O
<
@
<
O
(7o)
O
c
@

BAR[pUR ‘suxaned ‘TN SuUIsn
SULIUISUT 3IBM)JOS PIAIIUAI)-}NIqO

Lecture Plan

e Last lecture:
» Operations on the object model:
» Optimizations to address performance requirements
 Implementation of class model components:
e Realization of associations

m) This lecture:

e Realizing entity objects based on selected storage
strategy, in particular

 Mapping the object model to a relational database
 Mapping class diagrams to tables

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

Mapping an Object Model to a Database

« UML object models can be mapped to relational
databases:

« Some degradation occurs because all UML constructs
must be mapped to a single relational database
construct - the table

« Mapping of classes, attributes and associations

» Each class is mapped to a table

» Each class attribute is mapped onto a column in the
table

* An instance of a class represents a row in the table

A many-to-many association is mapped into its own
table

* A one-to-many association is implemented as buried
foreign key

« Methods are not mapped.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

Mapping a Class to a Table

User

+firstName:String
+login:String
+email:String

User table

id:long firstName:text[25]| login:text[8] email:text[32]

Bernd Bruegge & Allen H. Dutoit

Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

Primary and Foreign Keys

 Any set of attributes that could be used to
uniquely identify any data record in a relational
table is called a candidate key

« The actual candidate key that is used in the
application to identify the records is called the
primary key

 The primary key of a table is a set of attributes whose
values uniquely identify the data records in the table

A foreign key is an attribute (or a set of
attributes) that references the primary key of
another table.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

Example for Primary and Foreign Keys

User table Prlmarz kex

firstName login email
“alice” “am384” “am384@mail.org”|
“john” “is289” “iohn@mail.de”
“bob” “bd” “bobd@mail.ch”
I | | |
Candidate key Candidate key
League table name login
“tictactoeNovice” “am384”
“tictactoeExpert” “bd”
“chessNovice” “js289”

Foreign key referencing User table

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

Buried Association

e Associations with multiplicity “one” can be implemented
using a foreign key

For one-to-many associations we add the foreign keyp to the
table representing i€ Class on the "many ™€

For all other associations we can select either cl
of the association.

s at the end

LeagueOwne

1

owner

LeagueOwner table

id:long id:long

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

Another Example for Buried Association

Transaction %

transactionID

Portfolio

Transaction Table

transactionlD

portfoliolD

©)

O

Bernd Bruegge & Allen H. Dutoit

Foreign Ke

portfoliolD

Portfolio Table

portfoliolD

Object-Oriented Software Engineering: Using UML, Patterns, and Java

Mapping Many-To-Many Associations

In this case we need a separate table for the association

City * Serves | Airport

airportCode
cityName airportName Separate table for

the association “Serves”

[Primary Key J

City Table/ \\ Airport Table Serves Table
= N
airportCode airportName cityName | airportCode

cityName [AH Intercontinental Houston IAH
Houston HOU Hobby Houston HOU

Albany ALB Albany County Albany ALB

Munich MUC Munich Airport Munich MUC
Hamburg HAM Hamburg Airport Hamburg HAM

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

Another Many-to-Many Association
Mapping

We need the Tournament/Player association as a separate table

Tournament| - Player

Tournament table Player table
: TournamentPlayerAssociation .
id name id name
table
23 novice 56 alice
tournament player
24 expet 79 john
23 56
23 79

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

Realizing Inheritance

Relational databases do not support inheritance

Two possibilities to map an inheritance
association to a database schema
‘ With a separate table ("vertical mapping”)

e The attributes of the superclass and the subclasses
are mapped to different tables

e By duplicating columns ("horizontal mapping”)
 There is no table for the superclass

e Each subclass is mapped to a table containing the
attributes of the subclass and the attributes of the
superclass

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

Realizing inheritance with a separate table
(Vertical mapping)

User
name
o
I |
LeagueOwner Player
maxNumlLeagues credits
User table
id name | ... role
56 z0e LeagueOwner
79 john Plajer
LeagueOwner table Player table
id | maxNumLeagues| ... id | credits
56 12 79 126

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

Realizing inheritance by duplicating
columns (Horizontal Mapping)

User

name

LeagueOwner Player

maxNumLeagues credits

LeagueOwner table Player table
id name maxNumLeagues] ... id name | credits
56 zoe 12 79 john 126

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

Comparison: Separate Tables vs
Duplicated Columns

 The trade-off is between modifiability and
response time

 How likely is a change of the superclass?
« What are the performance requirements for queries?

o Separate table mapping (Vertical mapping)

©We can add attributes to the superclass easily by
adding a column to the superclass table

®Searching for the attributes of an object requires a join
operation.

e Duplicated columns (Horizontal Mapping)

®Modifying the database schema is more complex and
error-prone

©Individual objects are not fragmented across a number
of tables, resulting in faster queries

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Summary

e Four mapping concepts:

* Model transformation improves the compliance of the
object design model with a design goal

 Forward engineering improves the consistency of the
code with respect to the object design model

« Refactoring improves code readability/modifiability

e Reverse engineering discovers the design from the code.
 Model transformations and forward engineering

techniques:

e Optimizing the class model

 Mapping associations to collections

 Mapping contracts to exceptions

e Mapping class model to storage schemas.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

Backup and Example Slides

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

