
U
sin

g
U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-O
ri

en
te

d
So

ftw
ar

e
En

gi
ne

er
in

g
Object Design I: Reuse

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

Where are we? What comes next?

•  We have covered:
•  Introduction to Software Engineering (Chapter 1)
•  Modeling with UML (Chapter 2)
•  Requirements Elicitation (Chapter 4)
•  Analysis (Chapter 5)
•  System Design (Chapter 6 and 7)

•  Today and next class
•  Object Design (Chapter 8).

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

Outline of Today

•  Object Design Activities
•  Reuse examples

•  Whitebox and Blackbox Reuse

•  Object design leads also to new classes
•  Implementation vs Specification Inheritance
•  Inheritance vs Delegation
•  Class Libraries and Frameworks

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

Object Design

•  Purpose of object design:
•  Prepare for the implementation of the system model

based on design decisions
•  Transform the system model (optimize it)

•  Investigate alternative ways to implement the
system model

•  Use design goals: minimize execution time, memory
and other measures of cost.

•  Object design serves as the basis of
implementation.

System Development as a Set of Activities

Custom objects

Analysis

 System Design

 Object Design

System Model

Design

Application objects

Solution objects

Existing Machine

Problem

Off-the-Shelf Components

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

Focus on
Reuse
and

Specification

Towards
Mapping
Models to

 Code

Object Design Activities consists of 4
Activities

1. Reuse: Identification of existing solutions
•  Use of inheritance
•  Off-the-shelf components and

additional solution objects
•  Use of Design patterns

2. Interface specification
•  Describes precisely each class interface

3. Object model restructuring
•  Transforms the object design model to

improve its understandability and extensibility

4. Object model optimization
•  Transforms the object design model to address

performance criteria such as response
time or memory utilization.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

Object Design
Activities

Specifying constraints

Specifying types &
signatures

Identifying patterns

Adjusting patterns

Identifying missing
attributes & operations

Specifying visibility

Specification

Specifying exceptions

Reuse

Identifying components

Adjusting components

Select Subsystem We start here

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

Detailed View of Object Design Activities
(ctd)

Check Use Cases

Collapsing classes

Restructuring Optimization

Revisiting
inheritance

Optimizing access
paths

Caching complex
computations

Delaying complex
computations Realizing associations

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

One Way to do Object Design

1.  Identify the missing components in the design gap
2.  Make a build or buy decision to obtain the missing

component

 => Component-Based Software Engineering:
 The design gap is filled with available
components (“0 % coding”)

•  Special Case: COTS-Development

•  COTS: Commercial-off-the-Shelf
•  The design gap is filled with commercial-off-the-shelf-

components.

=> Design with standard components.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

Modeling of the Real World

•  Design knowledge such as the adapter pattern
complements application domain knowledge and
solution domain knowledge

•  Modeling of the real world leads to a system that
reflects today’s realities but not necessarily
tomorrow’s

•  There is a need for reusable and extendable
(“flexible”) designs.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

Review: Design pattern

A design pattern is…
…a reusable template for solving a recurring

design problem
•  Basic idea: Don’t re-invent the wheel!

… design knowledge
•  Knowledge on a higher level than classes, algorithms

or data structures (linked lists, binary trees...)
•  Lower level than application frameworks

…an example of modifiable design
•  Learning how to design starts by studying other

designs.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

Eample: Adapter Pattern

•  Adapter Pattern: Connects incompatible
components

•  It converts the interface of one component into
another interface expected by the other (calling)
component

•  Used to provide a new interface to existing legacy
components (Interface engineering, reengineering)

•  Also known as a wrapper.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

Example of design pattern

•  Name: Adapter Design Pattern
•  Problem Description

•  Convert the interface of a legacy class into a different
interface expected by the client, so that the client and the
legacy class can work together without changes.

•  Solution
•  An Adapter class

implements the
ClientInterface expected
by the client. The Adapter
delegates requests from
the client to the
LegacyClass and performs
any necessary conversion.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

What makes a design modifiable?

•  Low coupling and high cohesion
•  Clear dependencies
•  Explicit assumptions

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

Where are we?
ü Object Design vs Detailed Design
ü System design vs object design
ü Overview of object design activities
ü Adapter pattern
•  Types of Reuse

•  Whitebox and blackbox reuse
•  Object design leads also to new classes
•  Implementation vs Specification Inheritance
•  Inheritance vs Delegation
•  Class Libraries and Frameworks

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

Types of reuse: white/black box reuse

•  Main goals:
•  Reuse functionality already available
•  Use design knowledge (from previous experience)

•  Composition (also called Black Box Reuse)
•  The new functionality is obtained by aggregation
•  The new object with more functionality is an

aggregation of existing objects

•  Inheritance (also called White-box Reuse)
•  The new functionality is obtained by inheritance.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

Example of Composition (black box reuse)

Incident
Report

Requirements Analysis
(Language of Application

Domain)

Object Design
(Language of Solution

Domain)

Incident
Report

Text box Menu Scrollbar

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

White Box and Black Box Reuse

•  What is needed for white/black box reuse

•  White box reuse (inheritance)
•  development artifacts must be available

•  (analysis model, system design, object design,
source code)

•  Black box reuse (composition)
•  models and designs not available, or models do not

even exist
•  Worst case: Only executables (binary code) are

available
•  Better case: A specification of the system interface

is available.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

Types of Whitebox Reuse

1. Implementation inheritance
•  Reuse of Implementations

2. Specification Inheritance
•  Reuse of Interfaces

•  Programming concepts to achieve reuse
Ø Inheritance
•  Delegation
•  Abstract classes and Method Overriding
•  Interfaces

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

The use of Inheritance

•  Inheritance is used to achieve two different goals
•  Description of Taxonomies
•  Interface Specification

•  Description of Taxonomies
•  Used during requirements analysis
•  Goal: make the analysis model more understandable
•  Guideline: identify application domain objects that are

hierarchically related

•  Interface Specification
•  Used during object design
•  Goal: increase reusability, enhance modifiability and

extensibility
•  Guideline: identify the signatures of all identified objects

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

Example of Inheritance for Taxonomy
Superclass:

drive()
brake()
accelerate()

Car

playMusic()
ejectCD()
resumeMusic()
pauseMusic()

LuxuryCar
Subclass:
public class LuxuryCar extends Car
{
 public void playMusic() {…}
 public void ejectCD() {…}
 public void resumeMusic() {…}
 public void pauseMusic() {…}
}

public class Car {
 public void drive() {…}
 public void brake() {…}
 public void accelerate() {…}
}

Generalization Example: Modeling
Vending Machines

totalReceipts
numberOfCups
coffeeMix
collectMoney()
makeChange()
heatWater()
dispenseBeverage()
addSugar()
addCreamer()

CoffeeMachine

VendingMachine
Generalization:
The class CoffeeMachine is
discovered first, then the class
SodaMachine, then the
superclass
VendingMachine

totalReceipts
cansOfBeer
cansOfCola
collectMoney()
makeChange()
chill()
dispenseBeverage()

SodaMachine

Generalizing often leads to Restructuring

totalReceipts
collectMoney()
makeChange()
dispenseBeverage()

VendingMachine

numberOfCups
coffeeMix
heatWater()
addSugar()
addCreamer()

CoffeeMachine

cansOfBeer
cansOfCola
chill()

SodaMachine

totalReceipts
numberOfCups
coffeeMix
collectMoney()
makeChange()
heatWater()
dispenseBeverage()
addSugar()
addCreamer()

CoffeeMachine

VendingMachine

totalReceipts
cansOfBeer
cansOfCola
collectMoney()
makeChange()
chill()
dispenseBeverage()

SodaMachine

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 24

Specialization
•  Specialization occurs, when we find a subclass

that is similar to an existing (mother) class
•  New products

•  Last year we finished a project, in which we developed
a machine, that delivers coffee and tea with automatic
detection of empty containers.

•  In the new project we have to develop the same
functionality for a new candy machine.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25

Another Example of a Specialization

numberOfCups
coffeeMix
heatWater()
addSugar()
addCreamer()

CoffeeMachine

totalReceipts
collectMoney()
makeChange()
dispenseBeverage()

VendingMaschine

cansOfBeer
cansOfCola
chill()

SodaMachine

bagsofChips
numberOfCandyBars
dispenseSnack()

CandyMachine

CandyMachine is a new
product. We design it as a sub
class of the superclass
VendingMachine

A change of names might now
be useful: dispenseItem()
instead of

 dispenseBeverage()
 and
 dispenseSnack()

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 26

Example of a Specialization (2)

numberOfCups
coffeeMix
heatWater()
addSugar()
addCreamer()
dispenseItem()

CoffeeMachine

totalReceipts
collectMoney()
makeChange()
dispenseItem()

VendingMaschine

cansOfBeer
cansOfCola
chill()
dispenseItem()

SodaMachine

bagsofChips
numberOfCandyBars
dispenseItem()

CandyMachine

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 27

Implementation Inheritance and
Specification Inheritance

There are two different types of inheritance:
•  Implementation inheritance

•  Also called class inheritance
•  Goal:

•  Extend an applications’ functionality by reusing
functionality from the super class

•  Inherit from an existing (concrete) class with some
or all operations already implemented

•  Specification Inheritance
•  Also called subtyping
•  Goal:

•  Inherit from a specification
•  The specification is an abstract class with all the

operations specified but not yet implemented.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 28

Implementation Inheritance vs.
Specification Inheritance

 Interface (of superclass) Implementations of
methods (of superclass)

Implementation
Inheritance

Inherited Inherited

Specification Inheritance Inherited NOT inherited
!

❖  Problem with implementation inheritance:
•  The inherited operations might exhibit unwanted behavior
•  Example: What happens if the Stack user calls Remove()

instead of Pop()?

Example:
 • I have a List, I need a Stack
 •I can define the Stack class

as a subclass of the List
class and implement Push(),
Pop(), Top() with Add() and
Remove()?

Add()
Remove()

List

Push()
Pop()

Stack

Top()

“Already
 implemented”

Example for Implementation Inheritance

A class is already implemented that does almost
the same as the desired class

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 30

Delegation instead of Implementation
Inheritance

•  Inheritance: Extending a Base class by a new
operation or overwriting an operation

•  Delegation: Catching an operation and sending it
to another object

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 31

delegates to Client Receiver Delegate calls

Delegation

•  Delegation is a way of making composition as
powerful for reuse as inheritance

•  In delegation two objects are involved in
handling a request from a Client

• The Receiver object delegates operations to
the Delegate object
• The Receiver object makes sure, that the
Client does not misuse the Delegate object.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 32

Exercise: define a new Set class

•  Suppose Java has not the Set class
•  We need it so we can define that by reusing the

Hashtable class

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 33

Solution with implementation inheritance

•  Problems:
•  containsValue (overriden in the subclass) provides the same

behavior as containsKey
•  That is not intuitive!
•  A programmer may use both and make it difficult to

maintain the class

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 34

Solution with delegation

•  The only significant change is the private field table
and its initialization in the MySet() constructor.

•  This addresses both problems we mentioned before

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 35

Comparison: Delegation vs Implementation
Inheritance

•  Delegation
☺ Flexibility: Any object can be replaced at run time by

another one (as long as it has the same type)
☹  Inefficiency: Objects are encapsulated

•  Inheritance
☺ Straightforward to use
☺ Supported by many programming languages
☺ Easy to implement new functionality in the subclass
☹ Inheritance exposes a subclass to the details of its

parent class
☹ Any change in the parent class implementation forces

the subclass to change (which requires recompilation of
both).

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 36

The Liskov Substitution Principle for
specification inheritance

•  The Liskov Substitution Principle [Liskov, 1988] provides a
formal definition for specification inheritance.

•  It essentially states that, if a client code uses the methods
provided by a superclass, then developers should be able to
add new subclasses without having to change the client code.

•  Liskov Substitution Principle
•  If an object of type S can be substituted in all the places where an object

of type T is expected, then S is a subtype of T.

•  Interpretation
•  In other words, a method written in terms of a superclass T

must be able to use instances of any subclass of T without
knowing whether the instances are of a subclass.

•  An inheritance relationship that complies with the Liskov
Substitution Principle is called strict inheritance.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 37

Abstract Operations and Abstract Classes

•  Abstract method:
•  A method with a signature but without an

implementation. Also called abstract operation

•  Abstract class:
•  A class which contains at least one abstract method is

called abstract class

•  UML Interface: An abstract class which has only
abstract operations

•  An interface is primarily used for the specification of
a system or subsystem. The implementation is
provided by a subclass or by other mechanisms.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 38

Example of an Abstract Operation

totalReceipts
collectMoney()
makeChange()
dispenseItem()

VendingMaschine

numberOfCups
coffeeMix
heatWater()
addSugar()
addCreamer()
dispenseItem()

CoffeeMachine

cansOfBeer
cansOfCola
chill()
dispenseItem()

SodaMachine

bagsofChips
numberOfCandyBars
dispenseItem()

CandyMachine

dispenseItem()

dispenseItem() must be
implemented in each subclass.
We do this by specifying the
operation as abstract. Abstract
operations are written in UML
in italics.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 39

Rewriteable Methods and Strict Inheritance

•  Rewriteable Method: A method which allows a
reimplementation

•  In Java methods are rewriteable by default, i.e. there
is no special keyword

•  Strict inheritance
•  The subclass can only add new methods to the

superclass, it cannot over write them
•  If a method cannot be overwritten in a Java program,

it must be prefixed with the keyword final.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 40

Strict Inheritance
Superclass:

drive()
brake()
accelerate()

Car

playMusic()
ejectCD()
resumeMusic()
pauseMusic()

LuxuryCar
Subclass:
public class LuxuryCar extends Car
{
 public void playMusic() {…}
 public void ejectCD() {…}
 public void resumeMusic() {…}
 public void pauseMusic() {…}
}

public class Car {
 public final void drive() {…}
 public final void brake() {…}
 public final void accelerate()
{…}
}

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 41

Bad Use of Implementation Inheritance
•  We have delivered a car with software that allows to

operate an on-board stereo system
•  A customer wants to have software for a cheap stereo

system to be sold by a discount store chain

•  Dialog between project manager and developer:
•  Project Manager:

•  „Reuse the existing car software. Don‘t change this
software, make sure there are no hidden surprises.
There is no additional budget, deliver tomorrow!“

•  Developer:
•  „OK, we can easily create a subclass BoomBox inheriting

the operations from the existing Car software“
•  „And we overwrite all method implementations from Car

that have nothing to do with playing music with empty
bodies!“

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 42

What we do to save money and time

Existing Product:
public class Auto {
 public void drive() {…}
 public void brake() {…}
 public void accelerate() {…}
 public void playMusic() {…}
 public void ejectCD() {…}
 public void resumeMusic() {…}
 public void pauseMusic() {…}
}

New Product:
public class Boombox extends
Auto {
 public void drive() {};
 public void brake() {};
 public void accelerate() {};
}

engine
windows
musicSystem
brake()
accelerate()
playMusic()
ejectCD()
resumeMusic()
pauseMusic()

Auto

musicSystem
playMusic()
ejectCD()
resumeMusic()
pauseMusic()

BoomBox

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 43

Contraction

•  Contraction: Implementations of methods in
the super class are overwritten with empty
bodies in the subclass to make the super class
operations “invisible“

•  Contraction is a special type of inheritance
•  It should be avoided at all costs, but is used

often.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 44

Contraction should be avoided

A contracted subclass delivers the desired
functionality expected by the client, but:

•  The interface contains operations that make no sense
for this class

•  What is the meaning of the operation brake() for a
BoomBox?

The subclass does not fit into the taxonomy
A BoomBox is not a special form of Auto

•  The subclass violates Liskov's Substitution
Principle:

•  I cannot replace Auto with BoomBox to drive to work.
•  Liskov’s Substitution Principle:

•  If an object of type S can be substituted in all the
places where an object of type T is expected, then
S is a subtype of T.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 45

Documenting the Object Design

•  Object design document (ODD)
= The Requirements Analysis Document (RAD) plus...

… additions to object, functional and dynamic
 models (from the solution domain)

… navigational map for object model
… Specification for all classes (use Javadoc)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 46

Documenting Object Design: ODD
Conventions

•  Each subsystem in a system provides a service
•  Describes the set of operations provided by the

subsystem
•  Specification of the service operations

•  Signature: Name of operation, fully typed parameter
list and return type

•  Abstract: Describes the operation
•  Pre: Precondition for calling the operation
•  Post: Postcondition describing important state after the

execution of the operation

•  Use JavaDoc and Contracts for the specification
of service operations

•  Contracts are covered in one of the next lectures.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 47

Package it all up
•  Pack up object design into discrete units that can

be edited, compiled, linked, reused
•  Construct physical modules

•  Ideally use one package for each subsystem
•  But system design might not be good enough for

packaging
•  Two design principles for packaging

•  Minimize coupling:
•  Classes in client-supplier relationships are usually

loosely coupled
•  Avoid large number of parameters in methods to

avoid strong coupling (should be less than 4-5)
•  Maximize cohesion: Put classes connected by

associations into one package.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 48

Summary
•  Object design closes the gap between the

requirements and the machine
•  Object design adds details to the requirements

analysis and makes implementation decisions
•  Object design activities include:

ü  Identification of Reuse
ü  Identification of Inheritance and Delegation

opportunities
ü  Component selection
•  Interface specification (Next lecture)
•  Object model restructuring
•  Object model optimization

•  Object design is documented in the Object
Design Document (ODD).

Lectures on Mapping
Models to Code

