Cognome	Nome	matricola

Teoria dei Sistemi - Prova finale - 17 Aprile 2003

Quesito n.1

Sia dato il sistema lineare, stazionario e a tempo discreto:

$$\mathbf{x}(k+1) = \begin{bmatrix} 1.5 & 1.1 & 0 \\ 1.1 & 1.5 & 0 \\ 0 & 0 & 0.5 \end{bmatrix} \mathbf{x}(k) + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} u(k), \qquad y(k) = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \mathbf{x}(k)$$

1) Determinare gli autovalori della matrice dinamica e studiare la stabilità interna (2 punti):

 $s_1 = s_2 = s_3 = -$ as a sintoticamente stabile internamente (si -- no)

2) determinare il movimento libero dello stato corrispondente allo stato iniziale $x(0) = \begin{bmatrix} 1 & -1 & 1 \end{bmatrix}$ (2 punti):

$$\begin{cases} x_{1l}(k) = \\ x_{2l}(k) = \\ x_{3l}(k) = \end{cases}$$

3) verificare se il sistema è in forma minima (2 punti):

forma minima (si -- no)

Motivazione sintetica

4) determinare gli autovalori della parte raggiungibile e della parte non raggiungibile (ragg.- nragg) (3 punti):

 s_1 : s_2 : s_3 :

Motivazione sintetica

5) determinare, se esiste, una sequenza di ingresso che consenta di raggiungere lo stato $\tilde{x} = \begin{bmatrix} 3.3 & 4.5 & 0 \end{bmatrix}$ (2 punti):

$$u(0) = \qquad \qquad u(1) = \qquad \qquad \dots$$

6) dire se il sistema è stabile esternamente (3 punti):

stabile esternamente (si -- no)
Motivazione sintetica

7) determinare la funzione di trasferimento (2 punti)::

$$G(z) =$$

Quesito n.2

Sia dato il sistema lineare, stazionario e a tempo continuo descritto dalla seguente funzione di trasferimento:

$$G(s) = \frac{9}{s^2 + 3s + 2}$$

Cog	gnome	_Nome	matricola
stabi	studiare la stabilità esterna (2 punti): le esternamente (si no) ivazione sintetica		
	applicato al tempo $t = 5$ (2 punti):	ta forzata dell'uscita corrispondente ad un in	ngresso a scalino unitario
3)	determinare la risposta all'impulso applica	to al tempo $t = 5$ (3 punti):	
$g_y($	<i>t</i>)=		
4)	determinare il campo dei valori di K che re (suggerimento: U'=K(W-Y))	portato in figura: K $G(s)$ Y $G(s)$ Y Y Y Y Y Y Y	esso W e uscita Y (3 punti) :
Con	sito n.3 (8 punti) riferimento ad un sistema LTI a tempo cor re, i criteri che legano tale proprietà con gl	ntinuo, si definisca la proprietà di asintotica s i autovalori della matrice dinamica.	stabilità interna; si enuncino,

Cognome	Nome	matricola

Teoria dei Sistemi - Prova finale - 17 Aprile 2003

0	1
Ouesito	11.1

Sia dato il sistema lineare, stazionario e a tempo discreto:

$$\mathbf{x}(k+1) = \begin{bmatrix} 0.3 & -0.1 & 0 \\ -0.1 & 0.3 & 0 \\ 0 & 0 & 0.5 \end{bmatrix} \mathbf{x}(k) + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} u(k); \quad y(k) = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \mathbf{x}(k)$$

7) Determinare gli autovalori della matrice dinamica e studiare la stabilità interna (2 punti):

 $s_1 = s_2 = s_3 = -$ as a sintoticamente stabile internamente (si -- no)

8) determinare il movimento libero dello stato corrispondente allo stato iniziale $x(0) = \begin{bmatrix} 2 & 0 & 0 \end{bmatrix}$ (2 punti):

$$\begin{cases} x_{1l}(k) = \\ x_{2l}(k) = \\ x_{3l}(k) = \end{cases}$$

9) verificare se il sistema è in forma minima (2 punti):

forma minima (si -- no)
Motivazione sintetica

10) determinare gli autovalori della parte raggiungibile e della parte non raggiungibile (ragg.- nragg) (3 punti):

 s_1 : s_2 : s_3 :

Motivazione sintetica _____

11) determinare, se esiste, una sequenza di ingresso che consenta di raggiungere lo stato $\tilde{x} = \begin{bmatrix} -0.3 & 2.9 & 0 \end{bmatrix}$ (2 punti):

$$u(0) = u(1) = \dots$$

12) dire se il sistema è stabile esternamente(3 punti):

stabile esternamente (si -- no)
Motivazione sintetica

8) determinare la funzione di trasferimento(2 punti):

G(z) =

Quesito n.2

Sia dato il sistema lineare, stazionario e a tempo continuo descritto dalla seguente funzione di trasferimento:

Cognome	Nome
---------	------

$$G(s) = \frac{3}{s^2 + 4s + 3}$$

matricola

5) studiare la stabilità esterna (2 punti):

stabile esternamente (si -- no)

Motivazione sintetica _____

6) determinare il valore di regime della risposta forzata dell'uscita corrispondente ad un ingresso a scalino unitario applicato al tempo t = 5 (2 punti):

$$y_s(\infty) =$$

1) determinare la risposta forzata dell'uscita corrispondente ad un ingresso a scalino unitario applicato al tempo t = 5 (3 punti):

$$y_s(t) =$$

Infine, considerando il sistema retroazionato riportato in figura:

determinare il campo dei valori di K che rende stabile esternamente il sistema con ingresso W e uscita Y (3 punti): (suggerimento: U'=K(W-Y))

•••••

Quesito n.3 (8 punti)

Con riferimento ad un sistema LTI a tempo discreto, si descriva la proprietà di osservabilità, si fornisca la definizione formale di tale proprietà e il criterio che permette di stabilire la completa osservabilità del sistema.

Cognome	Nome	matricola	
Teoria dei Sistemi - Prova finale - 17 Aprile 2003			
Quesito n.1 Sia dato il sistem	na lineare, stazionario e a tempo discreto:		
	$\mathbf{x}(k+1) = \begin{bmatrix} -0.1 & -0.3 & 0 \\ -0.3 & -0.1 & 0 \\ 0 & 0 & 1.5 \end{bmatrix} \mathbf{x}(k) + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} u(k);$	$y(k) = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} x(k)$	
13) Determinare	e gli autovalori della matrice dinamica e studiare la stabilità	interna (2 punti):	
$s_1 = s_2$	= s_3 = - asintoticamente stabile internamen	nte (si no)	
14) determinare	il movimento libero dello stato corrispondente allo stato ini	ziale $x(0) = [2 \ 0 \ 1]'$ (2 punti):	
$\begin{cases} x_{1l}(k) = \\ x_{2l}(k) = \\ x_{3l}(k) = \end{cases}$			
15) verificare se	e il sistema è in forma minima (2 punti):		
forma minima (s Motivazione sin	i no) tetica		
16) determinare gli autovalori della parte raggiungibile e della parte non raggiungibile (ragg nragg) (3 punti):			
s_1 :	s_2 : s_3 :		
Motivazione sintetica			
17) determinare, se esiste, una sequenza di ingresso che consenta di raggiungere lo stato $\tilde{x} = \begin{bmatrix} 0 & 2 & 0 \end{bmatrix}$ (2 punti):			
u(0) =	$u(1) = \dots$		
18) dire se il sistema è stabile esternamente(3 punti):			
stabile esternamente (si no) Motivazione sintetica			

9) determinare la funzione di trasferimento(2 punti):

G(z) =

Quesito n.2

Sia dato il sistema lineare, stazionario e a tempo continuo descritto dalla seguente funzione di trasferimento:

$$G(s) = \frac{12}{s^2 + 5s + 6}$$

Cognome	Nome	matricola
7) studiare la stabilità estern	aa (2 punti):	
stabile esternamente (si no	0)	
Motivazione sintetica		
8) determinare il valore di ra applicato al tempo $t = 5$ (2)	egime della risposta forzata dell'uscita corrispondo 2 punti):	ente ad un ingresso a scalino unitario
$y_s(\infty) =$		
9) determinare la risposta al	l'impulso applicato al tempo $t = 5$ (3 punti):	
$g_{y}(t)=$		
Infine, considerando il sistem	a retroazionato riportato in figura:	
	K $G(s)$	Y
10) determinare il campo dei (suggerimento: U'=K(W	valori di K che rende stabile esternamente il sister -Y))	ma con ingresso W e uscita Y (3 punti):
Quesito n.3 (8 punti) Con riferimento ad un sistem stabilità interna e di stabilità e	na LTI a tempo continuo SISO, si mettano in relesterna.	azione fra loro le proprietà di asintotica

Cognome	Nome	matricola
	Teoria dei Sistemi - Prova finale - 17 A	Aprile 2003
Quesito n.1 Sia dato il sistema linea	re, stazionario e a tempo discreto:	
	$\mathbf{x}(k+1) = \begin{bmatrix} -0.3 & -0.1 & 0 \\ -0.1 & -0.3 & 0 \\ 0 & 0 & 1.5 \end{bmatrix} \mathbf{x}(k) + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} u(k);$	$y(k) = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} x(k)$
19) Determinare gli aut	tovalori della matrice dinamica e studiare la stabilit	à interna (2 punti):
$s_1 = s_2 =$	$s_3 =$ - asintoticamente stabile internam	nente (si no)
20) determinare il mov	imento libero dello stato corrispondente allo stato i	niziale $x(0) = [3 -1 1]'$ (2 punti):
$\begin{cases} x_{1l}(k) = \\ x_{2l}(k) = \\ x_{3l}(k) = \end{cases}$		
21) verificare se il siste	ema è in forma minima (2 punti):	
forma minima (si no Motivazione sintetica _))	
22) determinare gli auto	ovalori della parte raggiungibile e della parte non r	aggiungibile (ragg nragg) (3 punti):
s_1 : s_2 :	s_3 :	
Motivazione sintetica _		
23) determinare, se esis	ste, una sequenza di ingresso che consenta di raggio	ungere lo stato $\widetilde{x} = \begin{bmatrix} -0.1 & 1.7 & 0 \end{bmatrix}$ (2 punti):
u(0) = u(1) =		
24) dire se il sistema è	stabile esternamente(3 punti):	
stabile esternamente (si Motivazione sintetica	no)	
10) determinare la funz	zione di trasferimento(2 punti):	
G(z) =		

Quesito n.2
Sia dato il sistema lineare, stazionario e a tempo continuo descritto dalla seguente funzione di trasferimento:

$$G(s) = \frac{4}{s^2 + 5s + 4}$$

Cognome	Nome	matricola
11) studiare la stabilità esterna	a (2 punti) :	
stabile esternamente (si no) Motivazione sintetica)	
12) determinare il valore di re	gime della risposta forzata dell'uscita cor	rrispondente ad un ingresso a scalino unitario
applicato al tempo $t = 5$ (2	punti):	
$y_s(\infty) =$		
2) determinare la rispo tempo <i>t</i> = 5 (3 punti):		nd un ingresso a scalino unitario applicato al
$y_s(t) =$		
Infine, considerando il sistema	n retroazionato riportato in figura:	
	* U'	G(s)
4) determinare il campo punti): (suggerimento: U		nente il sistema con ingresso W e uscita Y (3
	a LTI a tempo continuo SISO, si descri escriva, inoltre, il legame tra funzione di	va la procedura che porta alla definizione della trasferimento e risposta all'impulso.