
U
sin

g
U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-O
ri

en
te

d
So

ftw
ar

e
En

gi
ne

er
in

g Chapter 2,
Modeling with UML, Part 1

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

Odds and Ends

•  Reading for this Lecture:
•  Chapter 1 and 2, Bruegge&Dutoit, Object-Oriented

Software Engineering

•  Lectures Slides:
•  Will be posted before each lecture.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

Overview for the Lecture/1
•  Three ways to deal with complexity

•  Abstraction
•  Abstraction -> Hiding details
•  Models usually describes views of the system at

different abstraction levels
•  Decomposition

•  A complex problem or system is broken down into
parts that are easier to conceive

•  Hierarchy
•  a hierarchy can be modelled as a rooted tree

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

Overview for the Lecture/2
•  Introduction into the UML notation
•  First pass on:

•  Use case diagrams
•  Class diagrams
•  Sequence diagrams
•  Statechart diagrams
•  Activity diagrams

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

What is the problem with this Drawing?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

Abstraction
•  Complex systems are hard to understand

•  The 7 +- 2 phenomena
•  Our short term memory cannot store more than 7+-2

pieces at the same time -> limitation of the brain
•  My Phone Number: 498928918204

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

Abstraction

•  Chunking:
•  Group collection of objects to reduce complexity
•  4 chunks:

• State-code, Area-code, Local-Prefix, Internal-Nr

•  Complex systems are hard to understand
•  The 7 +- 2 phenomena

•  Our short term memory cannot store more than 7+-2
pieces at the same time -> limitation of the brain

•  My Phone Number: 003909123842261

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

Abstraction

Phone Number

Country-Code Area-Code Local-Prefix Internal-Nr

•  Chunking:
•  Group collection of objects to reduce complexity
•  State-code, Area-code, Local Prefix, Internal-Nr

•  Complex systems are hard to understand
•  The 7 +- 2 phenomena

•  Our short term memory cannot store more than 7+-2
pieces at the same time -> limitation of the brain

•  My Phone Number: 003909123842261

0039 091 238 42 261

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

Abstraction

•  Abstraction allows us to ignore unessential details

•  Ideas can be expressed by models

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

Models

•  A model is an abstraction of a
system

•  A system that no longer exists
•  An existing system
•  A future system to be built.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

Why model software?

Why model software?

•  Software is getting increasingly more complex

•  Windows XP > 40 millions of lines of code
•  A single programmer cannot manage this amount of

code in its entirety.

•  Code is not easily understandable by developers
who did not write it

•  We need simpler representations for complex
systems

•  Modeling is a mean for dealing with complexity

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

We use Models to describe Software
Systems

•  Object model: What is the structure of
the system?

•  Functional model: What are the
functions of the system?

•  Dynamic model: How does the system
react to external events?

•  System Model: Object model +
functional model + dynamic model

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

2. Technique to deal with Complexity:
Decomposition
•  A technique used to master complexity

(“divide and conquer”)
•  Two major types of decomposition

•  Functional decomposition
•  Object-oriented decomposition

•  Functional decomposition
•  The system is decomposed into modules
•  Each module is a major function in the

application domain
•  Modules can be decomposed into smaller

modules.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Decomposition (cont’d)

•  Object-oriented decomposition
•  The system is decomposed into classes (“objects”)
•  Each class is a major entity in the application

domain
•  Classes can be decomposed into smaller classes

•  Object-oriented vs. functional decomposition

Which decomposition is the right one?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

Functional Decomposition

Top Level functions

Level 1 functions

Level 2 functions

Machine instructions

System
Function

Load R10 Add R1, R10

Read Input Transform Produce
Output

Transform Produce
OutputRead Input

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

Functional Decomposition

•  The functionality is spread all over the system
•  Maintainer must understand the whole system to

make a single change to the system
•  Consequence:

•  Source code is hard to understand
•  Source code is complex and impossible to maintain
•  User interface is often awkward and non-intuitive.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

Functional Decomposition

•  The functionality is spread all over the system
•  Maintainer must understand the whole system to

make a single change to the system
•  Consequence:

•  Source code is hard to understand
•  Source code is complex and impossible to maintain
•  User interface is often awkward and non-intuitive

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

Object-Oriented decomposition

•  Functionality is clearly distributed under the
responsibility of objects.

•  Maintainer may focus on a single component in
order to change it

•  Consequences:
•  Source code is spread through objects whose

contribution to the overall behaviour is easy to
understand

•  Objects often recall real world entities ->easier to
understand who is in charge for a specific feature

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

Class Identification

•  Basic assumptions:
•  We can find the classes for a new software

system: Greenfield Engineering
•  We can identify the classes in an existing

system: Reengineering
•  We can create a class-based interface to an

existing system: Interface Engineering.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

3. Hierarchy

•  So far we got abstractions
•  This leads us to classes and objects
•  “Chunks”

•  Another way to deal with complexity is to
provide relationships between these chunks

•  One of the most important relationships is
hierarchy

•  2 special hierarchies
•  "Part-of" hierarchy
•  "Is-kind-of" hierarchy.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

I/O Devices CPU Memory

Part-of Hierarchy (Aggregation)

Computer

Cache ALU Program
 Counter

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

Is-Kind-of Hierarchy (Taxonomy)

Cell

Muscle Cell Blood Cell Nerve Cell

Striate Smooth Red White Cortical Pyramidal

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

Where are we?

•  Three ways to deal with complexity:
•  Abstraction, Decomposition, Hierarchy

•  Object-oriented decomposition is good
•  Unfortunately, depending on the purpose of the

system, different objects can be found
•  How can we do it right?

•  Start with a description of the functionality of a system
•  Then proceed to a description of its structure

•  Ordering of development activities
•  Software lifecycle

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 24

Systems, Models and Views

• A model is an abstraction describing a
system or a subsystem

System: Airplane

Models:
Flight simulator
Scale model

Views:
Blueprint of the airplane components
Electrical wiring diagram, Fuel system
Sound wave created by airplane

• A view depicts selected aspects of a model

•  A notation is a set of graphical or textual
 rules for depicting models and views:

•  formal notations, “napkin designs”

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25

System
View 1

Model 2
View 2

View 3

Model 1

Aircraft
 Flightsimulator

Scale Model
Blueprints Electrical

Wiring

Fuel System

Views and models of a complex system usually overlap

(“Napkin” Notation) Systems, Models and Views

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 26

Systems, Models and Views

System View
*

Model*

Depicted byDescribed by

Airplane:  
System

Scale Model:Model Flight Simulator:Model

Fuel System:  
 View

Electrical Wiring:  
 View

Blueprints:  
View

(UML Notation)
Class Diagram

Object Diagram

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 27

Model-Driven Development

1.  Build a platform-independent model of an
applications functionality and behavior
 a) Describe model in modeling notation (UML)
 b) Convert model into platform-specific model

2.  Generate executable from platform-specific
model

Advantages:
•  Code is generated from model (“mostly”)
•  Portability and interoperability

•  Model Driven Architecture effort:
•  http://www.omg.org/mda/

•  OMG: Object Management Group

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 28

Reality: A stock exchange lists many companies. Each
company is identified by a ticker symbol

Analysis results in analysis object model (UML Class Diagram):

StockExchange Company

tickerSymbolLists
**

Implementation results in source code (Java):

public class StockExchange {
 private m_Company = new Vector();
 };
public class Company {
 private int m_tickerSymbol;
 private Vector m_StockExchange = new Vector();
};

Model-driven Software Development

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 29

Application vs Solution Domain

•  Application Domain (Analysis):
•  The environment in which the system is operating

•  Solution Domain (Design, Implementation):
•  The technologies used to build the system

•  Both domains contain abstractions that we can
use for the construction of the system model.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 30

Object-oriented Modeling

Application Domain !
(Phenomena)

Solution Domain !
(Phenomena)

System Model (Concepts) System Model (Concepts)

Aircraft TrafficController

FlightPlanAirport

MapDisplay

FlightPlanDatabase

Summary
Display

TrafficControl

TrafficControl

UML
Package

(Analysis) (Design)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 31

What is UML?

•  UML (Unified Modeling Language)
•  Nonproprietary standard for modeling software systems, OMG
•  Convergence of notations used in object-oriented methods

•  OMT (James Rumbaugh and collegues)
•  Booch (Grady Booch)
•  OOSE (Ivar Jacobson)

•  Current Version: UML 2.4.1
•  Information at the OMG portal http://www.uml.org/

•  Commercial tools: Rational (IBM),Together (Borland), Visual
Architect (business processes, BCD)

•  Open Source tools: ArgoUML, StarUML, Umbrello
•  Commercial and Opensource/free: PoseidonUML

(Gentleware), Astah, Violet

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 32

UML: First Pass

•  You can solve 80% of the modeling problems by
using 20 % UML

•  We teach you those 20%
•  80-20 rule: Pareto principle

Vilfredo Pareto, 1848-1923
Introduced the concept of Pareto Efficiency,

Founder of the field of microeconomics.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 33

UML First Pass

•  Use case diagrams
•  Describe the functional behavior of the system as seen

by the user

•  Class diagrams
•  Describe the static structure of the system: Objects,

attributes, associations

•  Sequence diagrams
•  Describe the dynamic behavior between objects of the

system

•  Statechart diagrams
•  Describe the dynamic behavior of an individual object

•  Activity diagrams
•  Describe the dynamic behavior of a system, in

particular the workflow.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 34

UML Core Conventions

•  All UML Diagrams denote graphs of nodes and
edges

•  Nodes are entities and drawn as rectangles or ovals
•  Rectangles denote classes or instances
•  Ovals denote functions

•  Names of Classes are not underlined
•  SimpleWatch
•  Firefighter

•  Names of Instances are underlined
•  myWatch:SimpleWatch
•  Joe:Firefighter

•  An edge between two nodes denotes a
relationship between the corresponding entities

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 35

UML first pass: Use case diagrams

Use case diagrams represent the functionality of the system
from user’s point of view

Actor.

Use Case

System boundary

Classifier

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 36

UML first pass: Class diagrams

Class
Association

Multiplicity

Class diagrams represent the structure of the system

2
1 1

1
1

1
1

2

SimpleWatch

Display Battery Time PushButton

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 37

UML first pass: Class diagrams

1
2

push()  
release()

1

1

blinkIdx
blinkSeconds()
blinkMinutes()
blinkHours()
stopBlinking()
referesh()

LCDDisplay Battery
Load

1

2

1

Time
Now

1

Watch

Operations

state
PushButton

Attribute

Class diagrams represent the structure of the system

Class
Association

Multiplicity

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 38

Message

UML first pass: Sequence diagram

:Time :Watch:WatchUser

Object

Activation

Sequence diagrams represent the behavior of a system
as messages (“interactions”) between different objects

Actor

pressButton1()

Lifeline

blinkHours()

pressButton2()
incrementMinutes()

:LCDDisplay

pressButton1and2()
commitNewTime()

stopBlinking()

refresh()

pressButton1()
blinkMinutes()

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 39

UML first pass: Statechart diagrams

State

Initial state

Final state

Transition

Event

Represent behavior of a single object with interesting
dynamic behavior.

button1&2Pressed

button1Pressed

button2Pressed

button2Pressed

button2Pressed

button1Pressed

button1&2Pressed Increment
Minutes

Increment
Hours

Blink
Hours

Blink
Seconds

Blink
Minutes

Increment
Seconds

Stop
Blinking

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 40

Other UML Notations

UML provides many other notations, for example
•  Deployment diagrams for modeling

configurations
•  Useful for testing and for release management

•  We introduce these and other notations as we
go along in the lectures

•  OCL: A language for constraining UML models.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 41

What should be done first? Coding or Modeling?

•  It depends….
•  Forward Engineering

•  Creation of code from a model
•  Start with modeling
•  Greenfield projects

•  Reverse Engineering
•  Creation of a model from existing code
•  Interface or reengineering projects

•  Roundtrip Engineering
•  Move constantly between forward and reverse

engineering
•  Reengineering projects
•  Useful when requirements, technology and schedule

are changing frequently.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 42

UML Basic Notation Summary

•  UML provides a wide variety of notations for
modeling many aspects of software systems

•  Today we concentrated on a few notations:
•  Functional model: Use case diagram
•  Object model: Class diagram
•  Dynamic model: Sequence diagrams, statechart.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 43

Additional References

•  Martin Fowler
•  UML Distilled: A Brief Guide to the Standard Object

Modeling Language, 3rd ed., Addison-Wesley, 2003

•  Grady Booch,James Rumbaugh,Ivar Jacobson
•  The Unified Modeling Language User Guide, Addison

Wesley, 2nd edition, 2005

•  Open Source UML tools
•  Astah Community:

http://astah.net/editions/community
•  http://java-source.net/open-source/uml-modeling

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 44

End

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 45

Other models used to describe
Software System Development
•  Task Model:

•  PERT Chart: What are the dependencies
between tasks?

•  Schedule: How can this be done within the
time limit?

•  Organization Chart: What are the roles in the
project?

•  Issues Model:
•  What are the open and closed issues?

•  What blocks me from continuing?
•  What constraints were imposed by the client?
•  What resolutions were made?

•  These lead to action items

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 46

Issue-Modeling
Issue:

What is the
Center of the

Universe?

Proposal1:
 The earth!

Proposal2:
The sun!

Pro:
 Copernicus

says so.

Pro:
 Aristotle
says so.

Pro:
 Change will disturb

the people.

Con:
Jupiter’s moons rotate

around Jupiter, not
around Earth.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 47

Issue-Modeling
Issue:

What is the
Center of the

Universe?

Proposal1:
 The earth!

Proposal2:
The sun!

Pro:
 Copernicus

says so.

Pro:
 Aristotle
says so.

Pro:
 Change will disturb

the people.

Con:
Jupiter’s moons rotate

around Jupiter, not
around Earth.

Resolution (1615):
The church

decides proposal 1
is right

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 48

Issue-Modeling
Issue:

What is the
Center of the

Universe?

Proposal1:
 The earth!

Proposal2:
The sun!

Pro:
 Copernicus

says so.

Pro:
 Aristotle
says so.

Pro:
 Change will disturb

the people.

Con:
Jupiter’s moons rotate

around Jupiter, not
around Earth.

Resolution (1615):
The church

decides proposal 1
is right

Resolution (1998):
The church declares

proposal 1 was wrong

Proposal3:
 Neither!

Pro:
 Galaxies are moving away

From each other.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 49

Models must be falsifiable

•  Karl Popper (“Objective Knowledge):
•  There is no absolute truth when trying to understand reality
•  One can only build theories, that are “true” until somebody

finds a counter example

•  Falsification: The act of disproving a theory or hypothesis
•  The truth of a theory is never certain. We must use

phrases like:
•  “by our best judgement”, “using state-of-the-art knowledge”

•  In software engineering any model is a theory:
•  We build models and try to find counter examples by:

•  Requirements validation, user interface testing, review of
the design, source code testing, system testing, etc.

•  Testing: The act of disproving a model.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 50

Concepts and Phenomena

•  Phenomenon
•  An object in the world of a domain as you perceive it

•  Examples: This lecture at 9:35, my black watch

•  Concept
•  Describes the common properties of phenomena

•  Example: All lectures on software engineering
•  Example: All black watches

•  A Concept is a 3-tuple:
•  Name: The name distinguishes the concept from other

concepts
•  Purpose: Properties that determine if a phenomenon is

a member of a concept
•  Members: The set of phenomena which are part of the

concept.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 51

Definition Abstraction:
•  Classification of phenomena into concepts

Definition Modeling:
•  Development of abstractions to answer specific questions

about a set of phenomena while ignoring irrelevant details.

Members Name

Watch

Purpose

A device that
measures time.

Concepts, Phenomena, Abstraction and
Modeling

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 52

Abstract Data Types & Classes

•  Abstract data type
•  A type whose implementation is

hidden from the rest of the system
•  Class:

•  An abstraction in the context of
object-oriented languages

•  A class encapsulates state and
behavior

•  Example: Watch

Watch

time
date

SetDate(d)

CalculatorWatch

EnterCalcMode()
InputNumber(n)

calculatorState
Unlike abstract data types, subclasses
can be defined in terms of other
classes using inheritance

State

Behavior

Inheritance

Subclass
•  Example: CalculatorWatch

Superclass

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 53

Type and Instance
•  Type:

•  A concept in the context of programming languages
•  Name: int
•  Purpose: integral number
•  Members: 0, -1, 1, 2, -2,…

•  Instance:
•  Member of a specific type

•  The type of a variable represents all possible
instances of the variable

The following relationships are similar:
Type <–> Variable
Concept <–> Phenomenon
Class <-> Object

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 54

Systems

•  A system is an organized set of communicating parts
•  Natural system: A system whose ultimate purpose is not

known
•  Engineered system: A system which is designed and built by

engineers for a specific purpose
•  The parts of the system can be considered as

systems again
•  In this case we call them subsystems

Examples of engineered systems:
 • Airplane, watch, GPS
Examples of subsystems:
 • Jet engine, battery, satellite.

Examples of natural systems:
 • Universe, earth, ocean

