
U
sin

g
U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-O
ri

en
te

d
So

ftw
ar

e
En

gi
ne

er
in

g Chapter 2,
Modeling with UML, Part 2

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

Outline of this Class

•  What is UML?
•  A more detailed view on

ü Use case diagrams
ü Class diagrams
ü Sequence diagrams
ü Activity/Statecharts diagrams

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

UML Basic Notation: First Summary

•  UML provides a wide variety of notations for
modeling many aspects of software systems

•  UML diagrams cover the three fundamental
models for software design:

•  Functional model: Use case diagrams
•  Object model: Class diagrams
•  Dynamic model: Sequence diagrams, statechart diagram

•  Now we go into a little bit more detail…

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

UML First Pass

•  Use case diagrams
•  Describe the functional behavior of the system as seen

by the user

•  Class diagrams
•  Describe the static structure of the system: Objects,

attributes, associations

•  Sequence diagrams
•  Describe the dynamic behavior between objects of the

system

•  Statechart diagrams
•  Describe the dynamic behavior of an individual object

•  Activity diagrams
•  Describe the dynamic behavior of a system, in

particular the workflow.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

UML Use Case Diagram

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

UML first pass: Use case diagrams

Use case diagrams represent the functionality of the system
from user’s point of view

Actor.

Use Case

System boundary

Classifier

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

UML Use Case Diagrams

An Actor represents a role, that
is, a type of user of the system

Passenger

PurchaseTicket

Used during requirements elicitation
and analysis to represent external
behavior (“visible from the outside of
the system”)

Use case model:
The set of all use cases that
completely describe the
functionality of the system.

A use case represents a class of
functionality provided by the system

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

Actors

•  An actor is a model for an external
entity which interacts
(communicates) with the system:

•  User
•  External system (Another system)
•  Physical environment (e.g. Weather)

•  An actor has a unique name and an
optional description

•  Examples:
•  Passenger: A person in the train
•  GPS satellite: An external system that

provides the system with GPS
coordinates.

Passenger

Name

Optional
Description

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

Use Case
• A use case represents a class of

functionality provided by the
system

• Use cases can be described
textually, with a focus on the
event flow between actor and
system

• The textual use case description
consists of 6 parts:
1. Unique name
2.  Participating actors
3.  Entry conditions
4.  Exit conditions
5.  Flow of events
6.  Special requirements.

PurchaseTicket

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

Textual Use Case
Description Example

1. Name: Purchase ticket
2. Participating actor:
Passenger

3. Entry condition:
•  (GOOD) Passenger selects

an option from the display
•  (WRONG) Passenger

stands in front of ticket
distributor

•  (Very WRONG) Passenger
has sufficient money to
purchase ticket

4. Exit condition:
•  Passenger has ticket
•  (Better): System

delivered ticket

5. Flow of events:
1. Passenger selects the

number of zones to be
traveled

2. Ticket Distributor
displays the amount due

3. Passenger inserts
money, at least the
amount due

4. Ticket Distributor returns
change

5. Ticket Distributor issues
ticket

6. Special requirements:
None.

Passenger
PurchaseTicket

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

Use Cases can be related

•  Extends Relationship
•  To represent seldom invoked use cases or exceptional

functionality

•  Includes Relationship
•  To represent functional behavior common to more than

one use case.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

The <<extends>> Relationship
•  <<extends>> relationships

model exceptional or seldom
invoked cases

•  The exceptional event flows
are factored out of the main
event flow for clarity

•  The direction of an
<<extends>> relationship is to
the extended use case

•  Use cases representing
exceptional flows can extend
more than one use case.

Passenger

PurchaseTicket

TimeOut

<<extends>>

NoChange

<<extends>>OutOfOrder

<<extends>>

Cancel

<<extends>>

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

The <<includes>> Relationship
•  <<includes>> relationship

represents common
functionality needed in more
than one use case

•  <<includes>> behavior is
factored out for reuse, not
because it is an exception

•  The direction of a
<<includes>> relationship is
to the using use case (unlike
the direction of the
<<extends>> relationship).

Passenger

PurchaseSingleTicket

PurchaseMultiCard

<<includes>>

CollectMoney

<<includes>>

NoChange

<<extends>>

TimeOut

<<extends>>

Cancel

<<extends>>

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Use Case Models can be packaged

Actor.

Use Case

System boundary

Classifier

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

Historical Remark: UML 1 used packages

Instructor

Package
 Course

GiveLecture

HoldExercise

DoHomework

Student

Teaching
Assistent

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

UML Class Diagram

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

UML first pass: Class diagrams

Class
Association

Multiplicity

Class diagrams represent the structure of the system

2
1 1

1
1

1
1

2

SimpleWatch

Display Battery Time PushButton

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

UML first pass: Class diagrams

1
2

push()  
release()

1

1

blinkIdx
blinkSeconds()
blinkMinutes()
blinkHours()
stopBlinking()
referesh()

LCDDisplay Battery
Load

1

2

1

Time
Now

1

Watch

Operations

state
PushButton

Attribute

Class diagrams represent the structure of the system

Class
Association

Multiplicity

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

Class Diagrams

•  Class diagrams represent the structure of the
system

•  Used
•  during requirements analysis to model application

domain concepts
•  during system design to model subsystems
•  during object design to specify the detailed behavior

and attributes of classes.

Table zone2price
Enumeration getZones()
Price getPrice(Zone)

TarifSchedule

* *

Trip
zone:Zone

Price: Price

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

Classes

•  A class represents a concept
•  A class encapsulates state (attributes) and behavior

(operations)

Table zone2price
Enumeration getZones()
Price getPrice(Zone)

TarifSchedule

zone2price
getZones()
getPrice()

TarifSchedule

Name

Attributes

Operations

Signature

TarifSchedule

The class name is the only mandatory information

Each attribute has a type
Each operation has a signature

Type

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

Actor vs Class vs Object

•  Actor
•  An entity outside the system to be modeled,

interacting with the system (“Passenger”)
•  Class

•  An abstraction modeling an entity in the application or
solution domain

•  The class is part of the system model (“User”, “Ticket
distributor”, “Server”)

•  Object
•  A specific instance of a class (“Joe, the passenger who

is purchasing a ticket from the ticket distributor”).

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

Instances

•  An instance represents a phenomenon
•  The attributes are represented with their values
•  The name of an instance is underlined
•  The name can contain only the class name of the instance

(anonymous instance)

zone2price = {
{‘1’, 0.20},  
{‘2’, 0.40},
{‘3’, 0.60}}

tarif2006:TarifSchedule
zone2price = {
{‘1’, 0.20},  
{‘2’, 0.40},
{‘3’, 0.60}}

:TarifSchedule

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

Associations

Associations denote relationships between classes

Price  
Zone

Enumeration getZones()
Price getPrice(Zone)

TarifSchedule TripLeg

* *

The multiplicity of an association end denotes how many
objects the instance of a class can legitimately reference.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 24

1-to-1 and 1-to-many Associations

1-to-1 association

1-to-many association

Polygon

draw()

Point

x: Integer

y: Integer

*

Country

name:String

City

name:String

11

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25

Many-to-many Associations

StockExchange Company

tickerSymbolLists
**

•  A stock exchange lists many companies.
•  Each company is identified by a ticker symbol

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 26

From Problem Statement To Object Model

Class Diagram:

StockExchange Company

tickerSymbol
Lists

**

Problem Statement: A stock exchange lists many companies.
Each company is uniquely identified by a ticker symbol

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 27

From Problem Statement to Code

Problem Statement : A stock exchange lists many companies.
Each company is identified by a ticker symbol

Class Diagram:

 private Vector m_Company = new Vector();

 private int m_tickerSymbol;
 private Vector m_StockExchange = new Vector();

public class StockExchange
{

};

public class Company
{

};

Java Code

StockExchange Company

tickerSymbolLists
**

Associations
are mapped to

Attributes!

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 28

Qualifiers

•  Qualifiers can be used to reduce the multiplicity
of an association

Directory
File

filename

Without qualification
1 *

With qualification
0..1

Directory File
1

filename

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 29

Qualification: Another Example

*StockExchange
CompanyLists *tickerSymbol

1

StockExchange

Company

tickerSymbol
Lists **

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 30

Aggregation
•  An aggregation is a special case of association denoting

a “consists-of” hierarchy
•  The aggregate is the parent class,

the components are the children classes

Exhaust system

Muffler
diameter

Tailpipe
diameter

1 0..2

TicketMachine

ZoneButton
3

A solid diamond denotes composition: A strong form of
aggregation where the life time of the component instances
is controlled by the aggregate. That is, the parts don’t exist
on their won (“the whole controls/destroys the parts”)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 31

Inheritance

•  Inheritance is another special case of an
association denoting a “kind-of” hierarchy

•  Inheritance simplifies the analysis model by
introducing a taxonomy

•  The children classes inherit the attributes and
operations of the parent class.

Button

ZoneButtonCancelButton

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 32

Association class

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 33

Ternary associations

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 34

Packages

•  Packages help you to organize UML models to
increase their readability

•  We can use the UML package mechanism to
organize classes into subsystems

•  Any complex system can be decomposed into
subsystems, where each subsystem is modeled as
a package.

Account

CustomerBank

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 35

Object Modeling in Practice

Class Identification: Name of Class, Attributes and Methods
Is Foo the right name?

Foo

Amount
CustomerId

Deposit()
Withdraw()
GetBalance()

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 36

Object Modeling in Practice: Brainstorming

Foo

Amount
CustomerId

Deposit()
Withdraw()
GetBalance()

Account

Amount
CustomerId

Deposit()
Withdraw()
GetBalance()Is Foo the right name?

“Dada”

Amount
CustomerId

Deposit()
Withdraw()
GetBalance()

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 37

Object Modeling in Practice: More classes

Account

Amount

Deposit()
Withdraw()
GetBalance()

Customer

Name
CustomerId

CustomerIdAccountIdBank

Name

1) Find New Classes
2) Review Names, Attributes and Methods

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 38

Object Modeling in Practice: Associations

Account

Amount

Deposit()
Withdraw()
GetBalance()

Customer

Name
CustomerId

CustomerIdAccountIdAccountIdBank

Name

1) Find New Classes
2) Review Names, Attributes and Methods

3) Find Associations between Classes

owns

4) Label the generic assocations

6) Review associations

*
2

*?
has

5) Determine the multiplicity of the assocations

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 39

Practice Object Modeling: Find Taxonomies

Savings
Account

Withdraw()

Checking
Account

Withdraw()

Mortgage
Account

Withdraw()

Account

Amount

Deposit()
Withdraw()
GetBalance()

CustomerIdAccountIdAccountId

Customer

Name

CustomerId()

Has*
Bank

Name
*

Withdraw()

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 40

Practice Object Modeling: Simplify, Organize

Savings
Account

Withdraw()

Checking
Account

Withdraw()

Mortgage
Account

Withdraw()

Account

Amount

Deposit()
Withdraw()
GetBalance()

CustomerIdAccountIdAccountId
Show Taxonomies

separately

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 41

Practice Object Modeling: Simplify, Organize

Customer

Name

CustomerId()

Account

Amount

Deposit()
Withdraw()
GetBalance()

CustomerIdAccountIdAccountId

Bank

Name Has**

Use the 7+-2 heuristics
or better 5+-2!

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 42

UML Sequence Diagram

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 43

Message

UML first pass: Sequence diagram

:Time :Watch:WatchUser

Object

Activation

Sequence diagrams represent the behavior of a system
as messages (“interactions”) between different objects

Actor

pressButton1()

Lifeline

blinkHours()

pressButton2()
incrementMinutes()

:LCDDisplay

pressButton1and2()
commitNewTime()
stopBlinking()

refresh()

pressButton1()
blinkMinutes()

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 44

Sequence Diagrams

•  Used during analysis
•  To refine use case descriptions
•  to find additional objects

(“participating objects”)
•  Used during system design

•  to refine subsystem interfaces
•  Instances are represented by

rectangles. Actors by sticky
figures

•  Lifelines are represented by
dashed lines

•  Messages are represented by
arrows

•  Activations are represented
by narrow rectangles.

selectZone()

pickupChange()

pickUpTicket()

insertCoins()

TicketMachinePassenger

Focus on
Controlflow

Messages ->
Operations on

 participating Object

zone2price
selectZone()
insertCoins()
pickupChange()
pickUpTicket()

TicketMachine

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 45

Scenarios, use case and sequence
diagrams

•  A scenario is an instance of a use case
describing a concrete set of actions (no
alternative paths are in it)

•  A use case is an abstraction that describes all
possible scenarios involving the described
functionality.

•  Scenarios are used as examples for illustrating
common cases;

•  their focus is on understandability.

•  Use cases are used to describe all possible
cases;

•  their focus is on completeness.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 46

How to describe scenarios

•  We describe a scenario using a template with
three fields:

•  The name of the scenario enables us to refer to it
unambiguously. The name of a scenario is underlined
to indicate that it is an instance.

•  The participating actor instances field indicates
which actor instances are involved in this scenario.
Actor instances also have underlined names.

•  The flow of events of a scenario describes the
sequence of events step by step.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 47

Scenario: an example

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 48

Sequence Diagrams can also model the
Flow of Data

•  The source of an arrow indicates the activation which sent
the message

•  Horizontal dashed arrows indicate data flow, for example
return results from a message

Passenger

selectZone()

ZoneButton TarifSchedule Display

lookupPrice(selection)

displayPrice(price)

price

Dataflow
…continued on next slide...

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 49

Sequence Diagrams: Iteration & Condition

•  Iteration is denoted by a * preceding the message name
•  Condition is denoted by boolean expression in [] before

the message name

Passenger ChangeProcessor

insertChange(coin)

CoinIdentifier Display CoinDrop

displayPrice(owedAmount)

lookupCoin(coin)

price

[owedAmount<0] returnChange(-owedAmount)

Iteration

Condition

…continued on next slide...

…continued from previous slide...

*

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 50

Creation and destruction

•  Creation is denoted by a message arrow pointing to the object
•  Destruction is denoted by an X mark at the end of the

destruction activation
•  In garbage collection environments, destruction can be used to

denote the end of the useful life of an object.

Passenger ChangeProcessor

…continued from previous slide...

Ticket

createTicket(selection)

free()

Creation of Ticket

Destruction of Ticket

print()

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 51

Message Types

•  Asynchronous
•  Synchronous
•  Call and Object creation
•  Reply
•  Lost
•  Found

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 52

Sequence Diagram Properties

•  UML sequence diagram represent behavior in
terms of interactions

•  Useful to identify or find missing objects
•  Time consuming to build, but worth the

investment
•  Complement the class diagrams (which

represent structure).

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 53

Interaction Diagrams

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 54

Interaction Diagrams

•  UML 2.0: New concept of interaction fragments

•  Before we go into detail with interaction
fragments, let’s cover the concept of an
interaction.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 55

Interaction Diagrams

•  Four types of interaction diagrams:
•  Sequence diagrams
•  We will not study the following (by now at least):

•  Communication diagrams
•  Interaction overview diagrams
•  Timing diagrams

•  The basic building block of an interaction
diagram is the interaction

•  An interaction is a unit of behavior that focuses on
the observable exchange of information between
connectable elements

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 56

Example of an Interaction: Sequence
Diagram

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 57

Interaction Fragment

•  Interaction Fragment
•  Is a piece of an interaction
•  Acts like an interaction itself

•  Combined Fragment
•  Is a subtype of interaction fragment
•  defines an expression of interaction fragments

•  An expression of interaction fragments is defined
by

•  an interaction operator and interaction operands.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 58

Example of a Combined Fragment using
the alt operator

•  The interaction operator alt indicates a choice of
behavior between interaction fragments

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 59

Alt Operator

•  The interaction operator alt indicates a choice of
behavior between interaction fragments

•  At most one interaction fragment (that is, an
InteractionOperand) is chosen

•  The chosen interaction fragment must have an explicit or
implicit guard expression that evaluates to true at this point in
the interaction

•  A guard can be
•  a boolean expression (called InteractionConstraint)
•  else (a reserved word)

•  If the fragment has no guard expression, true is implied.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 60

Interaction Operators

•  The following operators are allowed in the combination
of interaction fragments:

•  alt
•  opt
•  par
•  loop
•  critical
•  neg
•  assert
•  strict
•  seq
•  Ignore
•  consider

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 61

Opt and Break Operators

option:
The interaction operator opt designates a choice of

behavior where either the (sole) operand happens or
nothing happens.

break:
The interaction operator break represents a breaking

scenario: The operand is a scenario that is performed
instead of the remainder of the enclosing interaction
fragment.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 62

Parallel and Critical Operator

par
 The interaction operator par designates a parallel merge

between the behaviors of the operands of a combined
fragment.

critical
 The interaction operator critical designates that the

combined fragment represents a critical region.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 63

Example of a Critical Region
Problem statement: The telephone Operator must make sure to

forward a 911-call from a Caller to the Emergency system before
doing anything else. Normal calls can be freely interleaved.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 64

UML Statechart Diagram

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 65

State diagrams and states

•  State diagrams are used to give an abstract
description of the behaviour of a system.

•  This behaviour is analysed and represented as a
series of events that can occur in one or more
possible states.

•  A state represents a step in the behaviour
pattern of an object

•  It is a configuration of the set of state-attributes of the
behaving object

•  Transition from one state to another is triggered
by events

•  An event may be either internal or external to the
object

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 66

UML first pass: Statechart diagrams

State

Initial state

Transition

Event

Represent behavior of a single object with interesting
dynamic behavior.

button1&2Pressed

button1Pressed

button2Pressed

button2Pressed

button2Pressed

button1Pressed

button1&2Pressed Increment
Minutes

Increment
Hours

Blink
Hours

Blink
Seconds

Blink
Minutes

Increment
Seconds

Stop
Blinking

displayRefreshed

displayRefreshed

displayRefreshed

Wrong state,
It’s an action!!

Final state

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 67

Transition notation: event [guard][/action]

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 68

Statechart for the Incident class

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 69

State machine diagram for 2Bwatch

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 70

Internal transitions in 2BWatch statechart

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 71

Review: UML Statechart Diagram Notation

State1
Event(attr) [condition]/action

entry /action
exit/action

•  Note:
•  Events are italics
•  Conditions are enclosed with brackets: []
•  Actions are prefixed with a slash /

do/Activity

State2

Event with parameters attr

Guard
condition

Action

Event

Name of
State

Actions and Activities in State

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 72

Example of Concurrency within an Object

Setting
Up

Ready
to reset

Emitting

do/Dispense
 Cash

do/Eject
 Card

 Cash taken

 Card taken

SynchronizationSplitting control

 Ready

Nested states

Nested diagrams: a portion of behavior is specified by a
statechart within an higher level state

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 73

State diagram

Exit???

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 74

UML Activity Diagram

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 75

UML Activity Diagrams
An activity diagram consists of nodes and edges
•  Nodes describe activities and objects

•  Control nodes
•  Executable nodes

• Most prominent: Action
•  Object nodes

• E.g. a document

•  Edge is a directed connection between nodes
•  There are two types of edges

• Control flow edges
• Object flow edges

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 76

Activity diagrams

•  In activity diagrams transitions from node to
node happen automatically upon completion of
activities

•  Transitions do not depend upon the arrival of events as
it happens in statecharts

•  Activity diagrams represent the UML notation for
the well known flowchart

•  Each node in a flowchart represents an action to
be executed.

•  So it is not a state, but when applied to the program's
state, it results in a transition to another state.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 77

State vs Activity diagram

Statechart Activity diagram (flowchart)

action1

action2

action3

E2[test=1]/action2
E2[test=0]/action4 test=1 test=0

action4

s4

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 78

Activity Diagrams: Grouping of Activities

•  Activities may be grouped into swimlanes to
denote the object or subsystem that implements
the activities.

Open
Incident

Allocate
Resources

Coordinate
Resources

Document
Incident

Archive
Incident

Dispatcher

FieldOfficer

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 79

Activity
diagram

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 80

State Chart Diagrams vs Activity Diagrams

•  An activity diagram that contains only activities
can be seen as a special case of a state chart
diagram

•  Such an activity diagram is useful to describe the
overall workflow of a system

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 81

Statechart Diagram vs Activity Diagram

Active Inactive Closed Archived
Incident-
Handled

Incident-
Documented

Incident-
Archived

Statechart Diagram for Incident
Focus on the set of attributes of a single abstraction (object, system)

Activity Diagram for Incident
(Focus on actions performed and dataflow in a system)

Triggerless
transitionCompletion of activity

causes state transition

Event causes
state transition

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 82

Example: Structure of the Text Book

Requirements
elicitation (Ch.4)

Analysis (Ch.5)

System design

Problem Statement

functional modelnonfunctional  
requirements

analysis object
model

dynamic model

class diagram

use case diagram

(Ch.6 & 7)

statechart diagram

sequence diagram

Object Node

An object node is an activity node that indicates an
instance of a particular classifier, possibly in a particular

state

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 83

Example: Structure of the Text Book (2)

System design
 (Ch. 6 & 7)

Object design
(Ch. 8 & 9)

Implementation
(Ch. 10)

object design model

design goals

subsystem
decomposition

source code

Test (Ch. 11)

deliverable system

class diagram

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 84

Summary: Activity Diagram Example

UML Superstructure Specification, v2.1.2 335

Package BasicActivities

Nodes inherited from more general activities can be replaced. See RedefinableElement for more information on

overriding inherited elements, and Activity for more information on activity generalization. See children of ActivityNode

for additional semantics.

Notation

The notations for activity nodes are illustrated below. There are three kinds of nodes: action node, object node, and

control node. See these classes for more information.

Examples

This figure illustrates the following kinds of activity node: action nodes (e.g., Receive Order, Fill Order), object nodes

(Invoice), and control nodes (the initial node before Receive Order, the decision node after Receive Order, and the fork

node and Join node around Ship Order, merge node before Close Order, and activity final after Close Order).

Rationale

Activity nodes are introduced to provide a general class for nodes connected by activity edges.

Figure 12.50 - Activity node notation

Figure 12.51 - Activity node example (where the arrowed lines are only the non-activity node symbols)

Action node Object node Control nodes

Receive Fill
Order

Ship
OrderOrder

Close
Order

Send
Invoice

Make
Payment

Accept
Payment

[order
accepted]

[order
rejected]

Invoice

Initial
node

Merge
node

Final
node

ActionObject
node

Fork
node

Join
node

Control flow
edge

Object flow
edge

Decision
node

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 85

Object flow (Details on new notation)

•  Recent versions of UML adopt a solid line for
object flow

•  An alternative notation includes OutputPins/
InputPins (they represent the objects delivered
as output or consumed as input by activities)

OutputPin InputPin

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 86

Additional References

•  OMG Unified Modeling Language (OMG UML)
Version 2.5

•  http://www.omg.org/spec/UML/2.5

•  Martin Fowler
•  UML Distilled: A Brief Guide to the Standard Object

Modeling Language, 3rd ed., Addison-Wesley, 2003
•  Grady Booch,James Rumbaugh,Ivar Jacobson

•  The Unified Modeling Language User Guide, Addison
Wesley

•  Open Source UML tools
•  Astah Community:

http://astah.net/editions/community
•  http://java-source.net/open-source/uml-modeling

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 87

UML Summary

•  UML provides a wide variety of notations for
representing many aspects of software
development

•  Powerful, but complex

•  UML is a programming language
•  Can be misused to generate unreadable models
•  Can be misunderstood when using too many exotic

features

•  We concentrated on a few notations:
•  Functional model: Use case diagram
•  Object model: class diagram
•  Dynamic model: sequence diagrams, statechart and

activity diagrams.

