
U
sin

g
U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-O
ri

en
te

d
So

ftw
ar

e
En

gi
ne

er
in

g
Chapter 5, Analysis:
Dynamic Modeling

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

ü Requirements
Elicitation (Ch.4)

Ø Analysis (Ch.5)

System Design

ü Introduction
(Ch 1-3)

ü Functional Modelü Nonfunctional�
Requirements

ü Analysis Object
Model

Ø Dynamic Model

ü Class Diagrams

ü Use Case Diagrams

(Ch.6 & 7)

ü Statechart Diagrams

ü Sequence Diagram

“Analysis Cloud”

OOSE-
Galaxy

Ways to Go

System design
 (Ch. 6 & 7)

Object design
(Ch. 8 & 9)

Implementation
(Ch. 10)

Object Design Model

Design Goals

 Subsystem Decomposition

Source Code

Testing (Ch. 11)

Deliverable System

Class Diagram

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

Outline of the Lecture

•  Dynamic modeling
•  Interaction Diagrams

•  Sequence diagrams
•  Communication diagrams

•  State diagrams

•  Requirements analysis model validation
•  Analysis Example

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

Dynamic Modeling with UML

•  Two UML diagrams types for describing
dynamic models:

•  Statechart diagrams describe the dynamic behavior
of a single object

•  Interaction diagrams describe the dynamic behavior
between objects.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

UML Interaction Diagrams

•  Two types of interaction diagrams:
•  Communication Diagram:

•  Shows the temporal relationship among objects
•  Position of objects is identical to the position of the

classes in the corresponding UML class diagram
•  Good for identifying the protocol between objects
•  Does not show time

•  Sequence Diagram:
•  Describes the dynamic behavior between several

objects over time
•  Good for real-time specifications.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

How do we detect Operations?

•  Good starting point: Flow of events in a use case
description

•  We look for objects,
•  who are interacting and extract their “protocol”
•  who have interesting behavior on their own

•  From the flow of events we proceed to the
sequence diagram to find the participating
objects.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

What is an Event?

•  Something that happens at a point in time
•  An event sends information from one object to

another
•  Events can have associations with each other:

•  Causally related:
•  An event happens always before another event
•  An event happens always after another event

•  Causally unrelated:
•  Events that happen concurrently

•  Events can also be grouped in event classes with
a hierarchical structure => Event taxonomy.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

Events hierarchy

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

Finding Participating Objects

•  Heuristic for finding participating objects:
•  A event always has a sender and a receiver
•  Find the sender and receiver for each event => These

are the objects participating in the use case.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

Example: Finding Objects from a Sequence
Diagram

•  Let’s assume ARENA’s object model contains -
at this modeling stage – the following six objects

•  League Owner, League, Tournament, Match and Player

Attributes
Operations

League

Attributes
Operations

Tournament

Attributes
Operations

Player
Attributes
Operations

Match

Attributes
Operations

League Owner 1 *

* *

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

Example: Finding Objects from a Sequence
Diagram

•  Let’s assume ARENA’s object model contains -
at this modeling stage – the following six objects

•  League Owner, League, Tournament, Match and Player

•  We now model the use case CreateTournament
with a sequence diagram

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

:Tournament
«new»

ARENA Sequence Diagram: Create Tournament

League
Owner

:Tournament
Boundary

newTournament
(league)

:Announce
Tournament

Control
«new»
(league)

setName(name)

setMaxPlayers
(maxp)

commit()
createTournament
(name, maxp)

checkMax
Tournament
(league)

create
Tournament
(name, maxp)

:Arena

:League

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Heuristics for Sequence Diagrams

•  Creation of objects:
•  Create control objects at beginning of event flow
•  The control objects create the boundary objects

•  Access of objects:
•  Entity objects can be accessed by control and
boundary objects
•  Entity objects should not access boundary or
control objects.

•  Layout:
1st column: Should be the actor of the use case
2nd column: Should be a boundary object
3rd column: Should be the control object that
manages the rest of the use case

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

Another Example: Finding Objects from a
Sequence Diagram

 The Sequence Diagram identified 3 new Classes
•  Tournament Boundary, Announce_Tournament_Control
and Arena

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

:Tournament
«new»

ARENA Sequence Diagram: Create Tournament

League
Owner

:Tournament
Boundary

newTournament
(league)

:Announce
Tournament

Control
«new»

setName(name)

setMaxPlayers
(maxp)

commit()
createTournament
(name, maxp)

checkMax
Tournament()

create
Tournament
(name, maxp)

:Arena

:League

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

Impact on Arena’s Object Model

Attributes

Operations

League

Attributes

Operations

Tournament

Attributes

Operations

Player

Attributes

Operations

Match

Attributes

Operations

League Owner 1 *

* *

Attributes

Operations

Tournament_
Boundary

Attributes

Operations

Announce_
Tournament_

Control

Attributes

Operations

Arena

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

Impact on Arena’s Object Model

Attributes

Operations

League

Attributes

Operations

Tournament

Attributes

Operations

Player

Attributes

Operations

Match

Attributes

Operations

League Owner 1 *

* *

Attributes

Operations

Tournament_
Boundary

Attributes

Operations

Announce_
Tournament_

Control

Attributes

Operations

Arena

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

Impact on ARENA’s Object Model (2)

•  The sequence diagram also supplies us with many
new events (messages exchanged between
objects in the diagram)

•  newTournament(league)
•  setName(name)
•  setMaxPlayers(max)
•  commit
•  checkMaxTournament()
•  createTournament

•  Question:
•  Who owns these events?

•  Answer:
•  For each object that receives an event there is a public
 operation in its associated class
•  The name of the operation is usually the name of the
 event.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

Example from the Sequence Diagram

createTournament
(name, maxp)

create
Tournament
(name, maxp)

League
Owner

:Tournament
Boundary

newTournament
(league)

:Announce
Tournament

Control
«new»

setName(name)

setMaxPlayers
(maxp)

commit()

checkMax
Tournament()

:Arena

:League

:Tournament
«new»

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

Attributes
Operations

League

Attributes
Operations

Tournament

Attributes
Operations

Player

Attributes
Operations

Match

Attributes
Operations

League Owner 1 *

* *

Attributes
Operations

Tournament_
Boundary

Attributes
createTournament

(name, maxp)

Announce_
Tournament_

Control

Attributes

Operations

Arena

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

What else can we get out of Sequence
Diagrams?

•  Sequence diagrams are derived from use cases

•  The structure of the sequence diagram helps us
to determine how decentralized the system is

•  We distinguish two structures for sequence
diagrams

•  Fork Diagrams and Stair Diagrams (Ivar Jacobsen)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

Control
Object

Fork Diagram

•  The dynamic behavior is placed in a single
object, usually a control object

•  It knows all the other objects and often uses them for
direct questions and commands

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 24

Stair Diagram

•  The dynamic behavior is distributed. Each object
delegates responsibility to other objects

•  Each object knows only a few of the other objects and
knows which objects can help with a specific behavior

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25

Fork or Stair?

•  Object-oriented supporters claim that the stair
structure is better

•  Modeling Advice:
•  Choose the stair - a decentralized control structure - if

•  The operations have a strong connection
•  The operations will always be performed in the

same order
•  Choose the fork - a centralized control structure - if

•  The operations can change order
•  New operations are expected to be added as a

result of new requirements.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 26

State

•  State: An abstraction of the attributes of a class
•  State is the aggregation of several attributes a class

•  State has duration.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 27

State Chart Diagram vs Sequence Diagram

•  State chart diagrams help to identify:
•  Changes to an individual object over time

•  Sequence diagrams help to identify:
•  The temporal relationship of communications between

objects over time
•  Sequence of operations as a response to one ore more

events.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 28

Dynamic Modeling of User Interfaces

•  Statechart diagrams can be used for the design
of user interfaces

•  States: Name of screens
•  Actions are shown as bullets under the screen

name

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 29

Navigation Path Example

Diagnostics Menu
• User moves cursor to Control Panel or Graph

Graph
•  User selects data group
 and type of graph

Selection
•  User selects data group

•  Field site
•  Car
•  Sensor group
•  Time range

Control panel
•  User selects functionality of sensors

Disable
•  User can disable a
 sensor event from
 a list of sensor events

Define
•  User defines a sensor event
 from a list of events

Enable
•  User can enable
 a sensor event
 from a list of
 sensor events

Screen name

Action

NOT a good UML diagram! Syntax not respected

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 30

Outline of the Lecture

•  Dynamic modeling
•  Interaction Diagrams

•  Sequence diagrams
•  Communication diagrams

•  State diagrams

•  Requirements analysis model validation
•  Analysis Example

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 31

Model Validation and Verification

•  Verification is an equivalence check between
the transformation of two models

•  Validation is the comparison of the model
with reality

•  Validation is a critical step in the development
process Requirements (e.g. use cases) should
be validated with the client and the user.

•  Techniques: Formal and informal reviews
(Meetings, requirements review)

•  Requirements validation involves several
checks

•  Correctness, Completeness, Ambiguity, Realism

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 32

Checklist for a Requirements Review

•  Is the model correct?
•  A model is correct if it represents the client’s view of

the system

•  Is the model complete?
•  Every scenario is described

•  Is the model consistent?
•  The model does not have components that contradict

each other
•  Is the model unambiguous?

•  The model describes one system, not many

•  Is the model realistic?
•  The model can be implemented

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 33

Examples for Inconsistency and
Completeness Problems

•  Different spellings in different UML diagrams
•  The correct use of a good UML modeling tool may help

a lot on this

 •  Omissions in diagrams

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 34

Attributes
Operations

League

Attributes
Operations

Tournament

Attributes
Operations

Player

Attributes
Operations

Match

Attributes
Operations

League Owner 1 *

* *

Attributes
Operations

Tournament_
Boundary

Attributes
makeTournament

(name, maxp)

Announce_
Tournament_

Control

Different spellings in different UML diagrams

UML Sequence Diagram UML Class Diagram

createTournament
(name, maxp)

Different spellings
in different models

for the same operation

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 35

Omissions in some UML Diagrams

Attributes
Operations

League

Attributes
Operations

Tournament

Attributes
Operations

Player
Attributes
Operations

Match

Attributes
Operations

League Owner 1 *

* *

Attributes
Operations

Tournament_
Boundary

Class Diagram

Missing
Association
(Incomplete
Analysis?)

Missing class
(The control object

Announce_Tournament
is mentioned in the
sequence diagram)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 36

Checklist for a Requirements Review (2)

•  Syntactical check of the models
•  Check for consistent naming of classes,

attributes, methods in different subsystems
•  Identify double- defined classes
•  Identify missing classes (mentioned in one

model but not defined anywhere)
•  Avoid this problem by using this guideline:

1.  Define new classes/methods in class diagrams
2.  In sequence diagrams: introduce objects/

messages by selecting their names from lists
proposed by the case tool

•  Check for classes with the same name but
different meanings

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 37

Requirements Analysis Document Template
1. Introduction
2. Current system
3. Proposed system

 3.1 Overview
 3.2 Functional requirements
 3.3 Nonfunctional requirements
 3.4 Constraints (“Pseudo requirements”)
 3.5 System models
 3.5.1 Scenarios
 3.5.2 Use case model
 3.5.3 Object model
 3.5.3.1 Data dictionary
 3.5.3.2 Class diagrams
 3.5.4 Dynamic models
 3.5.5 User interface

4. Glossary

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 38

Section 3.5 System Models
3.5.1 Scenarios
 - As-is scenarios, visionary scenarios

3.5.2 Use case model
- Actors and use cases

3.5.3 Object model
-  Data dictionary

-  Description of data (entity classes) and their
meaning in the system

- Class diagrams (classes, associations, attributes and
operations)

3.5.4 Dynamic model
- State diagrams for classes with significant dynamic

behavior
- Sequence diagrams for collaborating objects (protocol)

3.5.5 User Interface
- Navigational Paths, Screen mockups

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 39

1. What are the transformations/interactions?
Create scenarios and use case diagrams

- Talk to client, observe, get historical records
2. What is the structure of the system?

Create class diagrams
- Identify objects.
-  What are the associations between them?
-  What is their multiplicity?
- What are the attributes of the objects?
- What operations are defined on the objects?

3. What is its behavior?
Create sequence diagrams

- Identify senders and receivers
-  Show sequence of events exchanged between objects.
-  Identify event dependencies and event concurrency.

Create state diagrams
- Only for the dynamically interesting objects.

Requirements Analysis Questions

Dynamic Modeling

Functional Modeling

Object Modeling

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 40

Let’s Do Analysis: A Toy Example

•  Analyze the problem statement
•  Identify functional requirements
•  Identify nonfunctional requirements
•  Identify constraints (pseudo requirements)

•  Build the functional model:
•  Develop use cases to illustrate functional requirements

•  Build the object model:
•  Develop class diagrams for the structure of the system

•  Build the dynamic model:
•  Develop sequence diagrams to illustrate the interaction

between objects
•  Develop state diagrams for objects with interesting

behavior

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 41

Problem Statement:
Direction Control for a Toy Car

•  Power is turned on

•  Car moves forward and
car headlight shines

•  Power is turned off
•  Car stops and headlight

goes out.
•  Power is turned on

•  Headlight shines
•  Power is turned off

•  Headlight goes out
•  Power is turned on

•  Car runs backward with
its headlight shining

•  Power is turned off

•  Car stops and headlight
goes out

•  Power is turned on
•  Headlight shines

•  Power is turned off
•  Headlight goes out

•  Power is turned on
•  Car runs forward with its

headlight shining

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 42

Find the Functional Model: Use Cases

•  Use case 1: System Initialization
•  Entry condition: Power is off, car is not moving
•  Flow of events:

1. Driver turns power on
•  Exit condition: Car moves forward, headlight is on

•  Use case 2: Turn headlight off
•  Entry condition: Car moves forward with headlights on
•  Flow of events:

1.  Driver turns power off, car stops and headlight goes out.
2.  Driver turns power on, headlight shines and car does not

move.
3.  Driver turns power off, headlight goes out

•  Exit condition: Car does not move, headlight is out

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 43

Use Cases continued
•  Use case 3: Move car backward

•  Entry condition: Car is stationary, headlights off
•  Flow of events:

1.  Driver turns power on
•  Exit condition: Car moves backward, headlight on

•  Use case 4: Stop backward moving car
•  Entry condition: Car moves backward, headlights on
•  Flow of events:

1.  Driver turns power off, car stops, headlight goes out.
2.  Power is turned on, headlight shines and car does not

move.
3.  Power is turned off, headlight goes out.

•  Exit condition: Car does not move, headlight is out

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 44

Use Cases Continued

•  Use case 5: Move car forward
•  Entry condition: Car does not move, headlight is out
•  Flow of events

1.  Driver turns power on
•  Exit condition:

•  Car runs forward with its headlight shining

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 45

Use Case Pruning

•  Do we need use case 5?
•  Let us compare use case 1 and use case 5:

Use case 1: System Initialization

•  Entry condition: Power is off, car is not moving
•  Flow of events:

1.  Driver turns power on
•  Exit condition: Car moves forward, headlight is on

Use case 5: Move car forward

•  Entry condition: Car does not move, headlight is out
•  Flow of events

1.  Driver turns power on
•  Exit condition:

•  Car runs forward with its headlight shining

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 46

Toy Car: Object Model

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 47

Dynamic Modeling:
Create the Sequence Diagram

•  Name: Drive Car
•  Sequence of events:

•  Billy turns power on
•  Headlight goes on
•  Wheels starts moving forward
•  Wheels keeps moving forward
•  Billy turns power off
•  Headlight goes off
•  Wheels stops moving
•  . . .

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 48

Sequence Diagram for Drive Car Scenario

:Headlight Billy:Driver :Wheel

Power(on) Power(on)

Power(off) Power(off)

Power(on) Power(on)

WRONG ORDER OF OBJECTS!!!
Wrong sequence of events (two messages
starting at the same time)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 49

Sequence Diagram for Drive Car Scenario

ON

Not good yet: no boundaries, who is controlling the flow? What about data objects?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 50

Sequence Diagram for Drive Car Scenario

Good!

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 51

Toy Car: Dynamic Model
Wheel

Headlight
Off

On

poweron
power

off

ForwardInitStationary

power
on

Stationary

power
off

Backward

power
off

Stationary2
Power off

Stationary3
Power on

Power on

Stationary4 Stationary5
Power on

Power off

