
M. Cossentino! 1!

U
sin

g
U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
	

O
bj

ec
t-O

ri
en

te
d

So
ftw

ar
e

En
gi

ne
er

in
g	
 Chapter 2,

Modeling with UML, Part 1

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 2!

Odds and Ends

•  Reading for this Lecture:
•  Chapter 1 and 2, Bruegge&Dutoit, Object-Oriented

Software Engineering

•  Lectures Slides:
•  Will be posted before each lecture.

M. Cossentino! 2!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 3!

Overview for the Lecture
•  Three ways to deal with complexity

•  Abstraction and Modeling
•  (Abstraction -> Hiding details)

•  Decomposition
•  A complex problem or system is broken down into

parts that are easier to conceive
•  Hierarchy

•  a hierarchy can be modelled as a rooted tree

•  Introduction into the UML notation
•  First pass on:

•  Use case diagrams
•  Class diagrams
•  Sequence diagrams
•  Statechart diagrams
•  Activity diagrams

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 4!

What is the problem with this Drawing?

M. Cossentino! 3!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 5!

Abstraction
•  Complex systems are hard to understand

•  The 7 +- 2 phenomena
•  Our short term memory cannot store more than 7+-2

pieces at the same time -> limitation of the brain
•  My Phone Number: 498928918204

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 6!

Abstraction

•  Chunking:
•  Group collection of objects to reduce complexity
•  4 chunks:

• State-code, Area-code, Local-Prefix, Internal-Nr

•  Complex systems are hard to understand
•  The 7 +- 2 phenomena

•  Our short term memory cannot store more than 7+-2
pieces at the same time -> limitation of the brain

•  My Phone Number: 498928918204

M. Cossentino! 4!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 7!

Abstraction

Phone Number!

Country-Code! Area-Code! Local-Prefix! Internal-Nr!

•  Chunking:
•  Group collection of objects to reduce complexity
•  State-code, Area-code, Local Prefix, Internal-Nr

•  Complex systems are hard to understand
•  The 7 +- 2 phenomena

•  Our short term memory cannot store more than 7+-2
pieces at the same time -> limitation of the brain

•  My Phone Number: 003909123842261

0039! 091! 238 42! 261!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 8!

Abstraction

•  Abstraction allows us to ignore unessential details

•  Ideas can be expressed by models

M. Cossentino! 5!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 9!

Models

•  A model is an abstraction of a
system

•  A system that no longer exists
•  An existing system
•  A future system to be built.

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 10!

Why model software?

Why model software?

•  Software is getting increasingly more complex

•  Windows XP > 40 millions of lines of code
•  A single programmer cannot manage this amount of

code in its entirety.

•  Code is not easily understandable by developers
who did not write it

•  We need simpler representations for complex
systems

•  Modeling is a mean for dealing with complexity

M. Cossentino! 6!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 11!

We use Models to describe Software
Systems

•  Object model: What is the structure of
the system?

•  Functional model: What are the
functions of the system?

•  Dynamic model: How does the system
react to external events?

•  System Model: Object model +
functional model + dynamic model

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 12!

2. Technique to deal with Complexity:
Decomposition
•  A technique used to master complexity

(“divide and conquer”)
•  Two major types of decomposition

•  Functional decomposition
•  Object-oriented decomposition

•  Functional decomposition
•  The system is decomposed into modules
•  Each module is a major function in the

application domain
•  Modules can be decomposed into smaller

modules.

M. Cossentino! 7!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 13!

Decomposition (cont’d)

•  Object-oriented decomposition
•  The system is decomposed into classes (“objects”)
•  Each class is a major entity in the application

domain
•  Classes can be decomposed into smaller classes

•  Object-oriented vs. functional decomposition

Which decomposition is the right one?	

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 14!

Functional Decomposition

Top Level functions!

Level 1 functions!

Level 2 functions!

Machine instructions!

System !
Function! 	

Load R10! Add R1, R10!

Read Input! Transform! Produce!
Output!

Transform! Produce!
Output!Read Input!

M. Cossentino! 8!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 15!

Functional Decomposition

•  The functionality is spread all over the system
•  Maintainer must understand the whole system to

make a single change to the system
•  Consequence:

•  Source code is hard to understand
•  Source code is complex and impossible to maintain
•  User interface is often awkward and non-intuitive.

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 16!

Functional Decomposition

•  The functionality is spread all over the system
•  Maintainer must understand the whole system to

make a single change to the system
•  Consequence:

•  Source code is hard to understand
•  Source code is complex and impossible to maintain
•  User interface is often awkward and non-intuitive

M. Cossentino! 9!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 17!

What is This?

Neck
Glove

Coat
Pocket

Cave

Ellbow

An Eskimo!!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 18!

Nose
Eye

Ear

Chin
Mouth

Hair

A Face!

M. Cossentino! 10!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 19!

Nose
Eye

Ear

Chin
Mouth

Hair

Ellbow!
Neck

Glove

Coat
Pocket

Cave

A Face! An Eskimo!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 20!

Class Identification

•  Basic assumptions:
•  We can find the classes for a new software

system: Greenfield Engineering
•  We can identify the classes in an existing

system: Reengineering
•  We can create a class-based interface to an

existing system: Interface Engineering.

M. Cossentino! 11!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 21!

3. Hierarchy

•  So far we got abstractions
•  This leads us to classes and objects
•  “Chunks”

•  Another way to deal with complexity is to
provide relationships between these chunks

•  One of the most important relationships is
hierarchy

•  2 special hierarchies
•  "Part-of" hierarchy
•  "Is-kind-of" hierarchy.

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 22!

I/O Devices! CPU! Memory!

Part-of Hierarchy (Aggregation)

Computer!

Cache! ALU! Program!
 Counter!

M. Cossentino! 12!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 23!

Is-Kind-of Hierarchy (Taxonomy)

Cell!

Muscle Cell! Blood Cell! Nerve Cell!

Striate! Smooth! Red! White! Cortical! Pyramidal!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 24!

Where are we?

•  Three ways to deal with complexity:
•  Abstraction, Decomposition, Hierarchy

•  Object-oriented decomposition is good
•  Unfortunately, depending on the purpose of the

system, different objects can be found
•  How can we do it right?

•  Start with a description of the functionality of a system
•  Then proceed to a description of its structure

•  Ordering of development activities
•  Software lifecycle

M. Cossentino! 13!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 25!

Systems, Models and Views

• A model is an abstraction describing a
system or a subsystem

System: Airplane

Models:
Flight simulator
Scale model

Views:
Blueprint of the airplane components
Electrical wiring diagram, Fuel system
Sound wave created by airplane

• A view depicts selected aspects of a model

•  A notation is a set of graphical or textual
 rules for depicting models and views:

•  formal notations, “napkin designs”

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 26!

System
View 1

Model 2
View 2

View 3

Model 1

Aircraft"

"
 Flightsimulator"

"

"
Scale Model"

"

Blueprints" Electrical "
Wiring"

Fuel System"

Views and models of a complex system usually overlap

(“Napkin” Notation) Systems, Models and Views

M. Cossentino! 14!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 27!

Systems, Models and Views

System" View"*"
Model"*"

Depicted by"Described by"

Airplane:  
System"

Scale Model:Model" Flight Simulator:Model"

Fuel System:  
 View"

Electrical Wiring:  
 View"

Blueprints:  
View"

(UML Notation)
Class Diagram!

Object Diagram!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 28!

Model-Driven Development

1.  Build a platform-independent model of an
applications functionality and behavior
 a) Describe model in modeling notation (UML)
 b) Convert model into platform-specific model

2.  Generate executable from platform-specific
model

Advantages:
•  Code is generated from model (“mostly”)
•  Portability and interoperability

•  Model Driven Architecture effort:
•  http://www.omg.org/mda/

•  OMG: Object Management Group

M. Cossentino! 15!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 29!

Reality: A stock exchange lists many companies. Each
company is identified by a ticker symbol	

Analysis results in analysis object model (UML Class Diagram):

StockExchange	
 Company	

tickerSymbol	
Lists 	

!!

Implementation results in source code (Java):	

public class StockExchange {	

 private m_Company = new Vector();	

 };	

public class Company {	

 private int m_tickerSymbol;	

 private Vector m_StockExchange = new Vector();	

};	

Model-driven Software Development

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 30!

Application vs Solution Domain

•  Application Domain (Analysis):
•  The environment in which the system is operating

•  Solution Domain (Design, Implementation):
•  The technologies used to build the system

•  Both domains contain abstractions that we can
use for the construction of the system model.

M. Cossentino! 16!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 31!

Object-oriented Modeling

Application Domain "
(Phenomena)!

Solution Domain "
(Phenomena)"

System Model (Concepts)! System Model (Concepts)"

Aircraft" TrafficController"

FlightPlan"Airport"

MapDisplay"

FlightPlanDatabase"

Summary"
Display"

!

TrafficControl"

TrafficControl"

UML !
Package!

(Analysis)! (Design)!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 32!

What is UML?

•  UML (Unified Modeling Language)
•  Nonproprietary standard for modeling software systems, OMG
•  Convergence of notations used in object-oriented methods

•  OMT (James Rumbaugh and collegues)
•  Booch (Grady Booch)
•  OOSE (Ivar Jacobson)

•  Current Version: UML 2.4.1
•  Information at the OMG portal http://www.uml.org/

•  Commercial tools: Rational (IBM),Together (Borland), Visual
Architect (business processes, BCD)

•  Open Source tools: ArgoUML, StarUML, Umbrello
•  Commercial and Opensource: PoseidonUML (Gentleware),

Astah, Violet

M. Cossentino! 17!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 33!

UML First Pass

•  Use case diagrams
•  Describe the functional behavior of the system as seen

by the user

•  Class diagrams
•  Describe the static structure of the system: Objects,

attributes, associations

•  Sequence diagrams
•  Describe the dynamic behavior between objects of the

system

•  Statechart diagrams
•  Describe the dynamic behavior of an individual object

•  Activity diagrams
•  Describe the dynamic behavior of a system, in

particular the workflow.

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 34!

UML Core Conventions

•  All UML Diagrams denote graphs of nodes and
edges

•  Nodes are entities and drawn as rectangles or ovals
•  Rectangles denote classes or instances
•  Ovals denote functions

•  Names of Classes are not underlined
•  SimpleWatch
•  Firefighter

•  Names of Instances are underlined
•  myWatch:SimpleWatch!
•  Joe:Firefighter!

•  An edge between two nodes denotes a
relationship between the corresponding entities

