
U
si

ng
 U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-O
ri

en
te

d
So

ftw
ar

e
En

gi
ne

er
in

g

System Design I:
System Decomposition

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

Why is Design so Difficult?

•  Analysis: Focuses on the application domain
•  Design: Focuses on the solution domain

•  The solution domain is changing very rapidly
•  Halftime knowledge in software engineering: About

3-5 years
•  Cost of hardware rapidly sinking

Ø Design knowledge is a moving target

•  Design window: Time in which design decisions
have to be made.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

The Scope of System Design

•  Bridge the gap
•  between a problem and

an existing system in a
manageable way

Problem

Existing System

System
Design •  How?

•  Use Divide & Conquer:
1) Identify design goals
2) Model the new system

design as a set of
subsystems

3-8) Address the major
design goals.

(new
system)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

System Design: Eight Issues
System Design

2. Subsystem Decomposition
Layers vs Partitions
Architectural Style
Coherence & Coupling

4. Hardware/
Software Mapping
Identification of Nodes
Special Purpose Systems
Buy vs Build
Network Connectivity

 5. Persistent Data
Management

Storing Persistent
Objects
Filesystem vs Database

Access Control
ACL vs Capabilities
Security

6. Global Resource
Handling

8. Boundary
Conditions

Initialization
Termination
Failure.

3. Identify Concurrency
Identification of
Parallelism
(Processes,
Threads)

7. Software
Control

Monolithic
Event-Driven
Conc. Processes

1. Identify Design Goals
Additional NFRs
Trade-offs

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

Monolithic
Event-Driven
Conc. Processes

7. Software
Control

2. System Decomposition
Layers vs Partitions
Coherence/Coupling

4. Hardware/
Software Mapping
Special Purpose Systems
Buy vs Build
Allocation of Resources
Connectivity

5. Data
Management

Persistent Objects
Filesystem vs
Database

Access Control List
vs Capabilities
Security

6. Global Resource
Handlung

8. Boundary
Conditions

Initialization
Termination
Failure

3. Concurrency
Identification of
Threads

1. Design Goals
Definition
Trade-offs

Analysis Sources: Requirements and System Model

Object Model

Functional Model

 Functional Model

Dynamic
 Model

Dynamic
Model

Nonfunctional
Requirements

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

Monolithic
Event-Driven
Conc. Processes

7. Software
Control

2. System Decomposition
Layers vs Partitions
Coherence/Coupling
Architectural Style

4. Hardware/
Software Mapping
Special Purpose Systems
Buy vs Build
Allocation of Resources
Connectivity

5. Data
Management
Persistent Objects
Filesystem vs
Database

Access Control List
vs Capabilities
Security

6. Global Resource
Handlung

8. Boundary
Conditions

Initialization
Termination
Failure

3. Concurrency
Identification of
Threads

1. Design Goals
Definition
Trade-offs

From Analysis to System Design

Object Model

Functional Model

 Functional Model

Dynamic
 Model

 Dynamic
 Model

Nonfunctional
Requirements

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

System Design Activities

1) Design Goals
2) System Decomposition

3) Concurrency
4) Hardware/Software Mapping
5) Data Management
6) Global Resource Handling
7) Software Control
8) Boundary Conditions

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

Example of Design Goals
•  Reliability
•  Modifiability
•  Maintainability
•  Understandability
•  Adaptability
•  Reusability
•  Efficiency
•  Portability
•  Traceability of

requirements
•  Fault tolerance
•  Backward-compatibility
•  Cost-effectiveness
•  Robustness
•  High-performance

❖  Good documentation
❖  Well-defined interfaces
❖  User-friendliness
❖  Reuse of components
❖  Rapid development
❖  Minimum number of errors
❖  Readability
❖  Ease of learning
❖  Ease of remembering
❖  Ease of use
❖  Increased productivity
❖  Low-cost
❖  Flexibility

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

 Developer/
 Maintainer

Minimum # of errors
Modifiability, Readability
Reusability, Adaptability
Well-defined interfaces

Stakeholders have different Design Goals

Reliability

Low cost
Increased productivity
Backward compatibility
Traceability of requirements
Rapid development
Flexibility

Client
(Customer)

Portability
Good documentation

Runtime
Efficiency

End
User

Functionality
User-friendliness
Usability
Ease of learning
Fault tolerant
Robustness

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

Typical Design Trade-offs

•  Functionality v. Usability
•  Cost v. Robustness
•  Efficiency v. Portability
•  Rapid development v. Functionality
•  Cost v. Reusability
•  Backward Compatibility v. Readability

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

System Design Phases

1) Design Goals
2) System Decomposition

3) Concurrency
4) Hardware/Software Mapping
5) Data Management
6) Global Resource Handling
7) Software Control
8) Boundary Conditions

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

Subsystems and Services

•  Subsystem
•  Collection of classes, associations, operations, events that

are closely interrelated with each other
•  The classes in the object model are the �seeds� for

subsystems
•  Service

•  A group of externally visible operations provided by a
subsystem (also called subsystem interface)

•  A service is usually realized by several (public)
methods exposed by the classes of the same
subsystem

•  The use cases in the functional model provide the �seeds�
for services

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

Tournament

Component
Management

User Management

Tournament
Statistics

User Directory

User Interface

Session
Management

Adds games, styles,
and expert rating

formulas

Stores user profiles
(contact info &
subscriptions)

Stores results of
archived

tournaments
Maintains state
during matches

Administers user
accounts

Advertisement

Manages
tournaments,promotions,

applications

Manages advertisement
banners & sponsorships

Example: Services
provided by the
ARENA Subsystems

Services
are described

 by subsystem interfaces

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Subsystem Interface and API

•  Subsystem interface: Set of fully typed UML
operations

•  Specifies the interaction and information flow from and
to subsystem boundaries, but not inside the subsystem

•  Refinement of service, should be well-defined and small
•  Subsystem interfaces are defined during object design

•  Application programmer�s interface (API)
•  The API is the specification of the subsystem interface in

a specific programming language
•  APIs are defined during implementation

•  The terms subsystem interface and API are often
confused with each other

•  The term API should not be used during system design
and object design, but only during implementation.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

Subsystems relationships

Coherence and Coupling

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

Coupling and Coherence of Subsystems

•  Goal: Reduce system complexity while allowing
change

•  Coherence measures dependency among classes
•  High coherence: The classes in the subsystem perform

similar tasks and are related to each other via many
associations

•  Low coherence: Lots of miscellaneous and auxiliary
classes, almost no associations

•  Coupling measures dependency among subsystems
•  High coupling: Changes to one subsystem will have high

impact on the other subsystem
•  Low coupling: A change in one subsystem does not affect

any other subsystem.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

Coupling and Coherence of Subsystems

•  Goal: Reduce system complexity while allowing
change

•  Coherence measures dependency among classes
•  High coherence: The classes in the subsystem perform

similar tasks and are related to each other via many
associations

•  Low coherence: Lots of miscellaneous and auxiliary
classes, almost no associations

•  Coupling measures dependency among
subsystems

•  High coupling: Changes to one subsystem will have high
impact on the other subsystem

•  Low coupling: A change in one subsystem does not affect
any other subsystem

Good System Design

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

Alternative

Decision

Criterion

subtasks

*

SubTask

ActionItem

DesignProblem

Task

assesses

solvableBy

resolvedBy

based-on

* * *

implementedBy

DecisionSubsystem

An example: the Decision tracking system

The DecisionSubsystem has a low coherence: The classes Criterion, Alternative, and
DesignProblem have no relationships with Subtask, ActionItem, and Task.

The decision tracking system purpose is to record design problems, discussions,
alternative evaluations, decisions, and their implementations in terms of tasks

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

Alternative

Decision

Criterion

subtasks

*

SubTask

ActionItem

DesignProblem

Task

assesses

solvableBy

resolvedBy

based-on

* * *

implementedBy

DecisionSubsystem

An example: the Decision tracking system

The DecisionSubsystem has a low coherence: The classes Criterion, Alternative, and
DesignProblem have no relationships with Subtask, ActionItem, and Task.

The decision tracking system purpose is to record design problems, discussions,
alternative evaluations, decisions, and their implementations in terms of tasks

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

subtasks

*

assesses

solvableBy

resolvedBy
based-on

* * *

implementedBy

RationaleSubsystem

PlanningSubsystem

Criterion Alternative

Decision

DesignProblem

SubTask

ActionItem Task

Alternative subsystem decomposition for the decision
tracking system

The coherence of the
RationaleSubsystem and the
PlanningSubsystem is higher
than the coherence of the original
DecisionSubsystem. Note also
that we also reduced the complexity
by decomposing the system into
smaller subsystems.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

How to achieve high Coherence

•  High coherence can be achieved if most of the
interaction is within subsystems, rather than
across subsystem boundaries

•  Questions to ask:
•  Does one subsystem always call another one for a

specific service?
•  Yes: Consider moving them together into the same

subystem.
•  Which of the subsystems call each other for services?

•  Can this be avoided by restructuring the
subsystems or changing the subsystem interface?

•  Can the subsystems even be hierarchically ordered (in
layers)?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

How to achieve Low Coupling

•  Low coupling can be achieved if a calling class
does not need to know anything about the
internals of the called class (Principle of
information hiding, Parnas)

David Parnas, *1941,
Developed the concept of

modularity in design.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

Is this a Good Design?

Advertisement

User Interface

Session
Management

User Management

Tournament
Statistics

Component
Management

Tournament

No, it has too
much coupling
(�Spaghetti� Design)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 24

Dijkstra�s answer to �Spaghetti Design�

•  Dijkstra revolutionary idea in 1968
•  Any system should be designed and built as a hierarchy

of layers: Each layer uses only the services offered by the
lower layers

Edser W. Dijkstra, 1930-2002
Formal verification: Proofs for programs
Dijkstra Algorithm, Banker�s Algorithm,

Gotos considered harmful, T.H.E.,
1972 Turing Award

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25

Architectural Style vs Architecture
(Terms Definition)
•  Subsystem decomposition: Identification of

subsystems, services, and their relationship to
each other

•  Architectural Style: A pattern for a subsystem
decomposition

•  Software Architecture: Instance of an
architectural style.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 26

Examples of Architectural Styles

•  Layered Architectural style
•  Service-Oriented Architecture (SOA)

•  Client/Server
•  Peer-To-Peer
•  Three-tier, Four-tier Architecture
•  Repository
•  Model-View-Controller
•  Pipes and Filters

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 27

Partitions and Layers

Partitioning and layering are techniques to achieve
low coupling.

A large system is usually decomposed into

subsystems using both, layers and partitions.
•  Partitions vertically divide a system into several

independent (or weakly-coupled) subsystems that
provide services on the same level of abstraction.

•  A layer is a subsystem that provides services to a
higher level of abstraction

•  A layer can only depend on lower layers
•  A layer has no knowledge of higher layers

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 28

The Layered Architectural Style

Client Layer N

Layer N-1

Layer N-2

Layer 1

Layer 0

.

.

.

uses

calls

calls

calls

calls

Hierarchical
Relationship

Hierarchical Relationships between
Subsystems

•  There are two major types of hierarchical relationships
•  Layer A �depends on��layer B (compile time dependency)

•  Example: Build dependencies (make, ant, maven)
•  Layer A �calls��layer B (runtime dependency)

•  Example: A web browser calls a web server
•  Can the client and server layers run on the same machine?

•  Yes, they are layers, not processor nodes
• Mapping of layers to processors is decided during the
Software/hardware mapping!

•  UML convention:
•  Runtime relationships are associations with dashed lines
•  Compile time relationships are associations with solid

lines.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 30

F:SubsystemE:Subsystem G:Subsystem

D:SubsystemC:SubsystemB:Subsystem

A:Subsystem Layer 1

Layer 2

Layer 3

Example of a System with more than one
Hierarchical Relationship

Layer
Relationship
„depends on�

Layer
Relationship

„calls�

Layer
Relationship

„calls�

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 31

Tournament

Component
Management

User Management

Tournament
Statistics

User Directory

User Interface

Session
Management

Advertisement

Example of a
Layered Design
(ARENA) Layer 1

Layer 2

Layer 3

Layer 4 ?

The relationship
crosses more than
one layer

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 32

Virtual Machine
•  A virtual machine is a subsystem connected to

higher and lower level virtual machines by
"provides services for" associations

•  A virtual machine is an abstraction that provides a
set of attributes and operations

•  The terms layer and virtual machine can be used
interchangeably

•  Also sometimes called �level of abstraction�.

Building Systems as a Set of Virtual Machines
A system is a hierarchy of virtual machines, each using

language primitives offered by the lower machines.

Virtual Machine 1

Virtual Machine 4 .

Virtual Machine 3

Virtual Machine 2

Existing System�

Operating System, Libraries

The language offered by
Virtual Machine 1

The language offered by
Virtual Machine 2

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 34

Closed Architecture (Opaque Layering)

•  Each layer can only call
operations from the layer
below (called �direct
addressing� by
Buschmann et al)

L1

L2

L3

L4
C1ass1
attr
op

C1ass3
attr
op

C1ass2
attr
op

C1assE
attr
op

C1assF
attr
op

C1assC
attr
op

C1assD
attr
op

Class A
attr
op

C1ass B
attr
op

Design goals:
Maintainability,
flexibility.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 35

Opaque Layering in ARENA

ArenaServer

Notification

ArenaClient

UserManagement

AdvertisementManagement

GameManagement

ArenaStorage

TournamentManagement

Interface

Storage

Application Logic

Layer 1

Layer 2

Layer 3

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 36

Open Architecture (Transparent Layering)

•  Each layer can call
operations from any
layer below (�indirect
addressing�)

L1

L2

L3

L4

Design goal:
Runtime efficiency.

C1ass1
attr
op

C1ass3
attr
op

C1ass2
attr
op

C1assE
attr
op

C1assF
attr
op

C1assC
attr
op

C1assD
attr
op

Class A
attr
op

C1ass B
attr
op

SOA is a Layered Architectural Style
 Service Oriented Architecture (SOA)

•  Basic idea: A service provider (� business�) offers business services
(�business processes�) to a service consumer (application,
�customer�)

•  The business services are dynamically discoverable, usually offered
in web-based applications

•  The business services are created by composing (choreographing)
them from lower-level services (basic services)

•  The basic services are usually based on legacy systems
•  Adapters are used to provide the �glue� between basic services and

the legacy systems.

 Legacy Systems

Adapters to Legacy Systems

Basic Services

Business Services (Composite Services)

(Web-)Application

 Business Services

IBM�s View of a Service Oriented Architecture

Source http://www.ibm.com/developerworks/webservices/library/ws-soa-design1/

Legacy Systems

Adapters

Basic
Services

Business
Services

User Interface
(Web Portal)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 39

•  Layered systems are hierarchical. This is a
desirable design

•  Hierarchy reduces complexity

•  Closed architectures are more portable
•  Provide very low coupling

•  Open architectures are more efficient

Properties of Layered Systems

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 40

•  Layered systems are hierarchical. This is a
desirable design

•  Hierarchy reduces complexity

•  Closed architectures are more portable
•  Provide very low coupling

•  Open architectures are more efficient
•  Layered systems often have a chicken-and egg

problem

G: Operating System

D: File System

Properties of Layered Systems

A: Symbolic Debugger Symbol Table

How do you open the
symbol table when you are

debugging the File
System?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 41

Le
ve

l o
f
ab

st
ra

ct
io

n

Application

Presentation

Session

Transport

Network

DataLink

Physical

Another Example of a Layered
Architectural Style

•  ISO�s OSI Reference
Model

•  ISO = International
Standard Organization

•  OSI = Open System
Interconnection

•  Reference model which
defines 7 layers and
communication
protocols between the
layers

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 42

Examples of Architectural Styles

ü Layered Architectural Style
ü Service-Oriented Architecture (SOA)

•  Client/Server
•  Peer-to-Peer
•  Three-tier, Four-tier Architecture
•  Repository

•  Blackboard
•  Model-View-Controller
•  Pipes and Filters

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 43

Client/Server Architectures

•  Often used in the design of database systems
•  Front-end: User application (client)
•  Back end: Database access and manipulation (server)

•  Functions performed by client:
•  Input from the user (Customized user interface)
•  Front-end processing of input data

•  Functions performed by the database server:
•  Centralized data management
•  Data integrity and database consistency
•  Database security

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 44

Client/Server Architectural Style
•  Special case of the Layered Architectural style

•  One or many servers provide services to instances of
subsystems, called clients

Client

Server

+service1()
+service2()

+serviceN()

**

requester provider

•  Each client calls on the server, which performs
 some service and returns the result

The clients know the interface of the server
The server does not need to know the interface
of the client

•  The response in general is immediate
•  End users interact only with the client.

Design Goals for Client/Server Architectures

Location-
Transparency

Server runs on many operating systems
and many networking environments

 Server might itself be distributed, but
provides a single "logical" service to the
user
Client optimized for interactive display-
intensive tasks; Server optimized for
CPU-intensive operations

Server can handle large # of clients

User interface of client supports a
variety of end devices (PDA, Handy,
laptop, wearable computer)

Service Portability

High Performance

Reliability

Scalability

Flexibility

Server should be able to survive client
and communication problems.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 46

Problems with Client/Server Architectures

•  Client/Server systems do not provide peer-to-
peer communication

•  Peer-to-peer communication is often needed
•  Example:

•  Database must process queries from application and
should be able to send notifications to the application
when data have changed

application1:DBUser

database:DBMS

1. updateData

application2:DBUser 2. changeNotification

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 47

Peer-to-Peer Architectural Style
Generalization of Client/Server Architectural Style

Peer

service1()
service2()

serviceN()
…

requester

provider

*

*

Introduction a new abstraction: Peer
“ ”
How do we model this statement? With Inheritance?

�A peer can be a client as well as a server�.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 48

Relationship Client/Server & Peer-to-Peer
Problem statement

Which model is correct?
Model 1: �A peer can be either a client or a server�
Model 2: �A peer can be a client as well as a server�

 Peer

service1()
service2()

serviceN()
…

requester

provider

*

*

Client Server

✔
Model 1

Model 2

NO

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 49

3-Layer-Architectural Style
3-Tier Architecture

Definition: 3-Layered Architectural Style
•  An architectural style, where an application consists of 3

hierarchically ordered subsystems
•  A user interface, middleware and a database system
•  The middleware subsystem services data requests

between the user interface and the database
subsystem

Definition: 3-Tier Architecture
•  A software architecture where the 3 layers are allocated

on 3 separate hardware nodes

•  Note: Layer is a type (e.g. class, subsystem) and
Tier is an instance (e.g. object, hardware node)

•  Layer and Tier are often used interchangeably.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 50

Example of a 3-Layered Architectural Style

•  Three-Layered Architectural style are often used
for the development of Websites:
1. The Web Browser implements the user interface
2. The Web Server serves requests from the web

browser
3. The Database manages and provides access to the

persistent data.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 51

Three-tier architectural style.

Interface

Application Logic

Storage

Connection

Form

Query

•  Subsystems are organized into three layers

All boundary objects that
deal with the user

All control and entity objects
that realize the processing and

notification required by the
application

All persistent objects related
to storage, retrieval and

query

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 52

Example of a 4-Layered Architectural Style

4-Layer-architectural styles are usually used for
the development of electronic commerce sites.
The layers are
1.  The Web Browser, providing the user interface
2.  A Web Server, serving static HTML requests
3.  An Application Server, providing session management

(for example the contents of an electronic shopping
cart) and processing of dynamic HTML requests

4.  A back end Database, that manages and provides
access to the persistent data
•  In commercially available 4-tier architectures, this

is usually a relational database management
system (RDBMS).

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 53

Four-tier architectural style.

Presentation Server

Application Logic

Storage

Connection

Form

Query

Presentation Client WebBrowser

•  Subsystems are organized into four layers
•  Web-based applications

Repository Architectural Style

•  The basic idea behind this architectural style is to support a
collection of independent programs that work cooperatively on
a common data structure called the repository

•  Subsystems access and modify data from the repository. The
subsystems are loosely coupled (they interact only through
the repository).

Subsystem

Repository

createData()

setData()

getData()

searchData()

*

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 55

Repository Architecture Example:
Incremental Development Environment (IDE)

LexicalAnalyzer

SyntacticAnalyzer
SemanticAnalyzer

CodeGenerator

Compiler

Optimizer

ParseTree SymbolTable

Repository

SyntacticEditor SymbolicDebugger

Parse
Tree

Symbol
Table

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 56

Repository architectures: when and why

•  Repository architectures are well suited for
applications with constantly changing
complex data processing tasks.

•  Once a central repository is well defined, we can
easily add new services in the form of
additional subsystems.

•  The main disadvantage of repository systems
is that the central repository can quickly
become a bottleneck, both from a
performance aspect and a modifiability aspect.

•  The coupling between each subsystem and the
repository is high, thus making it difficult to
change the repository without having an impact
on all subsystems.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 57

Model-View-Controller Architectural Style
•  Problem: In systems with high coupling changes

to the user interface (boundary objects) often
force changes to the entity objects (data)

•  The user interface cannot be reimplemented without
changing the representation of the entity objects

•  The entity objects cannot be reorganized without
changing the user interface

•  Solution: Decoupling! The model-view-controller
(MVC) architectural style decouples data access
(entity objects) and data presentation (boundary
objects)

•  Views: Subsystems containing boundary objects
•  Model: Subsystem with entity objects
•  Controller: Subsystem mediating between Views (data

presentation) and Models (data access).

Model-View-Controller Architectural Style
•  Subsystems are classified into 3 different types

Model subsystem: Responsible for application domain
knowledge

subscriber
notifier

*

1

initiator
repository1*

View subsystem: Responsible for displaying information to
the user
Controller subsystem: Responsible for interacting with the
user and notifying views of changes in the model

Model

Controller

View

Class Diagram

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 59

Example: Modeling the
Sequence of Events in MVC

:Controller

:Model1.0 Subscribe

:PowerpointView

4.0 User types new filename

7.0 Show updated views

:InfoView

5.0 Request name change in model

:FolderView

6.0 Notify subscribers

UML Communication Diagram

UML Class Diagram

3.0Subscribe

2.0Subscribe

subscriber
notifier

*

1

initiator
repository1*

Model

Controller

View

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 60

Review: UML Communication Diagram

•  A Communication Diagram visualizes the
interactions between objects as a flow of messages.
Messages can be events or calls to operations

•  Communication diagrams describe the static struc-
ture as well as the dynamic behavior of a system:

•  The static structure is obtained from the UML class diagram
•  Communication diagrams reuse the layout of classes

and associations in the class diagram
•  The dynamic behavior is obtained from the dynamic model

(UML sequence diagrams and UML statechart diagrams)
•  Messages between objects are labeled with a number

and placed near the link the message is sent over

•  Reading a communication diagram involves starting
at message 1.0, and following the messages from
object to object.

MVC vs. 3-Tier Architectural Style
•  The MVC architectural style is nonhierarchical

(triangular):
•  View subsystem sends updates to the Controller subsystem
•  Controller subsystem updates the Model subsystem
•  View subsystem is updated directly from the Model

•  The 3-tier architectural style is hierarchical (linear):
•  The presentation layer never communicates directly with the

data layer (opaque architecture)
•  All communication must pass through the middleware layer

•  History:
•  MVC (1970-1980): Originated during the development of

modular graphical applications for a single graphical
workstation at Xerox Parc

•  3-Tier (1990s): Originated with the appearance of Web
applications, where the client, middleware and data layers
ran on physically separate platforms.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 62

Pipes and Filters

•  A pipeline consists of a chain of processing
elements (processes, threads, etc.), arranged so
that the output of one element is the input to
the next element

•  Usually some amount of buffering is provided between
consecutive elements

•  The information that flows in these pipelines is often a
stream of records, bytes or bits.

Filter FilterPipeInput Output

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 63

Pipes and Filters Architectural Style

•  An architectural style that consists of two subsystems
called pipes and filters

•  Filter: A subsystem that does a processing step
•  Pipe: A Pipe is a connection between two processing steps

•  Each filter has an input pipe and an output pipe.
•  The data from the input pipe are processed by the filter and

then moved to the output pipe
•  Example of a Pipes-and-Filters architecture: Unix

•  Unix shell command: ls -a l cat

A pipe
The Unix shell commands ls

and cat are Filter

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 64

Summary
•  System Design

•  Reduces the gap between problem and existing machine

•  Design Goals
•  Describe important system qualities and values against

which alternative designs are evaluated (design-tradeoffs)
•  Additional nonfunctional requirements found at design time

•  Subsystem Decomposition
•  Decomposes the overall system into manageable part by

using the principles of cohesion and coherence

•  Architectural Style
•  A pattern for a subsystem decomposition: All kind of layer

styles (C/S, SOA, n-Tier), Repository, MVC, Pipes&Filters

•  Software architecture
•  An instance of an architectural style.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 65

Additional Readings
•  E.W. Dijkstra (1968)

•  The structure of the T.H.E Multiprogramming system,
Communications of the ACM, 18(8), pp. 453-457

•  D. Parnas (1972)
•  On the criteria to be used in decomposing systems into

modules, CACM, 15(12), pp. 1053-1058

•  J.D. Day and H. Zimmermann (1983)
•  The OSI Reference Model,Proc. IEEE, Vol.71, 1334-1340

•  Jostein Gaarder (1991)
•  Sophie�s World: A Novel about the History of Philosophy

•  Frank Buschmann et al:
•  Pattern-Oriented Software Architecture, Vol 1: A System

of Patterns, Wiley, 1996.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 66

Backup Slides

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 67

How the Analysis Models influence System
Design

•  Nonfunctional Requirements
=> Definition of Design Goals

•  Functional model
=> Subsystem Decomposition

•  Object model
=> Hardware/Software Mapping, Persistent Data

Management

•  Dynamic model
=> Identification of Concurrency, Global Resource

Handling, Software Control

•  Finally: Hardware/Software Mapping
=> Boundary conditions

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 68

Overview
System Design I (This Lecture)

0. Overview of System Design
1. Design Goals
2. Subsystem Decomposition, Architectural Styles

System Design II (Next Lecture)
3. Concurrency: Identification of parallelism
4. Hardware/Software Mapping:

 Mapping subsystems to processors
5. Persistent Data Management: Storage for entity
objects
6. Global Resource Handling & Access Control:

 Who can access what?)
7. Software Control: Who is in control?
8. Boundary Conditions: Administrative use cases.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 69

Excursion: Communication vs
Collaboration Diagrams

•  UML is a living language
•  Communication diagram is a new term in UML 2.0
•  In UML 1.x they used to be called collaboration

diagrams
•  You find this term still in many books and in articles in

the web

•  We use the terms synonomously

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 70

Communication Diagrams vs Class
Diagrams vs Sequence Diagrams

•  Difference between communication diagrams and class
diagrams:

•  Association labels, roles and multiplicities are not shown in
communication diagrams. Associations between objects
denote messages depicted as a labeled arrows that indicate
the direction of the message, using a notation similar to that
used on sequence diagrams

•  Difference between communication diagrams and
sequence diagrams:

•  Both focus on the message flow between objects
•  Sequence diagrams are good at illustrating the event flow

over time. They can show temporal relationsships such as
causality and temporal concurrencies

•  Communication diagrams focus on the structural view of the
communication between objects, not the timing issues.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 71

Communication Diagram: An Example

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 72

Exercise (Also Possible as a Homework)
•  Assume the communication diagram from the previous

slide is the only information you have about a system,
which is currently paper-based

•  You are asked to digitize the system. Reverse engineer
the system model by performing these tasks:

1. Write the problem statement
•  Use your application domain knowledge to describe the

functional and nonfunctional requirements
2. Identify the object model

•  Draw the corresponding class diagram
•  Add Associations: find multiplicies and role names
•  Identify inheritance and aggregation associations

3. Complete the dynamic model:
•  Draw the corresponding sequence diagram
•  Identify actors, events and messages

4. Identify the functional model
•  Identify the actors and use cases.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 73

5 System Design steps to create a layered
architecture
1.  Define the abstraction criterion

•  Also called �the conceptual distance to the existing system (�platform�).
Examples of abstraction criteria:

•  The degree of customization for a specific domain
•  The degree of conceptual complexity

2.  Determine the number of abstraction levels
•  Each abstraction layer corresponds to one layer of the pattern

3.  Name the layers and assign tasks to each of them
•  The task of the highest layer is the overall system task, as perceived by the

client. The tasks of all the other layers are helper layers. (The lower layers
provide the infrastructure needed by the higher layers)

4.  Specify the services
•  Lower layers should be "slim“, while higher layers can cover a broader

spectrum of applicability. Also called the "inverted pyramid of reuse“

5.  Refine the layering
•  Iterate over steps 1 to 4.

SOA Layers

•  Layer 5: Access/Presentation layer
•  Application layer. Not part of SOA, but increasingly important because

technologies such as Web Services for Remote Portlets provide services at
this level

•  Level 4: Business process choreography layer
•  This layer provides compositions of services defined in layer 3. The

composition acts as a single service offered to applications
•  Layer 3: Services layer

•  All the services offered by the business are located in this layer. A service
is a discoverable software component with an externalized service
description. This service description is available for searching, binding, and
invocation by a SOA higher layer

•  Layer 2: Enterprise components layer
•  Provides the functionality of the legacy systems via adapters. Responsible

for maintaining workload management, high-availability and load balancing
•  Layer 1: Operational systems layer

•  Existing custom built or old applications that are still of business value,
(called legacy systems). Examples: existing CRM and ERP applications.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 75

SOA Architecture
The following description is taken from:
 http://www.ibm.com/developerworks/webservices/library/ws-soa-design1/
„Level 6: Integration Architecture

 This layer enables the integration of services through intelligent
routing, protocol mediation, and other transformation mechanisms,
often described as the ESB (see Resources). The Web Services
Description Language (WSDL) specifies a binding, which implies a
location where the service is provided. On the other hand, an ESB
provides a location transparent mechanism for integration

Level 7: QoS
 This layer provides the capabilities required to monitor, manage,
and maintain QoS such as security, performance, and availability.
This is a background process background processes through sense-
and-respond mechanisms and tools that monitor the health of SOA
applications, including the all important standards implementations
of WS-Management and other relevant protocols and standards that
implement quality of service for a SOA.“

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 76

Question to the Previous Slide

•  Is Integration Architecture a good term for a
layer?

•  Are these layers? If yes, how should they be
drawn? If not, why not?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 77

Blackboard Architectural Pattern
•  The blackboard is the

repository for the
problem to be solved,
partial solutions and
new information

•  The knowledge sources
read anything that is
placed on the black-
board and place newly
generated information
on it

•  Control governs the
flow of problemsolving
activity in the system,
in particular how the
knowledge sources get
notified of any new
information put on the
blackboard.

+ inspect()

+ update()

-solutions

-controlData

Blackboard

+updateBlackboard()

+execCondition()

+execAction()

KnowledgeSource

+loop()

+nextSource()

Control
*

*

activates !

◀
 o

p
e
ra

te
s
O

n

Synonyms:
Control: Supervisor
Knowledge Source: Specialist, Expert
Blackboard: Knowledge Sharing Area.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 78

Historic of Blackboard Style
•  The blackboard architectural styel was initially

used in the Hearsay II speech recognition
system for recognizing sentences from a
vocabulary of 1200 words (First called the
blackboard architecture)

•  In Hearsay II, hypotheses about the sentence
were kept in different datastructures, so-called
levels, in the blackboard (solutions in the
blackboard pattern) Raj Reddy, *1937, �

Carnegie Mellon University
 - Major contributions in speech
 recognition (Hearsay II, Harpy), �
 vision understanding, �
 robotics, machine learning
 - Founding Director of
 - the Robotics Institute,
 - the HCI Institute,
 - the Center for Machine
 Learning
1994: Turing Award
 (with Ed Feigenbaum).

V. Lesser, R. Fennell, L. Erman and R. Reddy (1975)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 79

Knowledge Sources in Hearsay II
•  Segment Classifier (Acoustic expert)

•  Divides the waveform - represented as a set
of parameters - into acoustic segments

•  Phone Synthesizer
•  Generates elements at the phonetic level

•  Word Candidate Generator
•  Uses the phonetic information to generate

word hypotheses
•  Syntactic Word Hypthesiser

•  Predicts new words at lexical level adjacent
to previously generated generated words

•  Phoneme Hypothesizer
•  Is activated whenever a word hypothesis is

created which is not yet supported by a
hypothesis at the surface-phonemic level

•  Phone-Phoneme Synchronizer
•  Is triggered whenever a hypothesis is

created at the phonetic or surface-phonemic
level

•  Syntactic parser
•  Uses the grammar for the input language to

determine if a complete sentence can be
assembled from the words.

V. Lesser, R. Fennell, L. Erman and R. Reddy (1975)

The different data structures for
hypotheses kept in the
Blackboard (Solutions)

Forward Reasoning

Backward Reasoning

