations also hold for the LBN
interaction pattern.
An example of performance evaluation for driving the choice
among alternative design solutions is shown in the next
section in which the evaluation and comparison of two
possible design solutions based on multi-coordination and
message-passing is presented.

IV. A PERFORMANCE EVALUATION OF THE DESIGNED
SOLUTIONS: MULTI-COORDINATION VS. MESSAGE-PASSING
The proposed multi-coordination approach uses a discrete-

event simulation framework for the evaluation of the designed
solutions. The simulation framework provides effective multi-
coordination-based programming abstractions [24] for the
implementation of agent-based systems. In particular, the
simulation framework is an enhancement of MASSIMO [25,
26] to support multiple coordination spaces through which
agents can interact and currently includes an implementation

125

of the following coordination spaces:
- The asynchronous Message-based coordination space

which is based on proxies [16]. In particular, a message is
delivered at the agent home location and, from here,
forwarded to the actual agent location by following the chain
of proxies left during agent migration.

- The Publish/Subscribe coordination space which behaves
like a state-full ELVIN event notification system [6]. In
particular, before agent migration the system removes all
existing subscription of the migrating agent and re-subscribes
the agent to the same notifications after the agent arrives at the
new location. Moreover the weight of a notification is less
than the weight of a message as no source field of the
notification is included.

- The Tuple coordination space which is based on
TuCSoN [13]. In particular, each location has its own local
tuple space, an instance of a TuCSoN tuple space which relies
on text-based tuples.

According to the simulation framework two alternative
solutions designed in section III (see Table 5), <LTS,
QUAMP, TPS> (or multi-coordination-based solution) and
<QUAMP, QUAMP, QUAMP> (or message-passing-based
solution), have been implemented and simulated to calculate
the ad-hoc defined performance indices reported in Table 6.

TABLE 6. EVALUATION PERFORMANCE INDICES

Name Definition

TTC Task completion time: the temporal gap between the
spawning of the first created Searcher Agent and the first
report message received from the User Agent.

TN Notification time: the temporal gap between the
information finding and the notification to the last
Searcher Agent.

NV Number of visits after finding the information: the total
number of locations visited by the Searcher Agents after
the information finding.

NS Number of searches after finding the information: the total
number of the locations searched by the Searcher Agents
after the information finding.

NM Number of coordination messages: the number of
coordination messages transmitted through the network.

The simulation tests rely on the simulation parameters (the

number of locations and the number of searcher agents) and
on the following settings of the simulation topology at
network and information level:
- locations are connected through a fully connected logical

network composed of FIFO channels. In particular,
channels are characterized by the same delay and
bandwidth parameters modeled as uniform random
variables.

- the information to be found is contained exactly at one
location and the locations keep references (randomly
generated) to other locations at information level to be all
reachable.

Simulations were carried out with the number of locations
equals to 100 and the number of searcher agents in the range
[10..90, step=10]. Moreover, for each simulation run, the
multi-coordination-based and message-passing-based
solutions were executed on the same network and information

topologies. In Figures 1-5 the simulation results are reported;
the obtained values of the performance indices were averaged
over 100 simulation runs.

The TTC performance index, which measures the speed with
which the information search task is carried out, decreases as
the number of searcher agents increases (see Figure 1). In fact,
the use of more searcher agents augments the degree of
parallelism which, consequently, increases the probability to
find the searched information with a smaller number of
migrations which are time-consuming. The performances of
the message-passing-based and multi-coordination-based
solutions are almost the same.

0

2000

4000

6000

8000

10000

10 20 30 40 50 60 70 80 90
n° Searcher Agents

TT
C

[m
s]

MP-based
MC-based

Figure 1: Task completion time

The TN performance index measures how fast all the
searcher agents are notified after finding the information. The
shorter TN, the fewer are the resources consumed throughout
the networked agent platform. The multi-coordination-based
solution performs better than the message-based-solution
when the number of searcher agents is less than 80 (see Figure
2) due to (i) the exploitation of the TPS coordination space
which provides faster notifications than the message-based
coordination space and (ii) the network load which is lighter
than the one obtained in the message-passing-based solution
(see discussion about the NM parameter). However, when the
number of agents is greater than 80 the message-passing-
based solution performs better as it avoids the occurrence of
many migrations which could slow down the stop notification
of agents. In fact, when the LBN interaction pattern is carried
out through LTS, agents should migrate to a location to
understand if such location has been searched. Conversely,
when the LBN interaction pattern is carried out through
QUAMP, agents send messages to notify a searched location
to the others so limiting the number of migrations per agent as
the agents are notified without having to migrate to new
locations.

1000

10000

100000

1000000

10 20 30 40 50 60 70 80 90
n° Searcher Agents

TN
 [m

s]

MP-based
MC-based

Figure 2: The notification time.

126

The NV and NS parameters are measures of the consumption
of resources after the information is found. The values of such
parameters should be kept as low as possible. As shown in
Figures 3 and 4, the multi-coordination-based solution
outperforms the message-passing-based solution when the
number of searcher agents is less than or equal to 40.

0

100

200

300

400

500

10 20 30 40 50 60 70 80 90

n° Searcher Agents

N
V

MP-based
MC-based

Figure 3: Number of visits after finding information

0
50

100
150
200
250
300
350
400
450

10 20 30 40 50 60 70 80 90

n° Searcher Agents

N
S

MP-based
MC-based

Figure 4: Number of searches after finding information

Finally the NM parameter (see Figure 5), which measures
the network load, is significantly better in the multi-
coordination-based solution thus saving network resources
with respect to the message-passing-based solution.

10

100

1000

10000

100000

1000000

10 20 30 40 50 60 70 80 90
n° Searcher Agents

N
M

MP-based
MC-based

Figure 5: Number of coordination messages

Finally, it is worth noting that a network of locations cannot
be flooded by a lot of agents per searching task which would
cause an over usage of network resources, even though a
numerous task force of agents would significantly decrease
the TTC as shown in Figure 1. So a trade-off should be reached
in terms of the number of agents constituting the task force
which should be appositely set to a percentage of the number
of available locations to minimize the resource usage and
obtain low task completion times. According to the obtained
results (see Figures 1-5) this percentage can be set to 40% for
the multi-coordination-based solution which is a good trade-
off and implies that a task force of 40 agents is created and
launched for each information retrieval task.

V. CONCLUSION
This paper has proposed a multi-coordination approach for

the design and evaluation of mobile agent interactions which
is based on two subsequent phases: (i) the defined
coordination requirements among agents are designed through
well-known agent interaction patterns which are then
implemented by using specific coordination models according
to a three-step procedure which provides alternative design
solutions; (ii) these alternative design solutions are evaluated
and compared through an agent-oriented discrete-event
simulation framework according to ad-hoc defined
parameters.

The proposed approach has been applied to a simple yet
effective case study which has highlighted its actual
applicability and that the exploitation of multi-coordination
could be both more effective and more efficient than the use
of a message-based coordination model.

On the basis of the obtained results work is underway for:
(i) testing the proposed three step technique with a wide
variety of coordination requirements, agent interaction
patterns and coordination models; (ii) relaxing the selection
criterion proposed in section III to also consider other
solutions which can be implemented by mixing a coordination
model with mobility and third-party agent components (e.g.
reflectors, mediator, facilitator, etc); (iii) enhancing the
simulation framework to include other coordination spaces.

REFERENCES
[1] A. Fuggetta, G.P. Picco, and G. Vigna, “Understanding Code Mobility”,

IEEE Trans. on Software Engineering, 24(5), pp. 342-361, 1998.
[2] D.B. Lange and M. Oshima, “Seven good reasons for Mobile Agents”,

Communications of the ACM, 42, 3, pp 88-89, 1999.
[3] G. Vigna, “Mobile Agents: Ten Reasons For Failure”, Proceedings of

the 2004 IEEE International Conference on Mobile Data Management
(MDM’04), Berkeley, CA, USA, 19-22 January 2004.

[4] G. Cabri, L. Leonardi and F. Zambonelli, “Mobile-agent coordination
models for internet applications”, IEEE Computer, 33, 2, pp 82-89,
2000.

[5] A. Murphy, G. P. Picco, and G. Roman, “LIME: A Middleware for
Logical and Physical Mobility”, Proceeding of 21th International
Conference on Distributed Computing Systems”, IEEE CS, 2001.

[6] A. Padovitz, “Agent communication using Publish-Subscribe genre:
Architecture, Mobility, Scalability and Applications”, Annals of
Mathematics, Computing and Teleinformatics, 1, 3, pp 35-50, 2004.

[7] J. Baumann, F. Hohl, N. Radouniklis, K. Rothermel and M. Strasser,
“Communication concepts for Mobile Agent Systems”, Proceeding of
the 1st International Workshop on Mobile Agents (MA’97), Berlin,
Germany, LNCS 1219, pp. 123-135, April 1997.

[8] S. Choi, H. Kim, E. Byun, C. Hwang, and M. Baik, "Reliable
Asynchronous Message Delivery for Mobile Agents", In IEEE Internet
Computing, vol. 10, no. 6, pp. 16-25, 2006.

[9] J. Cao, X. Feng and S.K. Das, "Mailbox-Based Scheme for Mobile
Agent Communications", Computer 35(9), pp. 54–60, 2002.

[10] G. Fortino and W. Russo, “Multi-coordination of Mobile Agents: a
Model and a Component-based Architecture”, Proceedings of 20th
Annual ACM Symposium on Applied Computing (SAC’05), Special
Track on Coordination Models, Languages and Applications, Santa Fe,
NM, USA, Mar. 13-17, 2005.

[11] Y. Aridor, D.B. Lange, “Agent Design Patterns: Elements of Agent
Application Design”, Proceedings of Autonomous Agent ’98,
Minneapolis, Minnesota, US, 1998.

[12] D. Deugo, M. Weiss, and E. Kendall, “Reusable Patterns for Agent
Coordination” published as Chapter 14 in the book: Omicini, A.,

127

Zambonelli, F., Klusch, M., and Tolksdorf, R. (eds.), Coordination of
Internet Agents: Models, Technologies, and Applications, Springer,
2001.

[13] A.Omicini and F. Zambonelli, “Coordination of Mobile Agents for
Information Systems: the TuCSoN Model”, Proceeding of 6thAI*IA
Convention, 1998.

[14] P. Ciancarini, “Coordination models and languages as software
integrators”, ACM Computing Surveys, 28, 2, pp 300-302, Jun 1996.

[15] G.A. Papadoupolos, F. Arbab, “Coordination models and languages”, In
Advances in Computers 46, Academic Press, 1998.

[16] X.Y. Zhou, N. Arnason and S.A. Ehikioya, “A proxy-based
communication protocol for mobile agents: protocols and performance”,
IEEE Conference on Cybernetics and Intelligent Systems, volume 1, pp
53-58, 1-3, Dec. 2004.

[17] A.R. Silva, A. Romao, D. Deugo and M. Mira da Silva, “Towards a
reference model for surveying mobile agent systems”, Autonomous
Agent and Multi-Agent Systems, 4 (3), pp 187-231, 2001.

[18] G. Cabri, L. Leonardi and F. Zambonelli, “Engineering Mobile Agent
Applications via Context-dependent Coordination”, IEEE Transactions
on Software Engineering, 28, 11, pp 1040-1056, Nov. 2002.

[19] A. Omicini, and F. Zambonelli, “Tuple centres for the coordination of
internet agents”, Proceedings of ACM Symp. on Applied Computing
(SAC’99), Special track on Coordination Models, Languages and
Applications, San Antonio, TX, USA, Feb 28-Mar 2, 1999.

[20] G. P. Picco, A. L. Murphy and G. C. Roman, “LIME: Linda meets
mobility”, 1999

[21] G. Cugola, E. Di Nitto and A. Fuggetta, “The Jedi event-based
infrastructure and its application to the development of the OPSS
WFMS”, IEEE Transactions on Software Engineering, 27, 9, pp 827-
850, 2001.

[22] A. Carzaniga, D.S. Rosenblum and A. Wolf, “Design and evaluation of a
wide-area event notification service”, ACM Transactions on Computer
Systems, 19, 3, pp 332-383, 2001.

[23] P. Zave, “A compositional approach to MultiParadigm Programming”,
IEEE Software 6(5), pp 15-25, 1989.

[24] G.Fortino, A. Garro, S. Mascillaro and W. Russo, “Modeling Multi-
Agent Systems through Event-driven Lightweight DSC-based Agents”,
Proceedings of 6th International Workshop From Agent Theory to Agent
Implementation (AT2AI’06), May 13, 2008, AAMAS 2008, Estoril,
Portugal, EU.

[25] M. Cossentino, G. Fortino, A. Garro, S. Mascillaro, and W. Russo,
“PASSIM: a simulation-based process for the development of multi-
agent systems”, International. Journal on Agent-Oriented Software
Engineering 2(2), 132-170, 2008.

[26] G. Fortino, A. Garro, and W. Russo, “A Discrete-Event Simulation
Framework for the Validation of Agent-based and Multi-Agent
Systems”, Proceedings. of the Workshop on Objects and Agents
(WOA’05), Camerino, Italy, Nov 14-16, 2005.

128

Author Index

Ali, Raian . 101
Arecco, Gabriele 11
Asnar, Yudistira 101

Baldoni, Matteo 28, 84
Bandini, Stefania93
Baroglio, Cristina 28
Bergenti, Federico 1
Boccalatte, Antonio 19
Boella, Guido . 84
Bonomi, Andrea 93
Bonura, Susanna 37
Briola, Daniela 11, 68
Bryl, Volha . 101

Caccia, Riccardo 11
Cammarata, Giuseppe 37
Ciuro, Antonino54
Coccoli, Mauro .19
Cossentino, Massimo 54

Dalpiaz, Fabiano 101, 115
Denti, Enrico . 108
Dorni, Mauro . 84

Fontana, Giuseppe 54
Fortino, Giancarlo 122
Francaviglia, Giuseppe 37

Gaglio, Salvatore 54
Garro, Alfredo 122
Giorgini, Paolo101
Grenna, Roberto 84
Grosso, Alberto 19

Locoro, Angela . 68

Marguglio, Angelo 37
Martelli, Maurizio 11
Mascardi, Viviana 11, 68
Mascillaro, Samuele 122
Milani, Carlo .11
Molesini, Ambra 108, 115
Mordacci, Paola . 5

Morreale, Vito . 37
Mugnaini, Andrea 84

Nardini, Elena 108

Oliva, Enrico . 46
Omicini, Andrea 46, 108

Passadore, Andrea 19
Patti, Viviana . 28
Piunti, Michele .76
Poggi, Agostino 1, 5
Puccio, Michele 37
Puviani, Mariachiara 115

Ricci, Alessandro76
Rizzo, Riccardo 54
Russo, Wilma . 122

Schifanella, Claudio 28
Seidita, Valeria 115

Tiso, Carmelo Giovanni 5
Turci, Paola . 5

Viroli, Mirko . 46
Vitali, Monica .54
Vizzari, Giuseppe 93

Zambonelli, Franco 61

