ineering

Object-Oriented Software Eng

Using UML, Patterns, and Java

Chq

pter
with 't

2,

Outline of this Class

e What is UML?

« A more detailed view on
v'Use case diagrams
v Class diagrams
v'Sequence diagrams
v" Activity/Statecharts diagrams

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

UML Basic Notation: First Summary

« UML provides a wide variety of notations for
modeling many aspects of software systems

« UML diagrams cover the three fundamental
models for software design:

e Functional model: Use case diagrams

* Object model: Class diagrams
« Dynamic model: Sequence diagrams, statechart diagram

e Now we go into a little bit more detail...

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

UML First Pass

 Use case diagrams

« Describe the functional behavior of the system as seen
by the user

Class diagrams

* Describe the static structure of the system: Objects,
attributes, associations

Sequence diagrams

* Describe the dynamic behavior between objects of the
system

Statechart diagrams
e Describe the dynamic behavior of an individual object
Activity diagrams

» Describe the dynamic behavior of a system, in
particular the workflow.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

UML Use Case Diagram

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

UML first pass: Use case diagrams

LCIassifierJ ﬁ c
se Case

Course ~
Givelecture
Instructor \
% Student
DoHomework ZLSystem bou ndary}
Teaching
__Assistant .
[| 11 W] O N TSI 00 W TR AR W TG i i i I

Use case diagrams represent the functionality of the system

from user’ s point of view

UML Use Case Diagrams

Used during requirements elicitation
and analysis to represent external
behavior (“visible from the outside of
the system”)

An Actor represents a role, that
is, a type of user of the system

Passenger
\ A use case represents a class of

functionality provided by the system

Q Use case model.
The set of all use cases that

PurchaseTicket completely describe the
functionality of the system.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

Actors

 An actor is a model for an external
entity which interacts
(communicates) with the system:

o User
o External system (Another system)
* Physical environment (e.g. Weather)

« An actor has a unigue name and an
optional description Optional J

« Examples: Description
 Passenger: A person in the train

[Name J%GPS satellite: An external system that
provides the system with GPS

coordinates.

Passenger

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

Use Case

C_ D

PurchaseTicket

Bernd Bruegge & Allen H. Dutoit

e A use case represents a class of
functionality provided by the
system

e Use cases can be described
textually, with a focus on the
event flow between actor and
system

e The textual use case description
consists of 6 parts:

. Unique name

. Participating actors

. Entry conditions

. Exit conditions

. Flow of events

6. Special requirements.

a b W N =

Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

Textual Use Case i& O
Description Example |
Passenger PurchaseTicket

1. Name: Purchase ticket 5. Flow of events:

2. Participating actor: 1. Passenger selects the

Passenger number of zones to be
" traveled
3. Entry condition: _ o
2. Ticket Distributor

* (GOOD) Pafssengﬁer C?_eleICtS displays the amount due
an option from the display 3. Passenger inserts

e (WRONG) Passenger money, at least the
stands in front of ticket amount due
distributor 4. Ticket Distributor returns

e (Very WRONG) Passenger change
has sufficient money to 5. Ticket Distributor issues
purchase ticket ticket

4. Exit condition: 6. Special requirements:

: None.
e Passenger has ticket

 (Better): System
d eI |Ve red tl C ket vare Engineering: Using UML, Patterns, and Java 10

Use Cases can be related

 Extends Relationship

 To represent seldom invoked use cases or exceptional
functionality

e Includes Relationship

* To represent functional behavior common to more than
one use case.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 1

The <<extends>> Relationship

¢ <<extends>> relationships
model exceptional or seldom
invoked cases

« The exceptional event flows

Passenger are factored out of the main
| event flow for clarity
e The direction of an
© <<extends>> relationship is to
PurchaseTicket the extended use case
T e Use cases representing
<<extends>> exceptional flows can extend

more than one use case.

<<extends>3
© <<extends>> Q

OutOfOrder | <<extends>> TimeOut

> C D

Cancel NoChange
Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

v

The <<includes>> Relationship

Passenger \\\\\\\\
| D>
<:::::::> PurchaseMultiCard

[
PurchaseSingleTicket

<<inc1;;;;;;\\\$

CollectMoney

<<includes>>

<<extends>>
<<extends>>

<<includes>> relationship
represents common
functionality needed in more
than one use case

<<includes>> behavior is
factored out for reuse, not
because it is an exception

The direction of a
<<includes>> relationship is
to the using use case (unlike
the direction of the
<<extends>> relationship).

<<extends>>

@@@

NoChange Cancel

Bernd Bruegge & Allen H. Dutoit

TimeOut

Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

Use Case Models can be packaged

LCIassifier}

T—

Instructor

Course

ﬁse Case

\

HoldExercise
% Student
DoHomework ﬁSystem bou ndary}
Teaching
‘ |‘IASSI|S|tan|t“| - S T 1WA AR LB O
Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Historical Remark: UML 1 used packages

Package

Course \

% D
—] GiveLect;;;\\\\ g%
Instructor Q \
HoldExercise ,///////;:;dent

X - >

Teaching DoHomework
Assistent

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

Bernd Bruegge & Allen H. Dutoit

UML Class Diagram

Object-Oriented Software Engineering: Using UML, Patterns, and Java

16

UML first pass: Class diagrams

{Association

Multiplici .
ultiplicity SimpleWatch
11| {1 [2
PushButton Display Battery Time

Class diagrams represent the structure of the system

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

UML first pass: Class diagrams
Class diagrams represent the structure of the system

[Association

Class
Multiplicity Watch
1 1l|1 |1
2 | \

1] | 2 1
PushButton _
state LCDDisplay Battery Time
push () blinkIdx Load Now
release() /| plinkSeconds () |

blinkMinutes ()
blinkHours ()

stopBlinking () :
[Attribute referesh() Opera’uons}

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

Class Diagrams

e Class diagrams represent the structure of the
system

e Used

e during requirements analysis to model application
domain concepts

» during system design to model subsystems

* during object design to specify the detailed behavior
and attributes of classes.

TarlfSchggule Trip
Table zone2price
- zone:zZone
Enumeration getZones () * *

Price: Price

Price getPrice(Zone)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

19

Classes - Type
TarifSchedule
™ zone2price
getZones ()
% Name } ce getPrice()
TarifSchedule _
zone2price { Attributes J Signature J

getZones ()
getPrice()

x[OperationsJ TarifSchedule

e A class represents a concept
* A class encapsulates state (attributes) and behavior

(operations)

Each attribute has a type
Each operation has a signature

The class name is the only mandatory information

Bernd Bruegge & Allen H. Dutoit

Object-Oriented Software Engineering: Using UML, Patterns, and Java

20

Actor vs Class vs Object

e Actor

e An entity outside the system to be modeled,
interacting with the system (“Passenger”)

e Class

« An abstraction modeling an entity in the application or
solution domain

 The class is part of the system model (“"User”, “Ticket
distributor”, “Server”)

« Object

» A specific instance of a class ("Joe, the passenger who
is purchasing a ticket from the ticket distributor”).

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

Instances

tarif2006:TarifSchedule :TarifSchedule
zone2price = { zone2price = {
{‘1’, 0.20}, {1, 0.20},

{‘2’, 0.40} {‘2", 0.40},

{‘3’, 0.60}} {‘3’, 0.60}}

 An instance represents a phenomenon
 The attributes are represented with their values
« The name of an instance is underlined

« The name can contain only the class name of the instance
(anonymous instance)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

Associations

TarifSchedule

TripLeg

Enumeration getZones|()
Price getPrice(Zone)

Price
Zone

Associations denote relationships between classes

The multiplicity of an association end denotes how many

objects the instance of a class can legitimately reference.

Bernd Bruegge & Allen H. Dutoit

Object-Oriented Software Engineering: Using UML, Patterns, and Java

23

1-to-1 and 1-to-many Associations

Country

1 1 City

name:String

name:String

1-to-1 association

Bernd Bruegge & Allen H. Dutoit

Point

Polygon *
X: Integer
draw() y: Integer

1-to-many association

Object-Oriented Software Engineering: Using UML, Patterns, and Java

24

Many-to-many Associations

StockExchange Company
Lists

tickerSymbol

« A stock exchange lists many companies.
« Each company is identified by a ticker symbol

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

From Problem Statement To Object Model

Problem Statement: A stock exchange lists many companies.
Each company is uniquely identified by a ticker symbol

Class Diagram:

StockExchange |-~ * | Company
Lists

tickerSymbol

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

From Problem Statement to Code

Prwoblem Statement : A stock exchange lists many companies.
Each company 1is identified by a ticker symbol

Class Diagram: q (\
*

*
StockExchange 7 \/ Company

tickerSymbol

Java Code
?ublic class StockExchange

private —C"mpa“y =new Vector(); pAgsociations

i . are mapped to
?ubllc class Company Attributes!
private jr ickerSymbol;

private _StockExchange = new Vector();

)5

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 27

Qualifiers

Without qualification

Directory

1

File

With qualification

Directory

filename

filename

File

e Qualifiers can be used to reduce the multiplicity
of an association

Bernd Bruegge & Allen H. Dutoit

Object-Oriented Software Engineering: Using UML, Patterns, and Java 28

Qualification: Another Example

Bernd Bruegge & Allen H. Dutoit

Company
* Lists * |
StockExchange tickerSymbol
* Lists 1
: Compan
StockExchange [iekersymbol pary

Object-Oriented Software Engineering: Using UML, Patterns, and Java

29

Aggregation

 An aggregation is a special case of association denoting

a “consists-of” hierarchy
« The aggregate is the parent class,

Exhaust system

the components are the children classes
1 T <TO..Z
Muffler Tailpipe
diameter diameter

A solid diamond denotes composition: A strong form of
aggregation where the Jife time of the component instances
is controlled by the aggregate. That is, the parts don’t exist
on their won ("the whole controls/destroys the parts”)

TicketMachine

o

ZoneButton

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

30

Inheritance

Button

TAVAN

CancelButton ZoneButton

e Inheritance is another special case of an
association denoting a “kind-of” hierarchy

 Inheritance simplifies the analysis model by
introducing a taxonomy

« The children classes inherit the attributes and
operations of the parent class.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

Association class

" Job 1..*
person company

Person Company

1
|
|
|

Job

salary

Figure 11.35 Example AssociationClass Job, which is defined between the two Classes Person and Company

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 32

Ternary associations

* 4 PlayedInYear
Year =
year
season|
Team - > - Player
team h goalie

Figure 11.27 Binary and ternary Associations

The solid triangle indicates the order of reading: Player PlayedInYear Year. The figure further shows a ternary
Association between Team, Year, and Player with ends named team, season, and goalie respectively.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 33

Packages

 Packages help you to organize UML models to
increase their readability

« We can use the UML package mechanism to
organize classes into subsystems

Account ~7=__

[\ T\

Bank Customer

« Any complex system can be decomposed into
subsystems, where each subsystem is modeled as

a package.

Bernd Bruegge & Allen H. Dutoit

Object-Oriented Software Engineering: Using UML, Patterns, and Java 34

Object Modeling in Practice

Foo

Amount

Customerld

Deposit()
Withdraw()
GetBalance()

Class Identification: Name of Class, Attributes and Methods
Is Foo the right name?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 35

Object Modeling in Practice: Brainstorming

\ |

\\\ “‘o
7l 14 \\\\ ‘J*) /// /
> -~ —
Amount Amount ‘z -
// \\
Customerld Customerld
Deposit() Deposit()
Withdraw() Withdraw() o
GetBalance() GetBalance() -
Account
Amount
Customerld
Deposit()
) Withdraw()
Is Foo the right name? GetBalance()

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 36

Object Modeling in Practice: More classes

Account
Amount Customer
Bank AccountId_
Name
Deposit()
Name Withdraw(Customerld
GetBalance()

1) Find New Classes
2) Review Names, Attributes and Methods

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

Object Modeling in Practice: Associations

2 *

Bank

Name

Account
Amount % Customer
Accountld owns
’ Name
Deposit()
Withdraw() Customerld

GetBalance()

Bernd Bruegge & Allen H. Dutoit

1) Find New Classes
2) Review Names, Attributes and Methods

3) Find Associations between Classes

4) Label the generic assocations

6) Review associations

5) Determine the multiplicity of the assocations

Object-Oriented Software Engineering: Using UML, Patterns, and Java

Practice Object Modeling: Find Taxonomies

Account
Bank Customer
* Amount *
Name @ —"| Accountld Has [Name
Devosit()
Withdraw()
| Getbalancey) CustomerId()
Savings Checking Mortgage
Account Account Account
Withdraw() Withdraw() Withdraw()

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 39

Practice Object Modeling: Simplify, Organize

Account
Amount Show Taxonomies
Accountld
separatel
Deposit() P y
Withdraw()
GetBalance()
Savings Checking Mortgage
Account Account Account
Withdraw() Withdraw() Withdraw()

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 40

Practice Object Modeling: Simplify, Organize

Account
Bank Customer
* Amount *
Name g —""| Accountld Has (Name
Deposit()
Withdraw()
GetBalance() CustomerId()

Use the 7+-2 heuristics

or better 5+-2!

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 41

Bernd Bruegge & Allen H. Dutoit

UML Sequence Diagram

Object-Oriented Software Engineering: Using UML, Patterns, and Java

42

UML first pass: Sequence diagram

% Object Lifeline |
:WatchUser :Wai;gy//////,:LCDDisplay :Time

| 1
press uttonl()= blinkHours () ! !

0 |

blinkMinutes()‘E] |

ressButton2 () . .
=j]1ncrementM1nutes() '

pressButtonl () |

[

ET refresh()r
I
I
I

pressButtonland2()
commitNewTime ()
stopBlinking()

Activation

Sequence diagrams represent the behavior of a system

as messages (“interactions”) between different objects

Sequence Diagrams Focus on

X

Passenger

Controlflow

sed during analysis
TicketMa » To refine use case descriptions

selectZone ()

insertCoins ()

pickupChange ()

pickUpTicket ()

——

Bernd Bruegge & Allen H. Dutoit

!
!

: Object-Oriented Software Engineering: Using UML, Patterns, and Java

(“participating objects”)
o llesed diving system design
TicketMachine [fine S i

/ to find additional objects

insertCoins () participating Object

pickupChange ()
pickUpTicket () es are represented by

> ces 3 Messages ->
selectZone() lles. Act Operations on

lines

e Messages are represented by
arrows

» Activations are represented
by narrow rectangles.

44

Scenarios, use case and sequence
diagrams

A scenario is an instance of a use case
describing a concrete set of actions (no
alternative paths are in it)

A use case is an abstraction that describes all
possible scenarios involving the described
functionality.

Scenarios are used as examples for illustrating
common cases;
* their focus is on understandability.

Use cases are used to describe all possible
cases;

» their focus is on completeness.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 45

How to describe scenarios

« We describe a scenario using a template with
three fields:
« The name of the scenario enables us to refer to it

unambiguously. The name of a scenario is underlined
to indicate that it is an instance.

 The participating actor instances field indicates
which actor instances are involved in this scenario.
Actor instances also have underlined names.

« The flow of events of a scenario describes the
sequence of events step by step.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

46

Scenario: an example

Scenario name

warehouseOnFire

Participating actor
instances

bob, alice:FieldOfficer

john:Dispatcher

Flow of events

1.

Bob, driving down main street in his patrol car, notices smoke coming out
of a warehouse. His partner, Alice, activates the “Report Emergency”
function from her FRIEND laptop.

Alice enters the address of the building, a brief description of its location
(i.e., northwest corner), and an emergency level. In addition to a fire unit,
she requests several paramedic units on the scene given that area appears
to be relatively busy. She confirms her input and waits for an
acknowledgment.

John, the Dispatcher, is alerted to the emergency by a beep of his
workstation. He reviews the information submitted by Alice and
acknowledges the report. He allocates a fire unit and two paramedic units
to the Incident site and sends their estimated arrival time (ETA) to Alice.
Alice receives the acknowledgment and the ETA.

Bernd Bruegge & Allen H. Dutoit

Object-Oriented Software Engineering: Using UML, Patterns, and Java 47

Sequence Diagrams can also model the
Flow of Data

ZoneButton TarifSchedule Display
Passenger : . .

selectZone ()

1
| e— —
»

lookupPrice(selection)

1 displayPrice(pLice) ‘_L
[Dataflow I e T

...continued on next slide...

e The source of an arrow indicates the activation which sent
the message

o Horizontal dashed arrows indicate data flow, for example
return results from a message

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 48

Sequence Diagrams: lteration & Condition

...continued from previous slide...

ChangeProcessor| [CoinIdentifier Display CoinDrop
Passenger - ' ' !
] *igsertChan e coiﬂ !
gel(;—l lookupCoin (coin)
It ti _price _____. D
eration displayPrice (dwedAmount) .

[Condition J/V

=

[owedAmount<0ﬂ returnChange(—oﬁedAmount)

...continued on next slide...

e Iteration is denoted by a * preceding the message name

 Condition is denoted by boolean expression in [] before
the message name

Bernd Bruegge & Allen H. Dutoit

Object-Oriented Software Engineering: Using UML, Patterns, and Java 49

Creation and destruction

% ...continued from previous slide...

Passenger i bkl Creation of Ticket}

1
e

createTicket (selecti
 ———

Ticket
print () !

= free() ;Qﬂion of Ticket}

 Creation is denoted by a message arrow pointing to the object

e Destruction is denoted by an X mark at the end of the
destruction activation

e In garbage collection environments, destruction can be used to
denote the end of the useful life of an object.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 50

Message Types

e Asynchronous — . Code N
. Synchronous | :
e Call and Object creation——— -
 Reply e —

e Lost

. FounN

lost
\ :.

\ . found

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 51

Sequence Diagram Properties

« UML sequence diagram represent behavior in
terms of interactions

o Useful to identify or find missing objects

 Time consuming to build, but worth the
iInvestment

« Complement the class diagrams (which
represent structure).

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 52

Bernd Bruegge & Allen H. Dutoit

Interaction Diagrams

Object-Oriented Software Engineering: Using UML, Patterns, and Java

53

Interaction Diagrams

« UML 2.0: New concept of interaction fragments

 Before we go into detail with interaction
fragments, let’ s cover the concept of an
interaction.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 54

Interaction Diagrams

e Four types of interaction diagrams:
e Sequence diagrams
* We will not study the following (by now at least):
e Communication diagrams
 Interaction overview diagrams
e Timing diagrams
e The basic building block of an interaction
diagram is the

 An interaction is a unit of behavior that focuses on
the observable exchange of information between
connectable elements

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

55

Example of an Interaction: Sequence
Diagram

Name of Interaction
sd UserAccepted

Local Attribute

+PIN:Integer {readonly 0<=PIN <=9999} <}—

Lifeline
‘User ‘ACSystem /
Code(PIN)

\

Message

CardOut

SO W S

\

N S S

A\
}

Unlock

Figure 14.16 - An example of an Interaction In the form of a Sequence Dlagram

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 56

Interaction Fragment

e Interaction Fragment
» Is a piece of an interaction
* Acts like an interaction itself
e Combined Fragment
e Is a subtype of interaction fragment
» defines an expression of interaction fragments
 An expression of interaction fragments is defined
by

:> an interaction operator and interaction operands.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 57

Example of a Combined Fragment using
the alt operator

e The interaction operator alt indicates a choice of
behavior between interaction fragments

sd example J

InteractionOperator

CombinedFragment i

|
. I : |
opti | : : ! Alternative |
—> InteractionConstraint | () |
o !
|
alt | | |
) poop s | :
create : |
: ob2:C2 :
|
foo(foo_par=x) | T !
| doit(z) :
I
i doit(_)
| - |
foo(_) ' ' |
| X |
e —— e e ey e S T G T, . S S—— N et
[else] bar(x) | [} |
-l doit(z) :

x=bar(_):15 \ |
= ' doit() \ |
1 1

|
|] \ |
! InteractionOperand separator

Bernd Bruegt I

Alt Operator

e The interaction operator alt indicates a choice of
behavior between interaction fragments

e At most one interaction fragment (that is, an
InteractionOperand) is chosen

e The chosen interaction fragment must have an explicit or
implicit guard expression that evaluates to true at this point in
the interaction

A guard can be
e a boolean expression (called InteractionConstraint)
 else (a reserved word)
* If the fragment has no guard expression, true is implied.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

59

Interaction Operators

* The following operators are allowed in the combination

of interaction fragments:

alt

opt
par
loop
critical
neg
assert
strict
seq
Ignore
consider

Bernd Bruegge & Allen H. Dutoit

Object-Oriented Software Engineering: Using UML, Patterns, and Java

60

Opt and Break Operators

The interaction operator designates a choice of
behavior where either the (sole) operand happens or
nothing happens.

The interaction operator represents a breaking
scenario: The operand is a scenario that is performed
instead of the remainder of the enclosing interaction
fragment.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 61

Parallel and Critical Operator

The interaction operator designates a parallel merge
between the behaviors of the operands of a combined
fragment.

The interaction operator designates that the

combined fragment represents a critical region.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 62

Example of a Critical Region

Problem statement: The telephone Operator must make sure to
forward a 911-call from a Caller to the Emergency system before
doing anything else. Normal calls can be freely interleaved.

sd CriticalRegion)
"‘Emergency -Operator ‘Caller ‘Callee

| I I |

! ! ! !

par | | | |

| | cal(100) | |

| =] |

I : call(100) : I

| l l —
e

I | call(101) | I

[[| [

l : call(101) | :

| | 1 |

| I | l
________ B S N S SR

: | : :

critical J | o) |

| | i |

I call(911) | I I

I~ i | |

| | [|

| | | |

| | | |

| | | |

| | | |

Bernd Bruegge & : : : :

1 1 1 1

Bernd Bruegge & Allen H. Dutoit

UML Statechart Diagram

Object-Oriented Software Engineering: Using UML, Patterns, and Java

64

State diagrams and states

State diagrams are used to give an abstract
description of the behaviour of a system.

This behaviour is analysed and represented as a
series of events that can occur in one or more
possible states.

A state represents a step in the behaviour
pattern of an object

e It is a configuration of the set of state-attributes of the
behaving object

Transition from one state to another is triggered
by events

« An event may be either internal or external to the
object

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 65

UML first pass: Statechart diagrams Wrong state,

It’s an action!!
w%mitial state

buttonl&2Pressed //f B1ink O\ _button2Pressed >(/;ncremen€:>

Hours 4/}(Hours
displayRefreshed \

%Transition} buttonlPressed

buttonl&ZPressed<:: B14nk "\ button2Pressed > Ingremen%:>

Minutesg/}< Minutes
State displayRefreshed N\
buttonlPressed
\ 4
"\ button2Pressed
Stop B11nk Increment
B11nk1ng Seconds Seconds
displayRefreshed
Final state

Represent behavior of a single object with interesting

dynamic behavior.

button1&2Pressed

button1&2Pressed

.

| BIinkHours};I buttonlPressed / increaseHours

buttonllPressed

BlinkMinutes

button1&2Pressed

NV

Ox

batteryDischarged

StopBIinkingk

);I button2Pressed / increaseMinutes

buttonl|Pressed

BlinkSeconds

/|\ J button1Pressed

);I button2Pressed / resetSeconds

button1&2Pressed

Transition notation: event [guard][/action]

Bernd Bruegge & Allen H. Dutoit

Object-Oriented Software Engineering: Using UML, Patterns, and Java 67

Statechart for the Incident class

< Active >%<Inactive> >(Closed) >| Archived)

incidentHandled incidentDocumented incident-.l&rchiveg6

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 68

State machine diagram for 2Bwaich

pressBothButtons q;

(:EeasureTime SetTime
W

pressBothButtons/beep

batteryEmpty batteryEmpty

DeadBattery

!

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 69

Internal transitions in 2BWatch statechari

///ﬁ MeasureTime ﬁ\\\ SetTime

pressBothButtons

do/count ticks entry/b11nk hours

pressLeftButton/bTlink next number
pressRightButton/increment current number
exit/stop blinking

pressBothButtons/beep

batteryEmpty
batteryEmpty

///k DeadBattery

!

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

J

70

Review: UML Statechart Diagram Notation

Event with parameters attr

State1

~N

Event

do/Activity
entry /action
exit/action

Event(attr) [conditio\n]/action

Guard

e Note:

By condition
)\

Actions and Activities in State

. Name of
State2
g J

 Events are italics
« Conditions are enclosed with brackets: []
« Actions are prefixed with a slash /

Bernd Bruegge & Allen H. Dutoit

Object-Oriented Software Engineering: Using UML, Patterns, and Java

71

Nested states

Example of Concurrency within an Obj_e‘c’r

Splitting control

ynchronization

Emitting
\ 4 Lash taken
Cash \
_ Ready
to reset

“Card taken

Nested diagrams: a portion of behavior is specified by a
statechart within an higher level state

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 72

State diagram

Active r Timeout]
do/ play messageJ
dial digit(n)
after (15 sec.) [incomplete]
after (15 sec.)
DialTone | dial digit(n)
: = [do-" play dial tone — 3 Dialing
lift ' v dial digit(n)[invalid]
receiver ol it Al
; : dial digit(n)[valid]
/get dial tone (Invalid / lconnect
Idle Ldo.-" play messageJ [ConnectingJ
! Exit???
Husy
ted
r Busy] connec
callee Ldo.f play busyJ
callee hangs up tone
caller\ answers
hangs up -
/disconnect Ringing]
Talking callee answers do/ play ringing
\ /enable speech | tone _/

Berna sruegge & Alien H. butoit upject-vrientea sortware £ngineering: using UNIL, ratterns, and Java 73

Bernd Bruegge & Allen H. Dutoit

UML Activity Diagram

Object-Oriented Software Engineering: Using UML, Patterns, and Java

74

UML Activity Diagrams

An activity diagram consists of nodes and edges

* Nodes describe activities and objects
e Control nodes
e Executable nodes
e Most prominent: Action
* Object nodes
e E.g. a document

« Edge is a directed connection between nodes

 There are two types of edges
e Control flow edges —
e Object flow edges 2

Handle] Document] Archive | ;@
O ;l Incident J >[Incident) >[Incident

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 75

Activity diagrams

o In activity diagrams transitions from node to
node happen automatically upon completion of
activities

* Transitions do not depend upon the arrival of events as
it happens in statecharts

o Activity diagrams represent the UML notation for
the well known flowchart

« Each node in a flowchart represents an action to
be executed.

e So it is not a state, but when applied to the program's
state, it results in a transition to another state.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 76

State vs Acti

(a)

(s1)
C y,

vity diagram

(b)

e /action1();_Nv. <actiom>

sz)
_

J \ E2[test=0]/action4

test=1

------------ f_ E2[test=1]/action2 SRR tecsescsccsasac action2
(s3 w ; s4 \
N J

N

------------L—E3/action3();4—————-—

Statechart

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

test=0

Activity diagram (flowchart)

77

Activity Diagrams: Grouping of Activities

o Activities may be grouped into swimlanes to
denote the object or subsystem that implements

the activities.

?

{

Allocate
Resources

Open \\\
Incidentl/}

{Coordinate

Dispatcher

Resources

1

Archive
Incident

|

~(

Document
Incident

FielldOfficer

Bernd Bruegge & Allen H. Dutoit

Object-Oriented Software Engineering: Using UML, Patterns, and Java

78

[no coffee]
Find Beverage N
.ﬂ %

[found coffee]

Activity
diagram

[found cola)

Eut Coffeein Filterj E‘l.dd Water to Reservoa
Gut Fiter in Machine)

[no cola]

."’

Get cans of cola |

Turn on Machine

lcoffeePot turnOn

Pour Coffee

Drink](
Bernd Bruegge & Allen H. Dutoit 6

State Chart Diagrams vs Activity Diagrams

e An activity diagram that contains only activities

can be seen as a special case of a state chart
diagram

 Such an activity diagram is useful to describe the
overall workflow of a system

Handle] Document] Archive
Incident J Incident | Incident

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 80

Statechart Diagram vs Activity Diagram

Statechart Diagram for Incident

Focus on the set of attributes of a single abstraction (object, system)
Eventcauses

state transmon
Active >(Inactiv; (Closed)
. Incident- Inc1dent- %

Incident-
Handled Documented Archived

Activity Diagram for Incident
(Focus on actions performed and dataflow in a system)

Handle] Document Archive ;@
O E| Incident J >[Incident | >[lncident]

Triggerless
transition

Completion of activity
causes state transition

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 81

Example: Structure of the Text Book

-
-
-
-

Requwements
elicitation (Ch.4)

nonfunctional
requirements

l

Analysis (Ch.5))

[

class diagram I(______ :

analysis object
model

functional model } - - - - - - _- »| use case diagram

Problem Statement ObjeCt Node
An object node is an activity node that indicates an
) instance of a particular classifier, possibly in a particular

state

statechart diagram

/ | dynamic model

C System design
(Ch6. &7)

—

)

Bernd Bruegge & Allen H. Dutoit

sequence diagram

Object-Oriented Software Engineering: Using UML, Patterns, and Java 82

Example: Structure of the Text Book (2)

System design
(Ch.6 &7)

\> subsystem

decomposition

T~

design goals

Object design
(Ch. 8 &9)

o~

class diagram object design model

source code Implementation
/ (Ch. 10)

(Test (Ch. 11))

>
deliverable system

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 83

Summary: Activity Diagram Example

Decision
node
Initial forder /
node rejected]

o Receive Fill

[order

accepted]
[Control flow

Make
Payment

edge
Send
Invoice

Invoice
Object
node

Bernd Bruegge & Allen H. Dutoit

Object flow
edge

Accept
Payment

Ship
Order

i

Fork Join
no?s node
\ \

—=

Object-Oriented Software Engineering: Using UML, Patterns, and Java

Merge
node

Close
Order

84

Object flow (Details on new notation)

 Recent versions of UML adopt a solid line for
object flow

 An alternative notation includes OutputPins/
InputPins (they represent the objects delivered
as output or consumed as input by activities)

Order

— Order
1 A Ship ' Shi
Order I (Fill SI
Order Order Order p =~ O 11;51

Figure 15.14 ObjectFlow example OutputPin InputPin

Order Order
) Assemble
Maternals -
. Order
for Order .

Maternials Materials

Pick

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 85

Additional References

« OMG Unified Modeling Language (OMG UML)
Version 2.5

e http://www.omg.org/spec/UML/2.5

e Martin Fowler

« UML Distilled: A Brief Guide to the Standard Object
Modeling Language, 3rd ed., Addison-Wesley, 2003

e Grady Booch,James Rumbaugh,lvar Jacobson

 The Unified Modeling Language User Guide, Addison
Wesley

e Open Source UML tools

« Astah Community:
http://astah.net/editions/community

e http://java-source.net/open-source/uml-modeling

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

86

UML Summary

UML provides a wide variety of notations for
representing many aspects of software
development

« Powerful, but complex
UML is a programming language
e Can be misused to generate unreadable models

* Can be misunderstood when using too many exotic
features

We concentrated on a few notations:
e Functional model: Use case diagram
e Object model: class diagram

 Dynamic model: sequence diagrams, statechart and
activity diagrams.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 87

