
Design	Pa*ern	

Soluzioni	Generali	a	Problemi	
Ricorren6	nello	Sviluppo	di	

So:ware	ad	Ogge=:		

Martedì	24	Maggio	2016	 ICAR-CNR	

Luca	Sabatucci	



Programming	Abstrac6ons	



Procedural	Style	vs	Object-Oriented	Style	

•  Procedure	/	Func6on	
•  Record	
•  Module	
•  Procedure	Call	

•  Class/Object	
•  Abstract	Class/Interface	
•  A*ribute/Method	
•  Inheritance/Subclassing	
–  Type,	SubType,	
SuperType	

•  Dynamic	Binding	
•  Polymorphism	
–  Abstract	opera6ons	



Design	Pa*ern	





Design	Pa*erns	

Each	pa*ern	describes	a	problem	which	occurs	
over	and	over	again	in	our	environment,	and	
then	describes	the	core	of	the	solu6on	to	that	
problem,	in	such	a	way	that	you	can	use	this	

solu6on	a	million	6mes	over,	without	ever	doing	
it	the	same	way	twice		





Pa*erns	derive	from	Experience	
•  Designing	object-oriented	so:ware	is	hard,	and	
designing	reusable	object-oriented	so:ware	is	
even	harder		

•  The	value	of	design	pa*erns	is	that	of	being	the	
result	of	experience	on	the	field	gained	over	
several	years	of	trial-and-error	a*empts.		

•  Using	a	pa*ern	consists	in	exploi6ng	a	well-
proven	solu6on,	with	general	benefits	on	
so:ware	quality		



Descrip6on	
•  Design	pa*erns	are	typically	described	via	
informal	natural	language	
– A	name	
– The	problem	(why,	when)	
– The	solu6on	(what,	how)	
– The	consequences	(decisions,	trade-offs)	

GoF’s	Book	descrip/on	template:	
Name,	Classifica6on,	Intent,	Mo6va6on,		
Applicability,	Structure,	Par6cipants,	Collabora6ons,		
Consequences,	Implementa6on,	Sample	Code,		
Known	Uses,	Related	Pa*erns	



The	GoF’s	Catalog	

Introduction

Define the skeleton of an algorithm in an operation, deferring some steps to subclasses. Template 

Method lets subclasses redefine certain steps of an algorithm without changing the algorithm's 

structure. 

Visitor (331) 

Represent an operation to be performed on the elements of an object structure. Visitor lets you define 

a new operation without changing the classes of the elements on which it operates. 

 Organizing the Catalog

Design patterns vary in their granularity and level of abstraction. Because there are many design patterns, we 

need a way to organize them. This section classifies design patterns so that we can refer to families of 

related patterns. The classification helps you learn the patterns in the catalog faster, and it can direct efforts 

to find new patterns as well.

We classify design patterns by two criteria (Table 1.1). The first criterion, called purpose, reflects what a 

pattern does. Patterns can have either creational, structural, or behavioral purpose. Creational patterns 

concern the process of object creation. Structural patterns deal with the composition of classes or objects. 

Behavioral patterns characterize the ways in which classes or objects interact and distribute responsibility.

 Purpose

Creational Structural Behavioral

Scope

Class
Factory Method (107) Adapter (139) Interpreter (243)

Template Method (325)

Object

Abstract Factory (87)

Builder (97)

Prototype (117)

Singleton (127)

Adapter (139)

Bridge (151)

Composite (163)

Decorator (175)

Facade (185)

Proxy (207)

Chain of Responsibility (223)

Command (233)

Iterator (257)

Mediator (273)

Memento (283)

Flyweight (195)

Observer (293)

State (305)

Strategy (315)

Visitor (331)

Table 1.1:  Design pattern space

The second criterion, called scope, specifies whether the pattern applies primarily to classes or to objects. 

Class patterns deal with relationships between classes and their subclasses. These relationships are 

established through inheritance, so they are static—fixed at compile-time. Object patterns deal with object 

relationships, which can be changed at run-time and are more dynamic. Almost all patterns use inheritance 

to some extent. So the only patterns labeled "class patterns" are those that focus on class relationships. Note 

that most patterns are in the Object scope.

Creational class patterns defer some part of object creation to subclasses, while Creational object patterns 

defer it to another object. The Structural class patterns use inheritance to compose classes, while the 

Structural object patterns describe ways to assemble objects. The Behavioral class patterns use inheritance to 

describe algorithms and flow of control, whereas the Behavioral object patterns describe how a group of 

objects cooperate to perform a task that no single object can carry out alone.

There are other ways to organize the patterns. Some patterns are often used together. For example, 

Composite is often used with Iterator or Visitor. Some patterns are alternatives: Prototype is often an 

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/chap1fs.htm (8 of 24) [21/08/2002 19:04:17]



 3 

 
Figure 1:  Number of Patterns Created, 1994 - 2007. 

trends in pattern practices.  The focus is largely on “collections”, sets of collection gathered in a 

single location, and the types of patterns these collections contain. 

2.1 Patterns and Pattern Collections 

The definitions we used are as consistent as possible with current software pattern literature.  

Patterns are considered as structured entities that address a commonly recurring problem within 

a context.  For this study, we do not make any value judgments on the validity or quality of 

patterns, whether they have been properly vetted, or whether they were duplicates (although See 

Section 2.4).  Pattern collections are loosely coupled patterns located in a common location 

(repository, paper, book, Web site).  Most collections address a fairly homogeneous set of topics 

and consistently use a common pattern form, a set of attributes used to describe the collection’s 

pattern, although pattern form vary widely between collections.  Examples of pattern collections 

include the well-known Gang-of-Four (GoF) design patterns [25], the five volume Pattern-

Oriented Software Architecture (POSA) series [10-12, 28, 39], the van Welie usability collection 

[45], the Portland Pattern Repository [16] etc. 

Many collections are referred to as pattern languages.  It can be argued that many of these 

languages, which in Alexander’s vision were connected by a kind of “grammar” that supported 

the composition of patterns from large to small scale [4], lack the means to systematically 

compose patterns into holistic design and therefore are not “languages”.  Again, we do not at this 

time want to make these distinctions, leaving it instead as a topic for further debate in the 

community.  We have opted to use the term “collection” to refer to any body of patterns, whether 

considered a language or not.  The overall criteria we want to communicate is that individual 

patterns should be seen as just piece of a larger puzzle that together sheds light on a body of 

design knowledge.  Indeed, the objective of our future work is to provide the means to put these 

pieces together in a meaningful way. 

2.2 Scale and Availability of Software Patterns 

Even before 2000, when Rising published a catalog of over 1000 patterns [38], it was stated that 

“...there are now so many patterns it is very difficult to remember them all” [14] and that “the 

increase in the number of Design Patterns makes a common vocabulary unmanageable” [1].  

Since then, the number of patterns has doubled and have been created for an increasing diverse 

set of software development 

topics.  Figure 1 shows our 

current sampling in terms of 

the year they were created (we 

could not determine the year 

of origin for 9 patterns).  

Appendix A shows a listing of 

all pattern collections we 

used.  This should be seen as 

an underestimate of the actual 

number of patterns available, 

as it is a daunting task to find 

all patterns in various printed 

and electronic sources.  In 

alignment with Risings 



 4 

 

Figure 2:  Number of Patterns within Collections. 

Table 1:  Pattern Diversity by Technical Domain 

Type #Collections  #Patterns 

User Interface 14  425 

Programming Languages 14  243 

Architecture 11  231 

OO Design 33  161 

Workflow 11  149 

Systems 14  140 

Communication 11  91 

Database 5  54 

Frameworks 4  51 

Components 3  47 

Parallelization 3  35 

Security 2  16 

Management 2  12 

Concurrency 7  11 

Networking 3  11 

Information Integrity 1  10 

Fault Tolerance 1  8 

 

publication, we found 1142 

patterns up to and including 

the year 2000.  Since that 

time, including the partial 

year 2007, we found 

another 1092 patterns, 

evidence that the rate of 

pattern creation remains 

steady.  Although 

somewhat inconsistent over 

the years, 2002 – 2007 are 

amongst the most prolific 

years, with the exception of 

a low year in 2006. 

The size of collections 

ranges from 1 (which really isn’t a collection) to 146.  Figure 2 reveals that collections tend to be 

small.  Excluding the 46 individual patterns, 70 of 121 collections (58%) have between 2 and 10 

patterns.  The mode is 5 patterns in a collection and the average is 18, being skewed by a 

collection with 146 and two with over 90 patterns.  The pattern listing in Appendix A are sorted 

by the number of patterns in the collection. 

2.3 Types of Software Patterns 

The development of pattern languages addressing holistic solutions for software requires patterns 

that address a wide variety of topics.  Table 1 shows a subset of these topics that are related to 

technical (software-oriented) domains.  Although the largest number of patterns are in User 

Interface, Programming Languages, and Architecture, the largest set of collections are oriented 

toward OO Design, ala the GoF patterns.  Not all patterns address software development 

technologies.  Fourty-one of the 

collections, with 546 patterns, we 

surveyed do not fall under the 17 

categories shown in Table 1.  Many of 

these patterns address specific application 

domains, which define an even larger set 

of topics. 

Another measure is the ability to address 

various software development issues, 

both process and lifecycle.  Figure 3 

shows the distribution of patterns across 

types of software development activities.  

Design and Architecture patterns 

constitute a majority of the types of 

development patterns (65%).  The types 

of patterns available is quite broad 

although Testing patterns, in particular, 

seem underrepresented relative to the 

 5 

 
Figure 3:  Types of Software Development Patterns. 

amount of effort that 

goes into testing 

methodologies and 

techniques.  Thirty of 

the collections, 

containing a total of 315 

patterns, were not 

classified s software 

development patterns 

and do not appear in 

Figure 3. 

2.4 Variants and Duplicates 

In our investigations, we have found few instances of direct duplication.  For example, there are 

four instances of the “Breadcrumbs” usability pattern [40, 45, 46], one of which uses the (more 

appropriate) name “Homeward Bound” [13] (which includes a study showing that Breadcrumbs 

does not solve the problem – enhancing navigation in Web sites).  But pattern variants are much 

more common.  For example, Dyson and Anderson split the GoF State pattern into a set of intra-

related patterns forming a language of the overall GoF State pattern [5].  Variants of the GoF 

Observer pattern include the “Extended Observer” [44] and “The Middle Observer” [27].  GoF 

Patterns have also been combined to make new aggregate patterns such as the Managed 

Observer, which combines the Observer and Mediator patterns [32].  

There are many other examples that seem to be valid by Alexander’s definition that a good 

pattern describes “the core of the solution to that problem in such a way that you can use the 

solution a million times over without doing it the same way twice” [3], there are instances in 

which valid pattern variants exist and should be documented.  Others are more oriented toward 

specific implementation.  For example, the GoF Iterator pattern has documented variants 

including patterns that follow the Iterator and Enumeration classes in Java [19].  Some of these 

implementation-oriented patterns may not be considered as valid by many pattern experts. 

There are often good reasons for these variants, and they therefore not only need to be embraced, 

but represented in terms of how and when the variants should be used.  This also adds a 

dimension of semantic complexity to the problem of finding appropriate patterns.  I.e. once 

appropriate patterns are found, a secondary task arises to choose which variant is best suited to 

the task at hand.  

2.5 Pattern Relationships 

Perhaps most concerning for the development of systematic pattern-based methodologies is that 

patterns tend to be defined in isolation from other pattern collections, having no inter-collection 

links or relationships.  While many pattern collections either have explicit references to “related 

patterns” or embed pattern relationships within pattern descriptions, most relationships are intra-

collection, i.e. between patterns within the collection.  Cross-collection (inter-collection) 

relationships are rarely found, and most references are to a minority of collections, notably the 

GoF or POSA patterns.  Out of 170 collections, we were able to find only one instance that lists 

URL references to patterns in other collections, the Web patterns collection [40].  However, the 

URLs in this collection are listed in plain text and not hyperlinks. 



Design	Pa*erns		
solve		

Design	Problems	



Typical	OO	Design	Problems	



Class	vs	Type	
•  An	object's	class	defines	how	the	object	is	
implemented.		
–  the	object's	internal	state		
–  the	implementa6on	of	its	opera6ons	

•  An	object's	type	only	refers	to	its	interface	
–  the	set	of	requests	to	which	it	can	respond	
–  object	supports	the	interface	defined	by	the	class	

•  An	object	can	have	many	types	
•  Objects	of	different	classes	can	have	the	same	
type		



Class	Inheritance	
vs		

Interface	Inheritance	
•  Class	inheritance	defines	an	object's	
implementa6on	in	terms	of	another	object's	
implementa6on	(code	sharing/reuse)	

•  Interface	inheritance	(or	subtyping)	describes	
when	an	object	can	be	used	in	place	of	
another	



Implementa6on	vs	Interface	
•  Implementa6on	Inheritance	

–  just	a	mechanism	for	reusing	func6onality	in	parent	
classes.	

•  Interface	Inheritance	
–  defining	families	of	objects	with	iden6cal	interfaces	

•  classes	derived	from	an	abstract	class	will	share	its	
interface		

•  adding/overriding	opera6ons		
•  not	hiding	opera6ons	of	the	parent	class.		

–  all	subclasses	can	respond	to	the	same	requests	

•  Commi=ng	to	an	interface	
–  clients	are	unaware	of	the	specific	types	of	objects	

they	use	
–  clients	are	unaware	of	the	classes	that	implement	

these	objects	
–  this	greatly	reduces	implementa6on	dependencies	

between	subsystems	



Inheritance	vs	Composi6on		
[for	reusing	func6onality]	

•  Reusing	by	subclassing	is	“white-box	reuse”	
–  inheritance	is	defined	sta6cally	at	compile-6me	
–  provides	default	implementa6ons	for	opera6ons	and	lets	subclasses	
override	them	

–  the	internals	of	parent	classes	are	o:en	visible	to	subclasses	
(inheritance	breaks	encapsula6on)	

•  Reusing	by	composi6on		is	“black-box	reuse”	
–  new	func6onality	is	obtained	by	assembling	objects	to	get	more	
complex	func6onality		
(objects	shall	respect	each	others'	interfaces)	

–  It	is	defined	dynamically	at	run-6me	through	objects	acquiring	
references	to	other	objects	
(object	can	be	replaced	at	run-6me	by	another	with	the	same	interface)	

–  no	internal	details	of	objects	are	visible	
–  fewer	implementa6on	dependencies	



Inheritance	vs	Generics	

•  A	third	way	to	compose	behavior	in	object-
oriented	systems	

•  This	technique	lets	you	define	a	type	without	
specifying	all	the	other	types	it	uses	
–  unspecified	types	are	supplied	as	parameters	at	the	
point	of	use	

–  Parametrized	type	cannot	change	at	run-6me	

•  Not	all	programming	languages	support	Generics	



The	case	of	the	SimUDuck	app	

•  Joe	works	for	a	company	that	makes	a	highly	
successful	duck	pond	simula6on	game,	SimUDuck	

•  The	game	can	show	a	large	variety	of	duck	
species	swimming	and	making	quacking	sounds	

•  The	designers	use	standard	OO	techniques		

•  They	created	one	Duck	superclass	from	which	all	
other	duck	types	inherit.	





Evolving	the	system	

•  In	the	last	year,	the	company	has	been	under	
increasing	pressure	from	compe6tors.		

•  A:er	a	week	long	off-site	brainstorming	session,	
the	company	execu6ves	think	it’s	6me	for	a	big	
innova6on.		

•  They	need	something	really	impressive	to	show	
at	the	upcoming	shareholders	mee6ng	next	
week.	

Now	we	need	the	ducks	to	FLY	



Evolu6on	Maintainance	

•  The	execu6ves	decided	that	flying	ducks	is	just	
what	the	simulator	needs	to	blow	away	the	
other	duck	sim	compe6tors	

•  And	of	course	Joe’s	manager	told	them	it’ll	be	
no	problem	for	Joe	to	just	whip	something	up	
in	a	week	
– he’s	an	OO	programmer...	how	hard	can	it	be?	





But	something	went	horribly	wrong...	

rubber	ducky	



What	happened?	

•  Joe	failed	to	no6ce	that	not	all	subclasses	of	
Duck	should	fly	

•  When	Joe	added	new	behavior	to	the	Duck	
superclass,	he	was	also	adding	behavior	that	
was	not	appropriate	for	some	Duck	subclasses	

•  He	now	has	flying	inanimate	objects	in	the	
SimUDuck	program	



A	localized	update	to	the	code	caused	a	nonlocal	side	effect	
(flying	rubber	ducks)!	



What he thought was a great use 
of inheritance for the purpose of 

reuse 
 

hasn’t turned out so well when it 
comes to maintenance. 



Joe	thinks	about	inheritance...	

Here’s	another	class	in	the	hierarchy;	
no6ce	that	like	RubberDuck,	it	doesn’t	
fly,	but	it	also	doesn’t	quack.	



How	about	an	interface?	

•  Joe	realized	that	inheritance	probably	wasn’t	
the	answer,		
– Because	execu6ves	now	want	to	update	the	
product	every	six	months	(in	ways	they	haven’t	
yet	decided	on).		

– He’ll	be	forced	to	look	at	and	possibly	override	
fly()	and	quack()	for	every	new	Duck	subclass	
that’s	ever	added	to	the	program...	forever.	

•  So,	he	needs	a	cleaner	way	to	have	only	some	
(but	not	all)	of	the	duck	types	fly	or	quack.	





•  Having	the	subclasses	
implement	Flyable	and/or	
Quackable	solves	part	of	
the	problem	(no	
inappropriately	flying	
rubber	ducks),		

•  It	completely	destroys	code	
reuse	for	those	behaviors,		
–  so	it	just	creates	a	different	
maintenance	nightmare.		

•  And	of	course	there	might	
be	more	than	one	kind	of	
flying	behavior	even	among	
the	ducks	that	do	fly...	



What’s	the	one	thing	you	can	always	
count	on	in	so=ware	development?	

(use	a	mirror	to	see	the	answer)	

No	ma*er	where	you	work,	what	you’re	
building,	or	what	language	you	are	
programming	in,	what’s	the	one	true	
constant	that	will	be	with	you	always?	



No matter how well you design an 
application, 

  
over time an application  
must grow and change  

or it will die. 



IdenEfy	the	aspects	of	your	applicaEon	
that	vary	and	separate	them	from	

what	stays	the	same.	

•  Take	what	varies	and	“encapsulate”	it	so	it	won’t	
affect	the	rest	of	your	code	
–  later	you	can	alter	or	extend	these	parts	without	
affecEng	the	rest	

•  The	result	is	fewer	unintended	consequences	from	
code	changes	and	more	flexibility	in	your	
systems!	



Implementa6on	Details	
•  We	know	that	fly()	and	quack()	are	the	parts	of	
the	Duck	class	that	vary	across	ducks.	

•  We	add	two	sets	of	classes	(apart	from	the	Duck	
class),		
–  one	for	fly	and		
–  one	for	quack.		

•  Each	set	of	classes	will	hold	all	the	
implementa6ons	of	their	respec6ve	behavior.		

•  For	instance	implemen6ng:	
–  quacking,		
–  squeaking,		
–  silence.	



Implementa6on	Details	(II)	
•  Now	we	assign	behaviors	to	the	instances	of	
Duck.		

–  For	example,	we	might	want	to	instan6ate	a	new	
MallardDuck	instance	and	ini6alize	it	with	a	specific	
type	of	flying	behavior.		

•  We	include	behavior	“se*er”	methods	in	the	
Duck	classes	so	that	we	can	change	the	
MallardDuck’s	flying	behavior	at	runEme.	

•  This	solu6on	allows	changing	the	behavior	of	a	
duck	dynamically	



Program	to	an	interface	
(not	an	implementaEon)	

•  If	we	use	an	interface	to	
represent	each	behavior		
–  then	the	Duck	classes	
does	not	know	
implementa6on	details	
for	their	own	behaviors	

•  for	instance,	FlyBehavior	
and	QuackBehavior	will	
implement	one	of	those	
interfaces.	

This	6me,	it	is	NOT	the	Duck	classes	
that	will	implement	the	flying	and	
quacking	interfaces	



Program	to	an	interface”	really	means	
“Program	to	a	supertype”	

•  The	word	interface	is	
overloaded	

•  You	can	program	to	an	
interface,	without	having	to	
actually	use	a	Java	interface	

•  The	point	is	to	exploit	
polymorphism	by	
programming	to	a	supertype	



Implementa6on	vs	Supertype	

•  Programming	to	an	
implementa/on		
would	be:	

Dog d = new Dog();
d.bark();

	
•  Declaring	the	variable	
“d”	as	type	Dog	forces	
us	to	code	to	a	concrete	
implementa6on.	

•  Programming	to	an	
interface/supertype	would	
be:	

Animal animal = new Dog();
animal.makeSound();

•  We	know	it’s	a	Dog,	but	we	
can	now	use	the	animal	
reference	polymorphically.	



Do	you	remember?	



Integra6ng	the	Duck	Behavior	

The	key	is	that	a	Duck	will	now	delegate	its	behavior,	instead	
of	using	methods	defined	in	the	Duck	class	(or	subclass).	



1.   First	we’ll	add	two	instance	variables	
2.   Now	we	implement	performQuack()	



How	the	flyBehavior	and	quackBehavior	
instance	variables	are	set	

The	constructor	ini6alizes	the	MallardDuck’s	inherited	quackBehavior	
instance	variable	to	a	new	instance	of	type	Quack	

	
However,	it	is	also	possible	to	set	the	behavior	dynamically	



Joe	applied	the	Strategy	pa*ern	

Chapter 1. Welcome to Design Patterns Page 24 Return to Table of Contents

Chapter 1. Welcome to Design Patterns
Head First Design Patterns By Eric Freeman, Elisabeth Freeman, Bert Bates, Kathy Sierra
ISBN: 0596007124 Publisher: O'Reilly

Prepared for Ann Cherkis, Safari ID: maottw@gmail.com

Print Publication Date: 2004/10/25 User number: 1673621 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

www.it-ebooks.info



Encapsulate	what	varies.	
	
Take	the	parts	that	vary	
and	encapsulate	them,	so	
that	later	you	can	alter	or	
extend	the	parts	that	
vary	without	affec6ng	
those	that	don’t	



Program	to	an	interface,	
not	an	implementa6on.	
	
Don't	declare	variables	to	
be	instances	of	par6cular	
concrete	classes.		
Instead,	commit	only	to	
an	interface	defined	by	
an	abstract	class.	



Favoring	object	
composi6on		
over	class	
inheritance		
helps	you	keep		
each	class	
encapsulated	and	
focused	on	one	task	

HAS-A		
can	be	be*er	than		

IS-A	



The	rela6onships	between	
objects	and	their	types	must	be	
designed	with	great	care,	
because	they	determine	how	
good	or	bad	the	run-6me	
structure	is.	



Design	Pa*erns		
solve		

Design	Problems	



Determining	Object	Granularity	

•  How	do	we	decide	what	should	be	an	object?	

•  Objects	can	vary	in	size	and	number	

•  They	can	represent	everything	

•  They	may	have	no	counterparts	in	the	real	
world		

FACADE,	FLYWEIGHT,	ABSTRACT	FACTORY,	BUILDER,	VISITOR,	COMMAND	



Specifying	Object	Interfaces	

•  Objects	are	known	only	through	their	interfaces	

•  Two	objects	having	completely	different	
implementa6ons	can	have	iden6cal	interfaces	

•  Defining	interfaces	means		
–  iden6fying	their	key	elements	and		
–  the	kinds	of	data	that	get	sent	across	an	interface	

•  It	is	also	important	to	specify	rela6onships	
between	interfaces	

MEMENTO,	DECORATOR,	PROXY,	VISITOR	



Specifying	Object	Implementa6on	

•  Class	vs	Interface	Inheritance	

•  Programming	to	an	Interface,	not	an	
Implementa6on	

•  Inheritance	versus	Composi6on	

•  Delega6on	

CHAIN	OF	RESPONSIBILITY,	COMPOSITE,	COMMAND,	OBSERVER,	STATE,	STRATEGY	
ABSTRACT	FACTORY,	BUILDER,	FACTORY	METHOD,	PROTOTYPE,	SINGLETON	
STATE,	STRATEGY,	VISITOR,	MEDIATOR,	BRIDGE	



EXAMPLES		
OF	DESIGN	PATTERNS	



1.	Command	



•  Intent:	encapsulate	a	request	as	an	object,…	

•  Mo6va6on:	some6mes	it's	necessary	to	issue	
requests	to	objects	without	knowing	anything	
about	the	opera6on	being	requested	or	the	
receiver	of	the	request		

Command

 Intent

Encapsulate a request as an object, thereby letting you parameterize clients with different requests, queue or 

log requests, and support undoable operations.

 Also Known As

Action, Transaction

 Motivation

Sometimes it's necessary to issue requests to objects without knowing anything about the operation being 

requested or the receiver of the request. For example, user interface toolkits include objects like buttons and 

menus that carry out a request in response to user input. But the toolkit can't implement the request explicitly 

in the button or menu, because only applications that use the toolkit know what should be done on which 

object. As toolkit designers we have no way of knowing the receiver of the request or the operations that will 

carry it out.

The Command pattern lets toolkit objects make requests of unspecified application objects by turning the 

request itself into an object. This object can be stored and passed around like other objects. The key to this 

pattern is an abstract Command class, which declares an interface for executing operations. In the simplest 

form this interface includes an abstract Execute operation. Concrete Command subclasses specify a receiver-

action pair by storing the receiver as an instance variable and by implementing Execute to invoke the request. 

The receiver has the knowledge required to carry out the request.

Menus can be implemented easily with Command objects. Each choice in a Menu is an instance of a 

MenuItem class. An Application class creates these menus and their menu items along with the rest of the user 

interface. The Application class also keeps track of Document objects that a user has opened.

The application configures each MenuItem with an instance of a concrete Command subclass. When the user 

selects a MenuItem, the MenuItem calls Execute on its command, and Execute carries out the operation. 

MenuItems don't know which subclass of Command they use. Command subclasses store the receiver of the 

request and invoke one or more operations on the receiver.

For example, PasteCommand supports pasting text from the clipboard into a Document. PasteCommand's 

receiver is the Document object it is supplied upon instantiation. The Execute operation invokes Paste on the 

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5bfs.htm (1 of 9) [21/08/2002 19:18:18]

COMMAND	



•  Applicability	
– Callback	
– Undo/Redo	
– Logging	
– …	

•  Structure	

Command

In each of these examples, notice how the Command pattern decouples the object that invokes the operation 

from the one having the knowledge to perform it. This gives us a lot of flexibility in designing our user 

interface. An application can provide both a menu and a push button interface to a feature just by making the 

menu and the push button share an instance of the same concrete Command subclass. We can replace 

commands dynamically, which would be useful for implementing context-sensitive menus. We can also 

support command scripting by composing commands into larger ones. All of this is possible because the object 

that issues a request only needs to know how to issue it; it doesn't need to know how the request will be carried 

out.

 Applicability

Use the Command pattern when you want to

●     parameterize objects by an action to perform, as MenuItem objects did above. You can express such 

parameterization in a procedural language with a callback function, that is, a function that's registered 

somewhere to be called at a later point. Commands are an object-oriented replacement for callbacks.

●     specify, queue, and execute requests at different times. A Command object can have a lifetime 

independent of the original request. If the receiver of a request can be represented in an address space-

independent way, then you can transfer a command object for the request to a different process and 

fulfill the request there.

●     support undo. The Command's Execute operation can store state for reversing its effects in the 

command itself. The Command interface must have an added Unexecute operation that reverses the 

effects of a previous call to Execute. Executed commands are stored in a history list. Unlimited-level 

undo and redo is achieved by traversing this list backwards and forwards calling Unexecute and 

Execute, respectively.

●     support logging changes so that they can be reapplied in case of a system crash. By augmenting the 

Command interface with load and store operations, you can keep a persistent log of changes. 

Recovering from a crash involves reloading logged commands from disk and reexecuting them with the 

Execute operation.

●     structure a system around high-level operations built on primitives operations. Such a structure is 

common in information systems that support transactions. A transaction encapsulates a set of changes 

to data. The Command pattern offers a way to model transactions. Commands have a common 

interface, letting you invoke all transactions the same way. The pattern also makes it easy to extend the 

system with new transactions.

 Structure

 Participants

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5bfs.htm (3 of 9) [21/08/2002 19:18:18]

Declares	an	interface	
for	execu6ng	an	
opera6on	

Bridges	the	receiver	
with	an	opera6on	
(implement	Execute)	

Creates	a	
ConcreteCommand	and	
set	its	receiver	 Knows	how	to	perform	

the	opera6ons	

Asks	the	command	to	
carry	out	the	request		

Command

●     Command 

❍     declares an interface for executing an operation.

●     ConcreteCommand (PasteCommand, OpenCommand) 

❍     defines a binding between a Receiver object and an action.

❍     implements Execute by invoking the corresponding operation(s) on Receiver.

●     Client (Application)

❍     creates a ConcreteCommand object and sets its receiver.

●     Invoker (MenuItem) 

❍     asks the command to carry out the request.

●     Receiver (Document, Application) 

❍     knows how to perform the operations associated with carrying out a request. Any class may 

serve as a Receiver.

 Collaborations

●     The client creates a ConcreteCommand object and specifies its receiver.

●     An Invoker object stores the ConcreteCommand object.

●     The invoker issues a request by calling Execute on the command. When commands are undoable, 

ConcreteCommand stores state for undoing the command prior to invoking Execute.

●     The ConcreteCommand object invokes operations on its receiver to carry out the request.

The following diagram shows the interactions between these objects. It illustrates how Command decouples 

the invoker from the receiver (and the request it carries out).

 Consequences

The Command pattern has the following consequences:

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5bfs.htm (4 of 9) [21/08/2002 19:18:18]



•  Consequences:	
– Decoupling		

•  the	object	that	invokes	the	opera6on	(invoker)		
•  from	the	one	that	knows	how	to	perfom	it	(receiver)	

– Easy	to	add	new	Commands	
– Easy	to	create	families	of	Commands	
– Macro-commands	

COMMAND	



class Fan {
        public void startRotate() {
                System.out.println("Fan is rotating");
        }
        public void stopRotate() {
                System.out.println("Fan is not rotating");
        }
}

class Light {
        public void turnOn( ) {
                System.out.println("Light is on ");
        }
        public void turnOff( ) {
                System.out.println("Light is off");
        }
}

Receiver	 COMMAND	



Command/Concrete	Commands	

class LightOnCommand implements Command {
        private Light myLight;
        public LightOnCommand ( Light L) {
                myLight  =  L;
        }
        public void execute( ) {
                myLight . turnOn( );
        }
}
class LightOffCommand implements Command {
        private Light myLight;
        public LightOffCommand ( Light L) 
{
                myLight  =  L;
        }
        public void execute( ) {
                myLight . turnOff( );
        }
}

class FanOnCommand implements Command {
        private Fan myFan;
        public FanOnCommand ( Fan F) {
                myFan  =  F;
        }
        public void execute( ) {
                myFan . startRotate( );
        }
}
class FanOffCommand implements Command {
        private Fan myFan;
        public FanOffCommand ( Fan F) {
                myFan  =  F;
        }
        public void execute( ) {
                myFan . stopRotate( );
        }
}

public interface Command {
        public abstract void execute ( );
}



Invoker	

class Switch {
        private Command UpCommand, DownCommand;
        public Switch( Command Up, Command Down) {
                UpCommand = Up;
                DownCommand = Down;
        }
        void flipUp( ) { 
                        UpCommand . execute ( ) ;                           
        }
        void flipDown( ) {
                        DownCommand . execute ( );
        }
}

COMMAND	



Client	

 public static void main(String[] args) {
                        Light  testLight = new Light( );
                        LightOnCommand testLOC = new LightOnCommand(testLight);
                        LightOffCommand testLFC = new LightOffCommand(testLight);
                        Switch testSwitch = new Switch( testLOC,testLFC);       
                        testSwitch.flipUp( );
                        testSwitch.flipDown( );
                        

      Fan testFan = new Fan( );
                        FanOnCommand foc = new FanOnCommand(testFan);
                        FanOffCommand ffc = new FanOffCommand(testFan);
                        Switch ts = new Switch( foc,ffc);
                        ts.flipUp( );
                        ts.flipDown( ); 
                }

COMMAND	



2.	Composite	



•  Intent:	compose	objects	into	tree	structures	
to	represent	part-whole	hierarchies.	
Composite	lets	clients	treat	individual	objects	
and	composi6ons	of	objects	uniformly		

•  Mo6va6on:	defining	hierarchies	of	primi6ve	
and	composite	objects	

COMPOSITE	

Composite

 Applicability

Use the Composite pattern when

●     you want to represent part-whole hierarchies of objects. 

●     you want clients to be able to ignore the difference between compositions of objects and individual 

objects. Clients will treat all objects in the composite structure uniformly. 

 Structure

A typical Composite object structure might look like this:

 Participants

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat4cfs.htm (2 of 10) [21/08/2002 19:12:56]



Structure	
Declares	the	common	
Interface	for	primi6ve	
and	composite	objects	

Defines	behavior	for	
primi6ve	objects	

Declares	objects	that	
store	child	components	

COMPOSITE	



•  Consequences	
– Defines	class	hierarchies	consis6ng	of	primi6ve	
and	(recursively)	composite	objects	

– Makes	the	client	simple	
•  Primi6ve	and	composite	objects	can	be	treated	
uniformly	

– Makes	it	easier	to	add	new	kind	of	components	
– Makes	it	harder	to	restrict	the	components	of	a	
composite	

COMPOSITE	



Component,	Leaf	and	Composte	
interface AbstractFile {
  public void ls();
}

class File implements AbstractFile {
    private String m_name;

    public File(String name) {
        m_name = name;
    }
    public void ls() {
        System.out.println(m_name);
    }
}

class Directory implements AbstractFile {
 private String m_name;
    private ArrayList m_files = new ArrayList();

    public Directory(String name) {
        m_name = name;
    }
    public void add(Object obj) {
        m_files.add(obj);
    }
    public void ls() {
        System.out.println(m_name);
        for (int i = 0; i < m_files.size(); ++i)  {
 
            AbstractFile obj = (AbstractFile) 
m_files.get(i);
            obj.ls();
        }
    }
}



3.	Singleton	



•  Intent:	ensure	a	class	has	one	and	only	one	
instance,	and	provide	a	global	point	of	access	
to	it	

•  Mo6va6on:	It's	important	for	some	classes	to	
have	exactly	one	instance.		
–  In	a	system,	there	should	be	only	one	printer	
spooler	and		only	one	file	system.		

– A	digital	filter	will	have	one	A/D	converter.		
– An	accoun6ng	system	will	be	dedicated	to	serving	
one	company.		

SINGLETON	





Pa*erns	as	a	shared	Vocabulary	



Composing	Design	Pa*erns	



sabatucci@pa.icar.cnr.it	

Grazie	per	l’a*enzione!	

h*p://ecos.pa.icar.cnr.it	


