
U
si

ng
 U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-O
ri

en
te

d
So

ft
w

ar
e

En
gi

ne
er

in
g Chapter 1: Introduction

U
si

ng
 U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-O
ri

en
te

d
So

ft
w

ar
e

En
gi

ne
er

in
g

Ingegneria del software:
scenario di riferimento

U
si

ng
 U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-O
ri

en
te

d
So

ft
w

ar
e

En
gi

ne
er

in
g

Ingegneria del software:
scenario di riferimento

U
si

ng
 U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-O
ri

en
te

d
So

ft
w

ar
e

En
gi

ne
er

in
g

Ingegneria del software:
scenario di riferimento

U
si

ng
 U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-O
ri

en
te

d
So

ft
w

ar
e

En
gi

ne
er

in
g

Ingegneria del software:
scenario di riferimento

U
si

ng
 U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-O
ri

en
te

d
So

ft
w

ar
e

En
gi

ne
er

in
g

Ingegneria del software:
scenario di riferimento

U
si

ng
 U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-O
ri

en
te

d
So

ft
w

ar
e

En
gi

ne
er

in
g

Ingegneria del software:
scenario di riferimento

U
si

ng
 U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-O
ri

en
te

d
So

ft
w

ar
e

En
gi

ne
er

in
g

Ingegneria del software:
scenario di riferimento

U
si

ng
 U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-O
ri

en
te

d
So

ft
w

ar
e

En
gi

ne
er

in
g

Ingegneria del software:
scenario di riferimento

U
si

ng
 U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-O
ri

en
te

d
So

ft
w

ar
e

En
gi

ne
er

in
g

Ingegneria del software:
scenario di riferimento

U
si

ng
 U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-O
ri

en
te

d
So

ft
w

ar
e

En
gi

ne
er

in
g

Ingegneria del software:
scenario di riferimento

U
si

ng
 U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-O
ri

en
te

d
So

ft
w

ar
e

En
gi

ne
er

in
g

Lo sviluppo del Software:
il modello a cipolla

Requisiti

Architettura

Progetto di dettaglio
Classi

Metodi

Testing

Sistema
Eseguibile

U
si

ng
 U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-O
ri

en
te

d
So

ft
w

ar
e

En
gi

ne
er

in
g Il modello a cipolla/2

Requisiti

Architettura

Progetto di dettaglio
Classi

Metodi

Testing

Sistema
Eseguibile

Algoritmi

Strutture dati

NOT
Ingegneria del

software

U
si

ng
 U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-O
ri

en
te

d
So

ft
w

ar
e

En
gi

ne
er

in
g Il modello a cipolla/2

Requisiti

Architettura

Progetto di dettaglio
Classi

Metodi

Testing

Sistema
Eseguibile

Algoritmi

Strutture dati

NOT
Ingegneria del

software

•  Fino ad oggi avete
studiato:
•  Algoritmi
•  Strutture dati

•  Agli inizi
dell’informatica
bastavano a fare i
‘programmi’
•  Wirth: Algoritmi

+strutture dati =
programmi

•  L’ingegneria del
software aggiunge
altri 4 FONDAMENTALI
strati e completa il
modello

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

Can you develop this system?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

Can you develop this system?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

Can you develop this system?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

Can you develop this system?

The impossible
Fork

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

Why is Software Development difficult?
•  The problem is usually ambiguous
•  The requirements are usually unclear and changing

when they become clearer
•  The problem domain (called application domain) is

complex, and so is the solution domain
•  The development process is difficult to manage
•  Software offers extreme flexibility
•  Software is a discrete system

•  Continuous systems have no hidden surprises
•  Discrete systems can have hidden surprises! (Parnas)

David Lorge Parnas - an early pioneer in
software engineering who developed the
concepts of modularity and information hiding
in systems which are the foundation of
object oriented methodologies.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

Software Development is more than just
Writing Code
•  It is problem solving

•  Understanding a problem
•  Proposing a solution and plan
•  Engineering a system based on the

proposed solution using a good design
•  It is about dealing with complexity

•  Creating abstractions and models
•  Notations for abstractions

•  It is knowledge management
•  Elicitation, analysis, design, validation of
 the system and the solution process

•  It is rationale management
•  Making the design and development

decisions explicit to all stakeholders
involved.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

Computer Science vs. Engineering
•  Computer Scientist

•  Assumes techniques and tools have to be developed.
•  Proves theorems about algorithms, designs languages,

defines knowledge representation schemes
•  Has infinite time…

•  Engineer
•  Develops a solution for a problem formulated by a client
•  Uses computers & languages, techniques and tools

•  Software Engineer
•  Works in multiple application domains
•  Has only 3 months...
•  …while changes occurs in the problem formulation

(requirements) and also in the available technology.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22
20

Challenge: Dealing with complexity and
change

Software Engineering is a collection of techniques,
methodologies and tools that help with the
production of

A high quality software system developed with a
given budget before a given deadline

 while change occurs

Software Engineering: A Working
Definition

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

Course Outline
Dealing with Complexity

•  Notations (UML, OCL)

•  Requirements Engineering,
Analysis and Design
•  OOSE, SA/SD, scenario-based

design, formal specifications

•  Testing
•  Vertical and horizontal testing

Dealing with Change
•  Rationale Management

•  Knowledge Management
•  Patterns

•  Release Management
•  Configuration Management,

Continuous Integration

•  Software Life Cycle
•  Linear models
•  Iterative models
•  Activity-vs Entity-based

views

•  Project Management

Application of these Concepts in the
Exercises

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 24

Software Engineering Concepts

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25

Participants and Roles

•  Participants
•  We refer to all the

persons involved in
the project as
participants.

•  E.g.: Client,
Developer, Project
Manager

•  Roles
•  A role is associated

with a set of tasks
and is assigned to a
participant. The
same participant
can fill multiple
roles.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 26

Systems and Models

•  System is a collection of interconnected parts.
•  Modeling is a way to deal with complexity by ignoring

irrelevant details.

•  The term model refers to any abstraction of the
system.

•  A development project is itself a system that can
be modeled.
•  The project schedule, its budget, and its planned

deadlines are models of the development project.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 27

Work Products

•  A work product is an artifact that is produced
during the development,
•  E.g.: a document or a piece of software for other

developers or for the client.

•  Internal work product - a work product for
the project’s internal consumption

•  Deliverable - a work product that must be
delivered to a client.
•  Deliverables are generally defined prior to the start of

the project and specified by a contract binding the
developers with the client.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 28

Examples of work products

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 29

Activities, Tasks, and Resources

•  An activity is a set of tasks that is performed
toward a specific purpose.
•  Activities can be composed of other activities.
•  Activities are also sometimes called phases.

•  A task represents an atomic unit of work that
can be managed
•  for instance assigned by a project manager, performed

by a developer, …)
•  Tasks consume resources, result in work products, and

depend on work products produced by other tasks.
•  Resources are assets that are used to

accomplish work.
•  Resources include time, equipment, and labor.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 30

Functional and Nonfunctional Requirements

•  Requirements specify a set of features that the
system must have.

•  A functional requirement is a specification of
a function that the system must support
•  The user must be able to purchase tickets
•  The user must be able to access tariff information

•  A nonfunctional requirement is a constraint
on the operation of the system that is not
related directly to a function of the system.
•  The user must be provided feedback in less than one

second
•  The colors used in the interface should be consistent

with the company colors

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 31

Notations, Methods, and Methodologies

•  A notation is a graphical or textual set of rules for
representing a model.
•  The Roman alphabet is a notation for representing words.
•  UML (Unified Modeling Language) is a notation for

representing object-oriented models.

•  A method is a repeatable technique that specifies
the steps involved in solving a specific problem.
•  A recipe is a method for cooking a specific dish.
•  A sorting algorithm is a method for ordering elements of a

list.
•  Rationale management is a method for justifying change.
•  Configuration management is a method for tracking

change.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 32

Notations, Methods, and Methodologies/2

•  A methodology is a collection of methods for
solving a class of problems and specifies how
and when each method should be used.
•  A seafood cookbook with a collection of recipes

•  it also contains advice on how ingredients should be used
and what to do if not all ingredients are available.

•  Software development methodologies
decompose the process into activities.
•  Examples of such activities are:

•  Analysis, which focuses on formalizing the system
requirements into an object model,

•  System Design, which focuses on strategic decisions,
•  Object Design, which transforms the analysis model into

an object model that can be implemented.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 33

Software Engineering Development Activities

•  Requirements Elicitation (Section 1.4.1)
•  Analysis
•  System Design
•  Object Design
•  Implementation
•  Testing

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 34

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 35

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 36

Requirements Elicitation

•  Client and developers define the purpose of the
system.
•  Deliverable: a description of the system in terms of

actors and use cases.
•  Actors represent the external entities that interact

with the system.
•  Actors include roles such as end users, other

computers the system needs to deal with and the
environment (e.g., a chemical process).

•  Use cases are general sequences of events that
describe all the possible actions between an actor and
the system for a given piece of functionality.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 37

Analysis

•  Developers produce a model of the system that
is correct, complete, consistent, and
unambiguous.
•  Developers transform use cases into an object model

that describes the system.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 38

System Design

1.  Developers define the design goals of the
project

2.  Developers decompose the system into smaller
subsystems that can be realized by individual
teams.

3.  Developers select strategies for building the
system
•  the hardware/software platform on which the system

will run,
•  the persistent data management strategy,
•  …

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 39

Object Design

•  Developers define solution domain objects to
bridge the gap between the analysis model and
the hardware/software platform defined during
system design.
•  It means describing object and subsystem interfaces,

selecting off-the-shelf components, …

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 40

Implementation

•  Developers translate the solution domain model
into source code.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 41

Testing

•  Developers find differences between the
expected system behaviour and its actual one by
executing the system (or parts of it) with sample
input data sets.

