
U
sin

g
U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-O
ri

en
te

d
So

ftw
ar

e
En

gi
ne

er
in

g
Chapter 8, Object Design:

Object Constraint
Language

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

Outline of the Lecture

•  OCL
•  Simple predicates
•  Preconditions
•  Postconditions
•  Contracts

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

OCL Basic Concepts

•  OCL expressions
•  Return True or False
•  Are evaluated in a specified context, either a class or

an operation
•  All constraints apply to all instances.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

OCL Simple Predicates

Example:

context Tournament inv:
self.getMaxNumPlayers() > 0

In English:
“The maximum number of players in any tournament

should be a postive number.”

Notes:
•  “self” denotes all instances of “Tournament”
•  OCL uses the same dot notation as Java.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

OCL Preconditions

Example:
context Tournament::acceptPlayer(p) pre:

not self.isPlayerAccepted(p)

In English:
“The acceptPlayer(p) operation can only be invoked if

player p has not yet been accepted in the tournament.”

Notes:
•  The context of a precondition is an operation
•  isPlayerAccepted(p) is an operation defined by the

class Tournament.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

OCL Postconditions

Example:
context Tournament::acceptPlayer(p) post:
self.getNumPlayers() =  

self@pre.getNumPlayers() + 1

In English:
“The number of accepted player in a tournament

increases by one after the completion of
acceptPlayer()”

Notes:
•  self@pre denotes the state of the tournament before

the invocation of the operation.
•  Self denotes the state of the tournament, in the post

condition, after the completion of the operation.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

OCL Contract for acceptPlayer() in
Tournament
context Tournament::acceptPlayer(p) pre:
 not isPlayerAccepted(p)

context Tournament::acceptPlayer(p) pre:

 getNumPlayers() < getMaxNumPlayers()

context Tournament::acceptPlayer(p) post:
 isPlayerAccepted(p)

context Tournament::acceptPlayer(p) post:

 getNumPlayers() = @pre.getNumPlayers() + 1

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

OCL Contract for removePlayer() in
Tournament
context Tournament::removePlayer(p) pre:
 isPlayerAccepted(p)

context Tournament::removePlayer(p) post:

 not isPlayerAccepted(p)

context Tournament::removePlayer(p) post:
 getNumPlayers() = @pre.getNumPlayers() - 1

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

JavaDoc

•  Add documentation comments to the source
code.

•  A doc comment consists of characters between
/** and */

•  When JavaDoc parses a doc comment, leading *
characters on each line are discarded. First,
blanks and tabs preceding the initial *
characters are also discarded.

•  Doc comments may include HTML tags
•  Example of a doc comment:

/**
* This is a doc comment
*/

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

More on Java Doc

•  Doc comments are only recognized when placed
immediately before class, interface,
constructor, method or field declarations.

•  When you embed HTML tags within a doc
comment, you should not use heading tags
such as <h1> and <h2>, because JavaDoc
creates an entire structured document and these
structural tags interfere with the formatting of
the generated document.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

Java Implementation of Tournament class
(Contract as a set of JavaDoc comments)

public class Tournament {
/** The maximum number of players
 * is positive at all times.
 * @invariant maxNumPlayers > 0
 */
private int maxNumPlayers;

/** The players List contains
 * references to Players who are
 * are registered with the
 * Tournament. */
private List players;

/** Returns the current number of
 * players in the tournament. */
public int getNumPlayers() {…}

/** Returns the maximum number of
 * players in the tournament. */
public int getMaxNumPlayers() {…}

/** The acceptPlayer() operation
 * assumes that the specified
 * player has not been accepted
 * in the Tournament yet.
 * @pre !isPlayerAccepted(p)
 * @pre getNumPlayers()<maxNumPlayers
 * @post isPlayerAccepted(p)
 * @post getNumPlayers() =
 * @pre.getNumPlayers() + 1
 */
public void acceptPlayer (Player p) {…}

/** The removePlayer() operation
 * assumes that the specified player
 * is currently in the Tournament.
 * @pre isPlayerAccepted(p)
 * @post !isPlayerAccepted(p)
 * @post getNumPlayers() =
 * @pre.getNumPlayers() - 1
 */
public void removePlayer(Player p) {…}

}

