
U
sin

g
U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-O
ri

en
te

d
So

ftw
ar

e
En

gi
ne

er
in

g Chapter 2,
Modeling with UML:

Component and

Deployment Diagrams

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

Components

•  A Component is a self-contained unit that
encapsulates the state and behavior of a
number of Classifiers.

•  In UML, a Classifier represents a classification of
instances according to their Features.

•  For instance: a category of entities in the domain
•  A classifier has attributes

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

Component’s interface

•  The provided and required Interfaces of a
Component may be shown by means of ball
(lollipop) and socket notation

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

Dependencies among components

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

Deployment Diagrams

Ø Deployment diagrams specify constructs that
can be used to define:
Ø  the execution architecture of systems and
Ø the assignment of software artifacts to system

elements.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

Deployment diagrams examples
•  Nodes in deployment diagrams represent either

hardware devices or software execution
environments.

•  Artifacts are deployed over nodes
•  Some item of information that is used or produced by a

software development process or by operation of a
system.

•  Examples: model files, source files, scripts, executable
files, database tables, development deliverables, word-
processing documents, and mail messages.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

UML 2 Deployment Diagrams - nodes
Two node types:
•  Device

•  a physical
computational resource
with processing
capability upon which
artifacts may be
deployed for execution.

•  Execution environment
•  a node that offers an

execution environment
for specific types of
components that are
deployed on it in the
form of executable
artifacts.

206 UML Superstructure Specification, v2.1.2

10.3.7 Device (from Nodes)

A Device is a physical computational resource with processing capability upon which artifacts may be deployed for

execution. Devices may be complex (i.e., they may consist of other devices).

Generalizations

• “Node (from Nodes)” on page 210

Description

In the metamodel, a Device is a subclass of Node.

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

A device may be a nested element, where a physical machine is decomposed into its elements, either through namespace

ownership or through attributes that are typed by Devices.

Notation

A Device is notated by a perspective view of a cube tagged with the keyword «device».

Figure 10.14 - Notation for a Device

«device»

:AppServer

:J2EEServer

Order.jar

ShoppingCart.jar

Account.jar

Product.jar

BackOrder.jar

Service.jar

:DBServer

OrderSchema.ddl

ItemSchema.ddl

«executionEnvironment»
«device»

:DBServer

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

Deployment specifications

•  A deployment diagram can have a
deployment specification

204 UML Superstructure Specification, v2.1.2

Notation

A DeploymentSpecification is graphically displayed as a classifier rectangle (Figure 10.11) attached to a component

artifact deployed on a container using a regular dependency arrow.

Figure 10.11 - DeploymentSpecification for an artifact (specification and instance levels)

Figure 10.12 - DeploymentSpecifications related to the artifacts that they parameterize

Figure 10.13 - A DeploymentSpecification for an artifact

Name

«deployment spec»

execution: execKind

transaction : Boolean

Name

«deployment spec»

execution: thread

transaction : true

:AppServer1

ShoppinCart.jar
«artifact»

Order.jar
«artifact»

ShoppingApp.ear

«artifact»

Orderdesc.xml

«deployment spec»

ShoppingAppdesc.xml

«deployment spec»

:AppServer

Order.jar

«artifact»

Orderdesc.xml

«deployment spec»
«deploy»

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

Manifestation
•  Artifacts can now manifest any packageable element,

not just components

•  Manifestation (the concrete physical rendering of one
or more model elements by an artifact) is shown by
a dependency with keyword «manifest»

UML Superstructure Specification, v2.1.2 199

Figure 10.6 - An Artifact instance

Figure 10.7 - A visual representation of the manifestation relationship between artifacts and components

Changes from previous UML

The following changes from UML 1.x have been made: Artifacts can now manifest any PackageableElement (not just

Components, as in UML 1.x).

10.3.2 CommunicationPath (from Nodes)

A communication path is an association between two DeploymentTargets, through which they are able to exchange

signals and messages.

Generalizations

• “Association (from Kernel)” on page 39

Description

In the metamodel, CommunicationPath is a subclass of Association.

Attributes

No additional attributes

Associations

No additional associations

Constraints

[1] The association ends of a CommunicationPath are typed by DeploymentTargets.

Order.jar

«artifact»

Order

«component»

Order.jar

«artifact»

«manifest»

org.junit

«artifact»
junit-4.5.jar

«manifest»

