
U
sin

g
U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-O
ri

en
te

d
So

ftw
ar

e
En

gi
ne

er
in

g
Chapter 11, Testing,
Part 2: Integration and
System Testing

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

Overview

•  Integration testing
•  Big bang
•  Bottom up
•  Top down
•  Sandwich

•  System testing
•  Functional
•  Performance

•  Continuous Integration
•  Acceptance testing
•  Summary

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

Integration Testing

•  The entire system is viewed as a collection of
subsystems (sets of classes) determined during
the system and object design

•  Goal: Test all interfaces between subsystems
and the interaction of subsystems

•  The integration testing strategy determines the
order in which the subsystems are selected for
testing and integration.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

Why do we do integration testing?

•  Unit tests only test the unit in isolation

•  Many failures result from faults in the interaction of
subsystems

•  When Off-the-shelf components are used that cannot be
unit tested

•  Without integration testing the system test will be very
time consuming

•  Failures that are not discovered in integration testing will
be discovered after the system is deployed and can be
very expensive.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

Recall: Stubs and drivers

•  Driver:
•  A component, that calls the TestedUnit
•  Controls the test cases

•  Stub:

•  A component, the TestedUnit
depends on

•  Partial implementation
•  Returns fake values.

Driver

Tested
Unit

Stub

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

Recall: Taxonomy of Test Doubles

•  There are 4 types of test doubles. All doubles try
to make the SUT believe it is talking with its real
collaborators:

•  Dummy object: Passed around but never actually used.
Dummy objects are usually used to fill parameter lists

•  Fake object: A fake object is a working implementation,
but usually contains some type of “shortcut” which
makes it not suitable for production code (Example: A
database stored in memory instead of a real database)

•  Stub: Provides canned answers to calls made during the
test, but is not able to respond to anything outside what
it is programmed for

•  Mock object: Mocks are able to mimic the behavior of the
real object. They know how to deal with sequence of calls
they are expected to receive.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

Example: A 3-Layer-Design

Layer I

Layer II

Layer III

Spread �
SheetView

A

Calculator

C

BinaryFile�
Storage

E
XMLFile�
Storage

F
Currency�
DataBase

G

Currency
Converter

D
Data�

Model

B

A

C

E F G

DB

Spread �
SheetView

BinaryFile�
Storage

Entity
Model

A

E F
Currency�
DataBase

G

Currency
Converter

DB

Calculator

C

XMLFile�
Storage

(Spreadsheet)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

A

C

E F G

DB

Big-Bang Approach

Test A

Test B

Test G

Test F

Test E

Test C

Test D
Test

A, B, C, D,
E, F, G The interfaces of each of the

subsystems have not been
tested yet à The diagnosis
of what generates an error is
very difficult

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

Top-down Testing Strategy

•  Test the subsystems in the top layer first
•  Then combine all the subsystems that are called

by the tested subsystems and test the resulting
collection of subsystems

•  Do this until all subsystems are incorporated
into the tests.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

Top-down Integration

Test
A, B, C, D,

E, F, G

All LayersLayer I + II

Test A, B, C, D

Layer I

Test A

A

E F

B C D

G

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

Pros and Cons: Top-Down Integration Testing

Pros:
•  Test cases can be defined in terms of the functionality of the

system (functional requirements)
•  No drivers needed

Cons:
•  Stubs are needed
•  Writing stubs is difficult: Stubs must allow all

possible conditions to be tested
•  Large number of stubs may be required, especially if

the lowest level of the system contains many methods
•  Some interfaces are not tested separately.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

Bottom-up Testing Strategy

•  The subsystems in the lowest layer of the call
hierarchy are tested individually

•  Then the subsystems above this layer are tested
that call the previously tested subsystems

•  This is repeated until all subsystems are included.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

A

C

E F G

DB

Bottom-up Integration A

Test
A, B, C, D,

E, F, G

E
Test E

F

Test F

B

Test B, E, F

C

Test C

D

Test D,G

G

Test G

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Pros and Cons: Bottom-Up Integration Testing

•  Pro
•  No stubs needed
•  Useful for integration testing of the following systems

•  Object-oriented systems
•  Real-time systems
•  Systems with strict performance requirements

•  Con:
•  Tests an important subsystem (the user interface) last
•  Drivers are needed.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

Sandwich Testing Strategy

•  Combines top-down strategy with bottom-up
strategy

•  The system is viewed as having three layers
•  A target layer in the middle
•  A layer above the target
•  A layer below the target

•  Testing converges at the target layer.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

Sandwich Testing Strategy

Test
A, B, C, D,

E, F, G
Test B, E, F

Test D,G

Test A

Test E

Test F

Test G

Test A,B,C, D

A

E F

B C D

G

Target Layer

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

Pros and Cons of Sandwich Testing

•  Pro:
•  Top and bottom layer tests can be done in parallel

•  Con:
•  Does not test the individual subsystems and their

interfaces thoroughly before integration

•  Solution: Modified sandwich testing strategy.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

Modified Sandwich Testing Strategy

Phase 1: Three integration tests in parallel
•  Top layer test with stubs for lower layers
•  Middle layer test with drivers and stubs
•  Bottom layer test with drivers for upper layers

Phase 2: Two more integration tests in parallel
•  Top layer accessing middle layer (top layer

replaces the drivers)
•  Bottom layer accessed by middle layer

(bottom layer replaces the stubs).

A

E F

B C D

G

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

Modified Sandwich Testing Strategy

Phase 1: Three integration tests in parallel
•  Top layer test with stubs for lower layers
•  Middle layer test with drivers and stubs
•  Bottom layer test with drivers for upper layers

A

E F

B C D

G

A

Stub-B Stub-C Stub-D

Driver-A

B C D

Stub-E Stub-F Stub-G

Driver-B Driver-D

E F G

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

Modified Sandwich Testing
(Phase 1)

Test F

Test E

Test G

Test A

Test B, C,D

A

E F

B C D

G

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

Modified Sandwich Testing Strategy

Phase 2: Two more integration
tests in parallel
•  Top layer accessing middle layer (top layer

replaces the drivers)
•  Bottom layer accessed by middle layer

(bottom layer replaces the stubs).

A

E F

B C D

G

A

B C D

B C D

E F G

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

Modified Sandwich Testing
(Phase 2)

Test F

Test E

Test G

Test A

Test B, C,D

Test B, E, F

Test D,G

Test A,B, C,D

A

E F

B C D

G

Top layer accessing middle layer
 (top layer replaces driver of

phase 1 middle layer test B,C,D)

Bottom layer accessed by middle
 layer (bottom layer replaces

stubs for E and F)

Bottom layer accessed by middle
layer (bottom layer replaces

stub for G)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

Modified Sandwich Testing
(Final)

Test F

Test E

Test G

Test A

Test B, C,D

Test B, E, F

Test D,G

Test A,B, C,D

Test
A, B, C, D,

E, F, G

A

E F

B C D

G

Top layer accessing middle layer
 (top layer replaces driver of

phase 1 middle layer test B,C,D)

Bottom layer accessed by middle
 layer (bottom layer replaces

stubs for E and F)

Bottom layer accessed by middle
layer (bottom layer replaces

stub for G)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 24

Risks in Integration Testing Strategies

•  Risk #1: The higher the complexity of the software
system, the more difficult is the integration of its
components

•  Risk #2: The later integration occurs in a project,
the bigger is the risk that unexpected faults occur

•  Bottom up, top down, sandwich testing (Horizontal
integration strategies) don’t do well with risk #2

•  Continous integration addresses these risks by
building as early and frequently as possible

•  Additional advantages:
•  There is always an executable version of the system
•  Team members have a good overview of the project

status.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25

Spread �
SheetView

BinaryFile�
Storage

Data�
Model

Continuous Testing Strategy (Vertical
Integration)

Layer I

Layer II

Layer III

A

E F
Currency�
DataBase

G

Currency
Converter

DB

Calculator

C

XMLFile�
Storage

Sheet View + Cells
+ Addition + File Storage

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 26

Definition Continuous Integration

Continuous Integration: A software
development technique where members of a
team integrate their work frequently, usually
each person integrates at least daily, leading
to multiple integrations per day.

Each integration is verified by an automated
build which includes the execution of tests -
regres to detect integration errors as quickly
as possible.

Source: http://martinfowler.com/articles/continuousIntegration.html

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 27

Steps in Integration Testing

.

1. Based on the integration
strategy, select a
component to be tested.
Unit test all the classes in
the component.

2. Put selected component
together; do any
preliminary fix-up
necessary to make the
integration test operational
(drivers, stubs)

3. Test functional
requirements: Define test
cases that exercise all uses
cases with the selected
component

4. Test subsystem
decomposition: Define test
cases that exercise all
dependencies

5. Test non-functional
requirements: Execute
performance tests

6. Keep records of the test
cases and testing activities.

7. Repeat steps 1 to 7 until
the full system is tested.

The primary goal of integration

testing is to identify failures
with the (current)
component configuration.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 28

System Testing

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 29

System Testing

•  Functional Testing
•  Validates functional requirements

•  Performance Testing
•  Validates non-functional requirements

•  Acceptance Testing
•  Validates clients expectations

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 30

.

Functional Testing

Goal: Test functionality of system
•  Test cases are designed from the requirements

analysis document (better: user manual) and
centered around requirements and key functions
(use cases)

•  The system is treated as black box
•  Unit test cases can be reused, but new test

cases have to be developed as well.
•  Note: previously used unit tests have been performed

using drivers/stubs. Now the integrated system is
tested

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 31

Performance Testing

Goal: Try to violate non-functional requirements
•  Test how the system behaves when overloaded.

•  Can bottlenecks be identified? (First candidates for
redesign in the next iteration)

•  Try unusual orders of execution
•  Call a receive() before send()

•  Check the system’s response to large volumes
of data

•  If the system is supposed to handle 1000 items, try it
with 1001 items.

•  What is the amount of time spent in different
use cases?

•  Are typical cases executed in a timely fashion?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 32

Types of Performance Testing

•  Stress Testing
•  Stress limits of system

•  Volume testing
•  Test what happens if large

amounts of data are handled
•  Configuration testing

•  Test the various software and
hardware configurations

•  Compatibility test
•  Test backward compatibility

with existing systems
•  Timing testing

•  Evaluate response times and
time to perform a function

•  Security testing
•  Try to violate security

requirements
•  Environmental test

•  Test tolerances for heat,
humidity, motion

•  Quality testing
•  Test reliability, maintain-

ability & availability
•  Recovery testing

•  Test system’s response to
presence of errors or loss
of data

•  Human factors testing
•  Test with end users.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 33

Acceptance Testing

•  Goal: Demonstrate system is
ready for operational use

•  Choice of tests is made by
client

•  Many tests can be taken
from integration testing

•  Acceptance test is
performed by the client, not
by the developer.

•  Alpha test:
•  Client uses the software

at the developer’s
environment.

•  Software used in a
controlled setting, with
the developer always
ready to fix bugs.

•  Beta test:
•  Conducted at client’s

environment (developer is
not present)

•  Software gets a realistic
workout in target environ-
ment

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 34

Testing has many activities

Establish the test objectives

Design the test cases

Write the test cases

Test the test cases

Execute the tests

Evaluate the test results

Change the system

Do regression testing

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 35

Test Team

Test

Analyst

TeamUser

Programmer
too familiar
with code

Professional
Tester

Configuration
Management

Specialist

System
Designer

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 36

The 4 Testing Steps

1. Select what has to be tested
•  Analysis: Completeness of

requirements
•  Design: Cohesion
•  Implementation: Source

code
2. Decide how the testing is

done
•  Review or code inspection
•  Proofs (Design by Contract)
•  Black-box, white box,
•  Select integration testing

strategy (big bang, bottom
up, top down, sandwich)

3. Develop test cases
•  A test case is a set of test

data or situations that will
be used to exercise the unit
(class, subsystem, system)
being tested or about the
attribute being measured

4. Create the test oracle
•  An oracle contains the

predicted results for a set of
test cases

•  The test oracle has to be
written down before the
actual testing takes place.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 37

Guidance for Test Case Selection
•  Use analysis knowledge about

functional requirements
(black-box testing):

•  Use cases
•  Expected input data
•  Invalid input data

•  Use design knowledge about
system structure, algorithms,
data structures (white-box
testing):

•  Control structures
•  Test branches, loops, ...

•  Data structures
•  Test records fields,

arrays, ...

•  Use implementation
knowledge about algorithms
and datastructures:

•  Force a division by zero
•  If the upper bound of an

array is 10, then use 11 as
index.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 38

Summary

•  Testing is still a black art, but many rules and
heuristics are available

•  Testing consists of
•  Unit testing
•  Integration testing
•  System testing

•  Acceptance testing

•  Testing has its own lifecycle
•  Recommended practice: Continous integration

•  Allows frequent integration during development (instead
of after development).

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 39

Additional Reading

•  Martin Fowler, Continous Integration, 2006
•  http://martinfowler.com/articles/

continuousIntegration.html

•  Paul M. Duvall, Steve Matyas and Andrew Glover
Continuous Integration: Improving Software Quality and

Reducing Risk, Addison Wesley 2007

•  Frameworks for Continous Integration
•  CruiseControl (Open Source)

•  http://cruisecontrol.sourceforge.net/
•  Hudson from Kohsuke Kawaguchi (Free Software)

•  http://weblogs.java.net/blog/kohsuke/archive/
2009/08/announcing_sun.html

