ECOS Lab ICA
ée Engineering COmplex E @ Ricorche

dSmart systems

Soluzioni Generali a Problemi
Ricorrenti nello Sviluppo di
Software ad Oggetti:

Design Pattern

Luca Sabatucci

Martedi 24 Maggio 2016 ICAR-CNR

Programming Abstractions

HHHH-HHHH
e R R R RRRERRRRL

OS¢ @OOQ oo,
& @Q ‘

Procedural Style vs Object-Oriented Style

* Procedure / Function * Class/Object
 Record e Abstract Class/Interface
 Module o Attribute/Method
* Procedure Call * |nheritance/Subclassing
— Type, SubType,
SuperType

* Dynamic Binding
* Polymorphism
— Abstract operations

Design Pattern

Desian Patterns

Elements of Reusable

A ISIMNM-NOSIAAY

—
~
v
’”

S

»

’

’

) 1%

LLOWdWO

SAIAS ON

Design Patterns

Each pattern describes a problem which occurs
over and over again in our environment, and
then describes the core of the solution to that
problem, in such a way that you can use this
solution a million times over, without ever doing
it the same way twice

Remember, knowing
concepts like abstraction,
inheritance, and polymorphism do
not make you a good object oriented
designer. A design guru thinks about
how to create flexible designs that
are maintainable and that can
cope with change.

Patterns derive from Experience

* Desighing object-oriented software is hard, and
designing reusable object-oriented software is
even harder

* The value of design patterns is that of being the
result of experience on the field gained over
several years of trial-and-error attempts.

* Using a pattern consists in exploiting a well-
proven solution, with general benefits on
software quality

Description
* Design patterns are typically described via
informal natural language
— A nhame

— The problem (why, when)
— The solution (what, how)

— The consequences (decisions, trade-offs)

GoF’s Book description template:

Name, Classification, Intent, Motivation,
Applicability, Structure, Participants, Collaborations,
Consequences, Implementation, Sample Code,
Known Uses, Related Patterns

The GoF’s Catalog

Purpose

Scope

Factory Method (107) ' Adapter (139) Interpreter (243)
Class Template Method (325)
Abstract Factory (87) | Adapter (139) Chain of Responsibility (223)
Builder (97) Bridge (151) Command (233)
Prototype (117) Composite (163) | Iterator (257)
Singleton (127) Decorator (175) ' Mediator (273)
. Facade (185) Memento (283)
Object Proxy (207) Flyweight (195)
Observer (293)
State (305)
Strategy (315)

Visitor (331)

Patterns

325

300 A
275
250 1

225

307
296
221
a1 215
189
176
. 164
] 117
: 90
57

| 34 37

200

175

150

125

100

75

50

25

111

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
Year

Figure 1: Number of Patterns Created, 1994 - 2007.

2007

Patterns

Table 1: Pattern Diversity by Technical Domain

Type #Collections #Patterns
User Interface 14 425
Programming Languages 14 243
Architecture 11 231
OO0 Design 33 161
Workflow 11 149
Systems 14 140
Communication 11 91
Database 5 54
Frameworks 4 51
Components 3 47
Parallelization 3 35
Security 2 16
Management 2 12
Concurrency 7 11
Networking 3 11
Information Integrity 1 10
Fault Tolerance 1 8

1000

912
900

800
700
600
500
400

300

200 129
. — - -_

Design ‘ Architecture Process

Programming Analysis Testing Requuremcnt& Management

47 39 13 15 6 4 - 3

Software Development Patterns

Figure 3: Types of Software Development Patterns.

Design Patterns
solve
Design Problems

Typical OO Design Problems

Class vs Type

An object's class defines how the object is
implemented.

— the object's internal state
— the implementation of its operations

An object's type only refers to its interface
— the set of requests to which it can respond
— object supports the interface defined by the class

An object can have many types

Objects of different classes can have the same
type

Class Inheritance
VS
Interface Inheritance

* Class inheritance defines an object's
implementation in terms of another object's
implementation (code sharing/reuse)

* |nterface inheritance (or subtyping) describes
when an object can be used in place of
another

class interface interface

T extends | implements Textends
I

class class interface

Implementation vs Interface

* Implementation Inheritance

— just a mechanism for reusing functionality in parent
classes.

* Interface Inheritance
— defining families of objects with identical interfaces

* classes derived from an abstract class will share its Washable :
: : Object
interface «interfacey»

« adding/overriding operations AN /N

* not hiding operations of the parent class.
— all subclasses can respond to the same requests

Cup
 Committing to an interface AN
— clients are unaware of the specific types of objects
they use CofteeCup

— clients are unaware of the classes that implement
these objects

— this greatly reduces implementation dependencies
between subsystems

Inheritance vs Composition
[for reusing functionality]

* Reusing by subclassing is “white-box reuse”
— inheritance is defined statically at compile-time

— provides default implementations for operations and lets subclasses
override them

— the internals of parent classes are often visible to subclasses
(inheritance breaks encapsulation)

e Reusing by composition is “black-box reuse”

— new functionality is obtained by assembling objects to get more
complex functionality
(objects shall respect each others' interfaces)

— It is defined dynamically at run-time through objects acquiring
references to other objects
(object can be replaced at run-time by another with the same interface)

— no internal details of objects are visible
— fewer implementation dependencies

Inheritance vs Generics

* A third way to compose behavior in object-
oriented systems

* This technique lets you define a type without
specifying all the other types it uses

— unspecified types are supplied as parameters at the
point of use

— Parametrized type cannot change at run-time

* Not all programming languages support Generics

The case of the SimUDuck app

Joe works for a company that makes a highly
successful duck pond simulation game, SimUDuck

The game can show a large variety of duck
species swimming and making quacking sounds

The desighers use standard OO techniques

They created one Duck superclass from which all
other duck types inherit.

The disy\ay() method is
abstract, sinte all dutk
subtypes look diffevent.

All ducks quack and swim, the e~ quack()
supevtlass takes eave of the swim()

implementation tode. display)
Eath dutk subtype / I OTHER duck-like methods...

is \'CSV""S.‘\)\C gl

ing 1Ls own

mplementrd *2 Tp ¢ dutks

i havioY {,’ s Q
d\s?\a\[() be obher TYFC .
how it \oghs o e l'/::r'\fﬁrmn the Dutk dass

n
seeeen N\
MallardDuck RedheadDuck

display() { display() {
Il looks like a mallard } 11 looks like a redhead }

Evolving the system

* |n the last year, the company has been under
increasing pressure from competitors.

* After a week long off-site brainstorming session,
the company executives think it’s time for a big
Innovation.

* They need something really impressive to show
at the upcoming shareholders meeting next

week.

Now we need the ducks to FLY

Evolution Maintainance

* The executives decided that flying ducks is just
what the simulator needs to blow away the
other duck sim competitors

* And of course Joe’s manager told them it’ll be

no problem for Joe to just whip something up
in a week

— he’s an OO programmer... how hard can it be?

§

What we want.

I just need to add a fly()
method in the Duck class and

then all the ducks will inherit it.
Now's my time to really show my
true OO genius.

Duck
quack()
swifl) T~ Joe
display() Joe added:
é What Jo
\ ,,\,\og,\a‘ﬁ% fy) <
™ J1 OTHER duck-like methods...
\ Ane
MallardDuck RedheadDuck oc Dutk TYPEs
display() { display() {

i/ looks like a mallard }

/! looks like a redhead }

But something went horribly wrong...

Joe, I'm at the
shareholder's meeting.
They just gave a demo and there
were rubber duckies flying around
the screen. Was this your idea of
a joke? You might want to spend
some time on Monster.com...

rubber ducky

What happened?

* Joe failed to notice that not all subclasses of
Duck should fly

* When Joe added new behavior to the Duck
superclass, he was also adding behavior that
was not appropriate for some Duck subclasses

* He now has flying inanimate objects in the
SimUDuck program

Duck
quack()
- swim)
) BTl
RE “\f?« i display)
N e T3 0 — | fiy()
ect h\/\/ ke, Y uabkl
sui ey ¥ s K3 /I OTHER dudk-ike methods.. [o v ev dutks don’g *}i
a'mc,\») AN o .\uac\c() s overvidden
s\\w\d“ ko “Sc\ucak -
| MallardDuck RedheadDuck RubberDuck
display() { display() { quack() {
/! looks like a mallard {/ looks like a redhead Il overridden to Squeak
) } }
display() {
{/ looks like a rubberduck
}

A localized update to the code caused a nonlocal side effect
(flying rubber ducks)!

What he thought was a great use
of inheritance for the purpose of
reuse

hasn't turned out so well when it
comes to maintenance.

Joe thinks about inheritance...

But then what happens when
we add wooden decoy ducks
to the program? They aren't
supposed to fly or quack...

I could always just
override the fly() method in
rubber duck, the way I am with
the quack() method...

O
0

RubberDuck
quack() {/ squeak}

display() { /f rubber duck }

fly(){
Il override to do nothing

’__/—-—

" |\
‘ R ~
g =0
DecoyDuck
quack() {

}

// override to do nothing

}

]) display() { // decoy duck}
Here’s another class in the hierarchy;

notice that like RubberDuck, it doesn’t ﬂ?,%{,emde to do nothing
fly, but it also doesn’t quack.)

* Joe realized that inheritance probably wasn’t
the answer,

— Because executives now want to update the
product every six months (in ways they haven’t
vet decided on).

— He'll be forced to look at and possibly override
fly() and quack() for every new Duck subclass
that’s ever added to the program... forever.

* So, he needs a cleaner way to have only some
(but not all) of the duck types fly or quack.

How about an interface?

I could take the fly() out of the
Duck superclass, and make a
Flyable() interface with a fly()
method. That way, only the ducks that
are supposed to fly will implement that
interface and have a fly() method... and
I might as well make a Quackable, too,
since not all ducks can quack.

Quackable

.,
‘e
T

d
e

‘e
.. .
. .
.
v
.

Duck

swim()

.
‘e,
e

display()
/f OTHER duck-like methods...

..
.
.
e
‘e

..
.
.
.,
s

MallardDuck

RedheadDuck

RubberDuck DecoyDuck
display() display() display() display()
fly() fly() quack()
quack() quack()

* Having the subclasses
implement Flyable and/or
Quackable solves part of
the problem (no

That is, like, the dumbest idea
you've come up with. Can you say,
“duplicate code”? If you thought

i nd p p ro p ri ate Iy ﬂyl ng having to override a few methods was bad,
rubber ducks), o ek it e Chage 1o tha g,

behavior... in all 48 of the flying
Duck subclasses?!

* |t completely destroys code
reuse for those behaviors,

— so it just creates a different
maintenance nightmare.

* And of course there might
be more than one kind of
flying behavior even among
the ducks that do fly...

What’s the one thing you can always
count on in software development?

No matter where you work, what you’re
building, or what language you are
programming in, what’s the one true
constant that will be with you always?

JOMAHD

(use a mirror to see the answer)

No matter how well you design an
application,

over time an application
must grow and change
or it will die.

Identify the aspects of your application
that vary and separate them from
what stays the same.

* Take what varies and “encapsulate” it so it won’t
affect the rest of your code

— later you can alter or extend these parts without
affecting the rest

* The result is fewer unintended consequences from
code changes and more flexibility in your
systems!

Implementation Details

We know that fly() and quack() are the parts of
the Duck class that vary across ducks.

We add two sets of classes (apart from the Duck
class),

— one for fly and
— one for quack.

Each set of classes will hold all the
implementations of their respective behavior.

Th D | kl{: super

For instance implementing: @zt

’c{ 5’(em {o ano{hcr class

s{ruLt e

— quacking, \
— squeaking, /

. Si/ence_ Q\...»b’u‘n‘;mwhafvaries @)

Implementation Details (lIl)

* Now we assign behaviors to the instances of
Duck.

— For example, we might want to instantiate a new
MallardDuck instance and initialize it with a specific
type of flying behavior.

* We include behavior “setter” methods in the
Duck classes so that we can change the
MallardDuck’s flying behavior at runtime.

* This solution allows changing the behavior of a
duck dynamically

Program to an interface
(not an implementation)

<<interface>>

* |f we use an interface to RyBehavior
represent each behavior

— then the Duck classes

fly()

does not know FIyWitHWings FIy.NoWay
implementation details MO{ | fy)

f h . b h . // implements duck flying // do nothing - can't fly!
or thelr own behaviors) }

This time, it is NOT the Duck classes
that will implement the flying and
quacking interfaces

* forinstance, FlyBehavior
and QuackBehavior will
implement one of those
interfaces.

Program to an interface” really means
“Program to a supertype”

The word interface is
overloaded

I don't see why you have to
use an interface for FlyBehavior.
You can do the same thing with an
abstract superclass. Isn't the
whole point to use polymorphism?

You can program to an
interface, without having to
actually use a Java interface

The point is to exploit
polymorphism by
programming to a supertype

Implementation vs Supertype

* Programming to an * Programming to an
implementation interface/supertype would
would be: be:

Dog d = new Dog(); Animal animal = new Dog();

d.bark(); animal .makeSound() ;

. D-éélaring the variable * We know it’s a Dog, but we
“d” as type Dog forces can now use the animal
us to code to a concrete reference polymorphically.

implementation.

Do you remember?

Quackable

quack()

.
.
.
.
.
.
..
.
.
T
e

..
.
.
.l
. -
.
.
.
..
.

Duck

swim()
display()

v s
.
.
-
.

/f OTHER duck-like methods...

.
.
.
.
.
.
-
.
-
-
-
-
.
.
-
e
.
s

Malla'r‘dDuck RubberDuck
display() display() display()
fly() fly() quack()
quack() quack()

Integrating the Duck Be

havior.. ..

Sa C ""5 {CY‘cacc

behavior; We have an n

‘U\a{: \ust intludes 3 t\ua(, k0

oW o be
?\‘l%c\\a“‘o‘ \Sscs e mc{‘,\'\od that needs
. as
a\ Q\\g\% o) ¢\asse® ""Y\CMC“{"Cd
e \" s(\
'.\mY\Cn\C“*' JC\\C)
\
: <<interface>>
<<interface>> , QuackBehavior
- FlyBehavior quack()
0
FlyWithWings FlyNoWay Quack | Squeak MuteQuack
ﬂYQ { fiy() { quack() { quack() { quack() {
/limplements duck flying // do nothing - can't fly! // implements duck quacking /! rubber duckie squeak /! do nothing - can't quack!

} } }

@Uacks }
(And hey. /K real)y that
HCV‘C s ﬂ) 8” duc fhéh PIC"'C"{J{‘ ?“dt.'k

of HY»\ ; " Plc"’eh'/‘.al x n {: ‘n\/ B

1

Quatks that squeak.

i

Quatks that make
no SOVY\d a{: an

"The key is that a Duck will now delegate its behavior, instead
of using methods defined in the Duck class (or subclass).

1. First we’ll add two instance variables

2. Now we implement performQuack()

Instante vaviables hold a veferente to

The behavior variables are ispedl B bkt 3t ot

detlaved as the behavior

INTERFACE type. Dack
\\) FlyBehavior flyBehavior s

QuackBehavior quackBehavior

These methods rc?\aCC

k(). performQuack()
Ay() and t\uac\/ o
display()
\ performFly()

/I OTHER duck-like methods...

public class Duck { s
QuackBehavior quackBehavior; {/ implemen

havior
eSS Rather than handling ’i ; ?“aictl:;k
. [C5
public void performQuack() { kselk, the D,::k ::):zk cefevented 0Y
quackBehavior.quack() ; {,_/ behavioy VARG

} auatk ehavior:

How the flyBehavior and quackBehavior
instance variables are set

public class MallardDuck extends Duck { Jses the Quatk elass to

A Ma\\anD“{’k when chﬁovm&uack()
public MallardDuck () { K'\ handle ks ‘\“ac’k' " oility Lor the C\uad‘ -
quackBehavior = new Quack(); s talled, the e ek obiett and we 9¢
flyBehavior = new FlyWithWings () ; delegated Lo the Qud)

} a veal quatk- | o
R emember, MallardDuck inherits the \ | F\YW\U\W'\“‘BS 3 its FHBC
atkBehavior and Q\/Bchavior instance And it uses
: type

variables c\row\ elass Duek.

public void display() {
System.out.println(“I'm a real Mallard duck”);

}
}

The constructor initializes the MallardDuck’s inherited quackBehavior
instance variable to a new instance of type Quack

However, it is also possible to set the behavior dynamically

Joe applied the Strategy pattern

@ Congratulations on
your first pattern!

Encapsulate what varies.

Take the parts that vary
and encapsulate them, so
that later you can alter or
extend the parts that
vary without affecting
those that don’t

Program to an interface,
not an implementation.

Don't declare variables to
be instances of particular
concrete classes.

Instead, commit only to
an interface defined by
an abstract class.

&

b

HAS-A
can be better than
IS-A

Favoring object
composition

over class
inheritance

helps you keep
each class
encapsulated and
focused on one task

The relationships between
objects and their types must be
designed with great care,
because they determine how
good or bad the run-time
structure Is.

Design Patterns
solve
Design Problems

Determining Object Granularity

FACADE, FLYWEIGHT, ABSTRACT FACTORY, BUILDER, VISITOR, COMMAND

How do we decide what should be an object?
Objects can vary in size and number
They can represent everything

They may have no counterparts in the real
world

Specifying Object Interfaces

MEMENTO, DECORATOR, PROXY, VISITOR

Objects are known only through their interfaces

Two objects having completely different
implementations can have identical interfaces

Defining interfaces means
— identifying their key elements and
— the kinds of data that get sent across an interface

It is also important to specify relationships
between interfaces

Specifying Object Implementation

CHAIN OF RESPONSIBILITY, COMPOSITE, COMMAND, OBSERVER, STATE, STRATEGY
ABSTRACT FACTORY, BUILDER, FACTORY METHOD, PROTOTYPE, SINGLETON
STATE, STRATEGY, VISITOR, MEDIATOR, BRIDGE

Class vs Interface Inheritance

Programming to an Interface, not an
Implementation

Inheritance versus Composition

Delegation

EXAMPLES
OF DESIGN PATTERNS

1. Command

COMMAND

* Intent: encapsulate a request as an object,...

 Motivation: sometimes it's necessary to issue
requests to objects without knowing anything
about the operation being requested or the
receiver of the request

Aﬂpl!caﬁﬂ‘n {}—FJ Menu m - Comman p
command
Add{Dooument) AddiMenultam) Clickedi) o Execute()
| A
1
Documant command-=Execute) T}T T , i
1
Cpen()
Close()
Cutfy
Copyl)
Pastel)

* Applicability
— Callback
— Undo/Redo

— Logging

aReceiver aClient

aCommand aninvoker
1

naw Command{aReceiver) i ‘

e Structure /

Client Invoker o
:
:
|
/ : .| Receiver
|
1 |
Action{() ek

FECaiveEr

| Command

Execute}

:

ConcreteCommand

Execute() O--—------

2\

1 rﬁelver—nﬁctlun{ﬁ

COMMAND

* Consequences:
— Decoupling
* the object that invokes the operation (invoker)
* from the one that knows how to perfom it (receiver)

— Easy to add new Commands
— Easy to create families of Commands
— Macro-commands

COMMAND

Receilver

class Fan {
public void startRotate() {
System.out.println("Fan is rotating");
}
public void stopRotate() {
System.out.println("Fan is not rotating");

}
}

class Light {
public void turnOn() {
System.out.println("Light is on ");

}

public void turnOff() {
System.out.println("Light is off");

}

Command/Concrete Commands

public interface Command {
public abstract void execute ();

class LightOnCommand implements Command {
private Light myLight;
public LightOnCommand (Light L) {

class FanOnCommand implements Command {
private Fan myFan;

public FanOnCommand (Fan F) {

myLight = L; myFan = F;
} }
public void execute() { public void execute() {
myLight . turnOn(); myFan . startRotate();
} }
} }

class LightOffCommand implements Command {
private Light myLight;
public LightOffCommand (Light L)

class FanOffCommand implements Command {
private Fan myFan;
public FanOffCommand (Fan F) {

{ myFan = F;
myLight = L; }
} public void execute() {
public void execute() { myFan . stopRotate();
myLight . turnOff(); }
} }

COMMAND

Invoker

class Switch {
private Command UpCommand, DownCommand;

public Switch(Command Up, Command Down) {
UpCommand = Up;
DownCommand = Down;

}
void flipUp() {
UpCommand . execute () ;

}
void flipDown() {

DownCommand . execute ();
}

COMMAND

Client

public static void main(String[] args) {
Light testLight = new Light();
LightOnCommand testLOC = new LightOnCommand(testLight);
LightOffCommand testLFC = new LightOffCommand(testLight);
Switch testSwitch = new Switch(testLOC,testLFC);
testSwitch.flipUp();
testSwitch.flipDown();
Fan testFan = new Fan();
FanOnCommand foc = new FanOnCommand(testFan);
FanOffCommand ffc = new FanOffCommand(testFan);
Switch ts = new Switch(foc,ffc);
ts.f1lipUp();
ts.flipDown();

2. Composite

COMPOSITE

* |Intent: compose objects into tree structures
to represent part-whole hierarchies.
Composite lets clients treat individual objects
and compositions of objects uniformly

* Motivation: defining hierarchies of primitive

and composite objects

< IRVARD

7:58PM -, NoobsLab ¥

e

aPicture Personal =
"I Documents
J1 Music
{m) Pictures
B videos
¥ Downloads
M Trash
Devices
. File System
Network
Il Entire network

aPicture aRectangle

aH&ctanglej

< > M i@ Pictures > back

B Desktop

il Documents

¥ Downloads

5 Music

[NoobsLab.com

back

H = W ¥

P T

11920x1080.jpg
I BlackButt...lpaper.jpg
I black-wallpaper-10.jpg
8 black-wallpaper-11.jpg

(Gricres (TR

“, Public
Templates
Il Ubuntu One
B videos
[l examples.desktop
| initrd.img
| vmlinuz

Name: 1920x1080.jpg

Type: JPEG Image

B black-wallpaper-25.jpg
B3 black-wallpaper-26.jpg
I black-wallpaper-30.jpg
Il heartbrea...design.jpg
B img.png

Il Prowler_3...4x768.jpg
B ws_Black_...0x900.jpg

Size: 420.1kB

. 1920x1080.jpg
8 1920x1080p.jpg
8 Beautiful-...0-1050.jpg
I black wallpaper 21.jpg
=8 blurdm_desktop.png
B chromato...escens.jpg
BB Dark_Stea..._ark4n.jpg
i fuji_mac_o...paper.jpg
E3 mac_10_7...paper.png
B2 mac_os_x...lpaper.jpg
B3 mac_os_x...lpaper.jpg
W8 mac_os_x...paper_jpg
a mac_osx_l...lpaper.jpg
Il malys-Rev...LACK.png
B mountain_...d_dim.jpg

Owner: NoobsLab

Modified: 2012-06-20 00:4...

Client

Structure

Leaf

COMPOSITE

/

+

Component

q

+ Operationl {)
+ Operation2 {)

Composite

+ Operationl {)
+ Operation2 {)

+ Operationl {)

+ Operation2 {)

+ addComponent {)

+ removeComponent {)
+ getComponent {)

+ getComponentCount {)

COMPOSITE

* Consequences

— Defines class hierarchies consisting of primitive
and (recursively) composite objects

— Makes the client simple

* Primitive and composite objects can be treated
uniformly

— Makes it easier to add new kind of components

— Makes it harder to restrict the components of a
composite

Component, Leaf and Composte

interface AbstractFile {
public void 1ls();

class File implements AbstractFile {

class Directory implements AbstractFile {
private String m name;

private String m name;

private ArraylList m files = new ArrayList();
public File(String name) {

m_name = name; public Directory(String name) {
} m _name = name;
public void 1ls() { }
System.out.println(m name); public void add(Object obj) {
} m files.add(obj);
} }

public void 1ls() {
System.out.println(m name);
for (int i = 0; i < m files.size(); ++i) {

AbstractFile obj = (AbstractFile)
m files.get(1i);
obj.ls();
}

3. Singleton

SINGLETON

* |ntent: ensure a class has one and only one
instance, and provide a global point of access
to it

 Motivation: It's important for some classes to
have exactly one instance.

— In a system, there should be only one printer
spooler and only one file system.

— A digital filter will have one A/D converter.

— An accounting system will be dedicated to serving
one company.

S frn Static variable which will contain

* Example of Singleton Class single instance of the SingletonExample
) * fauthor IdioTechie -\ class.
Making construct private means “/ k] S ’,/:/'
-
nobody except this class itself can Rarts
X R ublic class SingletonExample g
instantiate P g { //:/’
) et
\::\ // Static member holds only one instance of the l\/’:/'
~
‘\:s\ // SingletonExample class “'__;/
"\::\ private static SingletonExample singletonInstance;
Soose
o ~o
\\:\‘\\// SingletonExample prevents any other class from instantiating
= "“private SingletonExample () {
}
// Providing Global point of access
S public static SingletonExample getSingletonInstance() {
’:‘,‘,7 if (null == singletonInstance) {
/':/'\ singletonInstance = new SingletonExample ()
PP
. : g
i return singletonInstance;~._ o~~
/',’” } TSNl
PPt S~
’\’/" b < ~~~"N
i i ic = ublic void printSingleton B)) -
Outside world can access this static - 5 R g ().(: : ~~Jd getSingletoninstance() returns an instance if this class.
method only. System.out.println("Inside print Singleton"):
Note: Lazy loading is used here.i.e. }
unless this class is required to be }

instantiated it will not be done.

Patterns as a shared Vocabulary

So I created this broadcast
class. It keeps track of all
the objects listening to it and anytime
a new piece of data comes along it sends a
message to each listener. What's cool is that
the listeners can join the broadcast at any
time or they can even remove themselves.
It is really dynamic and loosely-coupled!

Exactly. If you
communicate in patterns,
then other developers know
immediately and precisely the
design you're describing. Just don't
get Pattern Fever... you'll know
you have it when you start using
patterns for Hello
World...

Rick, why
didn't you just say
you were using the
Observer Pattern?

Composing Design Patterns

Editor <>—>| Tool

SelectTool e 00 CreationTool < br Shape }04

prototype)\

Command\| Text Line ® ® ¢ | Group

/k Y

e 00 AddShapeCmd

»
\'\q

Grazie per |'attenzione!

9 sabatucci@pa.icar.cnr.it

o@® _ECOS Lab
0 e Engineering COmplex QI le

and Smart systems

http://ecos.pa.icar.cnr.it

