
Chapter 11, Testing
Part 1: Unit Testing

<M. Cossentino>

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

Outline of the Lectures on Testing

• Terminology
• Failure, Error, Fault

• Test Model
• Model-based testing
• Model-driven testing
• Mock object pattern
• Testing activities

• Unit testing
• Integration testing
• System testing

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

Famous Problems

•  F-16 : crossing equator using autopilot
• Result: plane flipped over
• Reason?
• Reuse of autopilot

software from a rocket

•  NASA Mars Climate Orbiter destroyed due to incorrect orbit
insertion (September 23, 1999)

• Reason: Unit conversion problem
•  The Therac-25 accidents (1985-1987), quite possibly the most

serious non-military computer-related failure ever in terms of human
life (at least five died)

• Reason: Bad event handling in the GUI,

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

The Therac-25

•  The Therac-25 was a medical linear accelerator
•  Linear accelerators create energy beams to destroy tumors

•  Used to give radiation treatments to cancer patients
• Most of the patients had undergone surgery to remove a tumor and

were receiving radiation to remove any leftover growth

•  For shallow tissue penetration, electron beams are used
•  To reach deeper tissue, the beam is converted into x-rays
•  The Therac-25 had two main types of operation, a low energy

mode and a high energy mode:
•  In low energy mode, an electronic beam of low radiation (200 rads) is

generated
•  In high energy mode the machine generates 25000 rads with 25

million electron volts

•  Therac-25 was developed by two companies, AECL from
Canada and CGR from France
•  Newest version(reusing code from Therac-6 and Therac-20).

A Therac-25 Accident
•  In 1986, a patient went into the clinic to receive his usual low

radiation treatment for his shoulder
•  The technician typed „X“ (x-ray beam), realizing the error,

quickly changed „X" into „E" (electron beam), and hit "enter“:
•  X <Delete char> E <enter>
•  This input sequence in a short time frame (about 8 sec) was never tested

•  Therac-25 signaled "beam ready“ and it also showed the
technician that it was in low energy mode

•  The technician typed „B" to deliver the beam to the patient
•  The beam that actually came from the machine was a blast of 25 000

rads with 25 million electron volts, more than 125 times the regular dose
•  The machine responded with error message “Malfunction 54”, which was

not explained in the user manual. Machine showed under dosage.
•  Operator hit “P” to continue for more treatment. Again, the same error

message

•  The patient felt sharp pains in his back, much different from his
usual treatment. He died 3 months later.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

Reasons for the Therac-25 Failure

•  Failure to properly reuse the old software from Therac-6
and Therac-20 when using it for new machine

•  Cryptic warning messages
•  End users did not understand the recurring problem (5

patients died)
•  Lack of communication between hospital and manufacturer
•  The manufacturer did not believe that the machine could

fail
•  No proper hardware to catch safety glitches.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

How the Problem was solved

•  On February 10, 1987, the Health Protection Branch of the
Canadian government along with the FDA (United States
Food and Drug Administration) announced the Therac-25
dangerous to use

•  On July 21, 1987 recommendations were given by the AECL
company on how to repair the Therac-25. Some of these
recommendations were
•  Operators cannot restart the machine without re-entering the input

command
•  The dose administered to the patient must be clearly shown to the

operator
•  Limiting the input modalities to prevent any accidental typos
•  Error messages must be made clearer
•  All manuals must be rewritten to reflect new changes.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

Terminology

•  Failure: Any deviation of the observed behavior from the
specified behavior

•  Erroneous state (error): The system is in a state such that
further processing by the system can lead to a failure

•  Fault: The mechanical or algorithmic cause of an error
(“bug”)

•  Validation: Activity of checking for deviations between the
observed behavior of a system and its specification.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

What is this?

A failure?

An error?

A fault?

We need to describe specified
behavior first!

Specification: “A track shall
support a moving train”

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

Erroneous State (“Error”)

Erroneous state (error):
The system is in a state
such that further
processing by the system
can lead to a failure

Failure: Any deviation of
the observed behavior
from the specified
behavior

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

Fault

Another possible fault: Communication problems between teams
Or: Wrong usage of compass

Possible algorithmic fault: Compass shows wrong reading

Fault: The
mechanical or
algorithmic
cause of an
error (“bug”)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

Mechanical Fault

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

F-16 Bug

•  Where is the failure?
•  Where is the error?
•  What is the fault?

•  Bad use of implementation
inheritance

•  A Plane is not a rocket. Rocket

Plane

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Examples of Faults and Errors

• Faults in the Interface
specification
• Mismatch between what
the client needs and what
the server offers

• Mismatch between
requirements and
implementation

• Algorithmic Faults
• Missing initialization
•  Incorrect branching
condition

• Missing test for null

• Mechanical Faults
(very hard to find)
• Operating temperature
outside of equipment
specification

• Errors
• Wrong user input
• Null reference errors
• Concurrency errors
• Exceptions.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

How do we deal with Errors, Failures
and Faults?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

Modular Redundancy

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

Declaring the Bug
as a Feature

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

Patching

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

Testing

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

Taxonomy for Fault Handling Techniques

Fault Handling

Fault ���
Avoidance

Fault ���
Detection

Fault ���
Tolerance

Verification

Configuration ���
ManagementMethodoloy Atomic���

Transactions
Modular���

Redundancy

System ���
Testing

Integration ���
Testing

Unit
Testing

Testing Debugging

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

Another View on How to Deal with Faults

•  Fault avoidance (before the system is released):
•  Use methodology to reduce complexity
•  Use configuration management to prevent inconsistency
•  Apply verification to prevent algorithmic faults
•  Use reviews to identify faults already in the design

•  Fault detection (while system is running):
•  Testing: Activity to provoke failures in a planned way
•  Debugging: Find and remove the cause (fault) of an observed

failure
• Monitoring: Deliver information about state and behavior => Used

during debugging

•  Fault tolerance (recover from failure once the system is
released):
•  Exception handling
• Modular redundancy.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

Observations

•  It is impossible to completely
test any nontrivial module or
system
•  Practical limitations: Complete testing is

prohibitive in time and cost
•  Theoretical limitations: e.g. Halting

problem

•  “Testing can only show the
presence of bugs, not their
absence” (Dijkstra).

•  Testing is not for free
=> Define your goals and priorities

Edsger W. Dijkstra (1930-2002)
 - First Algol 60 Compiler
 - 1968:
 - T.H.E.
 - Go To considered Harmful, CACM
 - Since 1970 Focus on Verification
 and Foundations of Computer Science
 - 1972 A. M. Turing Award

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

Testing takes creativity

•  To develop an effective test, one must have:
•  Detailed understanding of the system
•  Application and solution domain knowledge
•  Knowledge of the testing techniques
•  Skill to apply these techniques

•  Testing is done best by independent testers
• We often develop a certain mental attitude that the

program should behave in a certain way when in
fact it does not

•  Programmers often stick to the data set that makes
the program work

•  A program often does not work when tried by
somebody else.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 24

A quick overview

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25

Testing
activities

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 26

Model elements used during testing

is caused by

* *

Test case

Failure Fault Error

Test suite

is caused by

*

*

Correction Component

Test stub

Test driver

exercises is revised by

finds repairs

*

* *

*

* * 1…n

*

*

A part of the system that can be
isolated for testing (an object, a
group of objects, a subsystem)

A design or coding mistake that
causes abnormal component

behavior
A manifestation of a fault

during the execution

A deviation between the
specification and the actual

behavior

A set of inputs and expected results
that exercises a component

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 27

Test Example

•  Let’s test the previous presented system

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 28

System designed behavior

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 29

An example of Test Case

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 30

The test case

It is a set of input data and expected results that exercises a
component with the purpose of causing failures and detecting
faults.
(Most relevant) Attributes of the test case:

•  Name
•  it allows the designer to distinguish different test cases

•  Location
•  where the test case is located; it could address the pathname or the URL of the

executable and input data
•  Input

•  the set of input data
•  Oracle

•  the expected behavior of the component (the set of output data/ commands that the
system should provide)

•  Log
•  a set of time-stamped correlations of the observed and expected behavior (for

various test runs)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 31

Model-based testing

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 32

Test Model

•  The Test Model consolidates all test related decisions and
components into one package (sometimes also test
package or test requirements)

•  The test model contains tests, test driver, input data,
oracle and the test harness
•  A test driver (the program executing the test)
•  The input data needed for the tests
•  The oracle comparing the expected output with the actual test

output obtained from the test
•  The test harness

•  A framework or software components that allow to run the tests
under varying conditions and monitor the behavior and outputs
of the system under test (SUT)

•  Test harnesses are necessary for automated testing.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 33

Model-Based Testing
Definition: Model Based Testing

•  The system model is used for the generation of the test
model

Definition: System under test (SUT)
•  (Part of) the system model which is being tested

•  Advantages of model-based testing:
•  Increased effectiveness of testing
•  Decreased costs, better maintenance
•  Reuse of artifacts such as analysis and design models
•  Traceability of requirements

System under Test
(SUT)

Minor Variant: Extreme Programming
“Construct the test model first,

before the system model”

Test ModelSystem Model

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 34

Model-Driven Testing (MDT)

Remember: Model-Driven Architecture (MDA)
•  The system model can be separated into a platform

independent system model (PIM) and a platform
specific system model (PSM)

•  The PIM describes the system independently from the platform
that may be used to realize and execute the system

•  The PIM can be transformed into a PSM. PSMs contain
information on the underlying platform

•  In another transformation step, the system code is derived
from the PSM

•  The completeness of the system code depends on the completeness
of the system model

•  Model-driven testing has its roots in the idea of MDA
•  Model-driven testing distinguishes between:

•  Platform independent test models (PIT)
•  Platform specific test models (PST)
•  Test code is generated from these models.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 35

Model-Driven Testing
•  System models are transformed into

test models
•  When the system model is defined at the

PIM level, the platform-independent test
model (PIT) can be derived

•  When PSM level is defined, the platform-
specific test model (PST) can be derived

•  The PST can also be derived by
transforming the PIT model

•  Executable test code is then derived from
the PST and PIT models

•  After each transformation, the test
model may have to be enriched with
test specific properties. Examples:

•  If PIT and PST models must cover
unexpected system behavior, special
exception handling code must be added
to the test code

•  Test control and deployment information
is usually added at the PST level

•  Model-driven testing enables the early integration of testing into the
system development process.

System
Model

Test
Model

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 36

Automated Testing

•  There are two ways to generate the test model
• Manually: The developers set up the test data, run the test and

examine the results themselves. Success and/or failure of the test
is determined through observation by the developers

•  Automatically: Automated generation of test data and test cases.
Running the test is also done automatically, and finally the
comparison of the result with the oracle is also done automatically

•  Definition Automated Testing
•  All the test cases are automatically executed with a test harness

•  Advantage of automated testing:
•  Less boring for the developer
•  Better test thoroughness
•  Reduces the cost of test execution
•  Indispensible for regression testing.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 37

Object-Oriented Test Modeling
•  We start with the system model
•  The system contains the SUT (the unit we want to test)
•  The SUT does not exist in isolation, it collaborates with other objects in the

system model
•  The test model is derived from the SUT
•  To be able to interact with collaborators, we add objects to the test model
•  These objects are called test doubles

System Model Test Model
System under Test

(SUT)
Double 1

Double 2
Double 3

Collaborators
(Objects interacting with the SUT)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 38

Object-Oriented Test Modeling
•  We start with the system model
•  The system contains the SUT (the unit we want to test)
•  The SUT does not exist in isolation, it collaborates with other objects in the

system model
•  The test model is derived from the SUT
•  To be able to interact with collaborators, we add objects to the test model
•  These objects are called test doubles
•  These doubles are substitutes for the Collaborators during testing

System Model Test Model
System under Test

(SUT)
Double 1

Double 2
Double 3

Collaborators
(Objects interacting with the SUT)

Collaborators
(Objects interacting with the SUT)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 39

Test Doubles

•  A test double is like a double in the movies („stunt double“)
replacing the movie actor, whenever it becomes dangerous

•  A test double is used if the collaborator in the system model
is awkward to work with

•  There are 4 types of test doubles. All doubles try to make the
SUT believe it is talking with its real collaborators:
•  Dummy object: Passed around but never actually used. Dummy

objects are usually used to fill parameter lists
•  Fake object: A fake object is a working implementation, but usually

contains some type of “shortcut” which makes it not suitable for
production code (Example: A database stored in memory instead of a
real database)

•  Stub: Provides canned answers to calls made during the test, but is
not able to respond to anything outside what it is programmed for

• Mock object: Mocks are able to mimic the behavior of the real object.
They know how to deal with sequence of calls they are expected to
receive.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 40

Outline of the Lectures on Testing

ü Terminology
ü Failure, Error, Fault

ü Test Model
ü Model-based testing
ü Model-driven testing
ü Testing activities
ü Mock object pattern
Ø Testing activities
•  Unit testing

•  Integration testing
• Testing strategy
• Design patterns &
testing

• System testing
• Function testing
• Acceptance testing.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 41

Testing Activities

Tested
Subsystem

Subsystem
Code

SystemIntegration

Unit

Tested
Subsystem

Requirements
Analysis

Document

System
Design

Document

Tested Subsystem

Test Test

Test

Unit
Test

Unit
Test

User
Manual

Requirements
Analysis

Document

Subsystem
Code

Subsystem
Code

All tests by developer

Functioning
System

Integrated
Subsystems

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 42

Global
Requirements

Testing Activities ctd

User’s understanding
Tests by developer

Performance Acceptance

Client’s
Understanding

of Requirements

Test

Functioning
System

Test
Installation

User
Environment

Test

System in
Use

Usable
System

Validated
System

Accepted
System

Tests (?) by user

Tests by client

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 43

Types of Testing

•  Unit Testing
•  Individual components (class

or subsystem) are tested
•  Carried out by developers
•  Goal: Confirm that the

component or subsystem is
correctly coded and carries out
the intended functionality

•  Integration Testing
•  Groups of subsystems

(collection of subsystems) and
eventually the entire system
are tested

•  Carried out by developers
•  Goal: Test the interfaces

among the subsystems.

•  System Testing
•  The entire system is tested
•  Carried out by developers
•  Goal: Determine if the system

meets the requirements
(functional and nonfunctional)

•  Acceptance Testing
•  Evaluates the system

delivered by developers
•  Carried out by the client. May

involve executing typical
transactions on site on a trial
basis

•  Goal: Demonstrate that the
system meets the
requirements and is ready to
use.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 44

Static Analysis vs Dynamic Analysis

•  Static Analysis
• Hand execution: Reading the source code
• Walk-Through (informal presentation to others)
• Code Inspection (formal presentation to others)
• Automated Tools checking for

•  syntactic and semantic errors
•  departure from coding standards

• Dynamic Analysis
• Black-box testing (Test the input/output behavior)
• White-box testing (Test the internal logic of the
subsystem or class)

• Data-structure based testing (Data types determine test
cases)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 45

 Black-box Testing

• Focus: I/O behavior. If for any given input, we
can predict the output, then the unit passes the
test.
• Almost always impossible to generate all possible inputs
("test cases")

• Goal: Reduce number of test cases by
equivalence partitioning:
• Divide inputs into equivalence classes
• Choose test cases for each equivalence class

•  Example: If an object is supposed to accept a negative
number, testing one negative number is enough.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 46

Black box testing: An example

public class MyCalendar {

 public int getNumDaysInMonth(int month, int year)
 throws InvalidMonthException
 { … }
}

 Assume the following representations:

Month: (1,2,3,4,5,6,7,8,9,10,11,12)
 where 1= Jan, 2 = Feb, …, 12 = Dec

Year: (1904,…,1999,2000,…,2010)

How many test cases do we need to do a full black
box unit test of getNumDaysInMonth()?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 47

Black box testing: An example
• Depends on calendar. We assume the Gregorian
calendar

• Equivalence classes for the month parameter
• Months with 30 days, Months with 31 days, February, Illegal

months: 0, 13, -1

• Equivalence classes for the Year parameter
•  A normal year
•  Leap years

•  Dividable by /4
•  Dividable by /100
•  Dividable by /400

•  Illegal years: Before 1904, After 2010

12 test cases
How many test cases do we need to do a full black box
unit test of getNumDaysInMonth()?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 48

Black-box Testing (Continued)

• Selection of equivalence classes (No rules, only
guidelines):
•  Input is valid across range of values. Select test cases from 3

equivalence classes:
•  Below the range
•  Within the range
•  Above the range

•  Input is valid if it is from a discrete set. Select test cases from 2
equivalence classes:

•  Valid discrete value
•  Invalid discrete value

• Another solution to select only a limited amount of
test cases:
• Get knowledge about the inner workings of the unit being tested

=> white-box testing

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 49

White-box Testing

• Focus: Thoroughness (Coverage). Every
statement in the component is executed at least
once

• Fivetypes of white-box testing
•  Statement Testing
•  Loop Testing
•  Path Testing
• Branch Testing
•  State-based testing

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 50

 Unit testing: White-box Testing

•  Focus: Thoroughness (Coverage). Every statement in the
component is executed at least once.

•  Methods of white-box testing
•  Path Testing (all paths in the program are executed , see next slides)
•  Statement Testing (Tests single statements)
•  Loop Testing (Focuses on loops: skip, execute once, execute more than once)
•  Branch Testing (Each possible outcome from a condition is tested at least

once)
•  State-based testing (Derives test cases from the state-chart of the class)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 51

An implementation of getNumDaysInMonth()
method
public class MonthOutOfBounds extends Exception {…};
public class YearOutOfBounds extends Exception {…};

class MyGregorianCalendar {
 public static boolean isLeapYear(int year) {
 boolean leap;
 if (year%4) {
 leap = true;
 } else {
 leap = false;
 }
 return leap;
 }

/* … continued on next slide */

1/2

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 52

An implementation of getNumDaysInMonth()
method
/* … continued from previous slide */
public static int getNumDaysInMonth(int month, int year)
 throws MonthOutOfBounds, YearOutOfBounds {
 int numDays;
 if (year < 1) {
 throw new YearOutOfBounds(year);
 }
 if (month == 1 || month == 3 || month == 5 || month == 7 ||
 month == 10 || month == 12) {
 numDays = 32;
 } else if (month == 4 || month == 6 || month == 9 || month == 11) {
 numDays = 30;
 } else if (month == 2) {
 if (isLeapYear(year)) {
 numDays = 29;
 } else {
 numDays = 28;
 }
 } else {
 throw new MonthOutOfBounds(month);
 }
 return numDays;

}
...
}

2/2

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 53

Path testing Equivalent flow graph for the
getNumDaysInMonth()
method implementation

[year < 1]

[month in (1,3,5,7,10,12)]
n=31

throw2 n=28

return

throw1

n=29

n=30
[month in (4,6,9,11)]

[month == 2] [leap(year)]

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 54

Test cases for the previous flow graph
Test Case Path Oracle

(year = 0, month = 0) “Anno fuori range”
O “Mese fuori range”

(year = 0, month = 1) {throw1} “Anno fuori range”

(year = 1901, month = 1) {n=32 return} “Anno fuori range”

(year = 1901, month = 2) {n=28 return} “Anno fuori range”

(year = 1904, month = 2) {n=29 return} 29

(year = 1901, month = 4) {n=30 return} “Anno fuori range”

(year = 1904, month = 0) {throw2} “Mese fuori range”

(year = 1905, month = 2) N=28

(year = 1983, month = 5) N=31

(year = 1983, month = 4) N=30

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 55

Unit testing: white box testing: State based
testing
•  Introduced for OO programs
•  It looks at the state machine of each class

•  The aim is comparing the actual state of the class with the
expected one

•  Test cases are derived from the UML statechart of the class
•  For each state a representative set of stimuli is derived for each

transition (like in the equivalence testing). Then the variables of the
class are observed to verify that the class has reached the specified
state

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 56

Static Analysis Tools in Eclipse
•  Compiler Warnings and Errors

•  Possibly uninitialized variable
•  Undocumented empty block
•  Assignment with no effect
• Missing semicolon, …

•  Checkstyle
•  Checks for code guideline violations
•  http://checkstyle.sourceforge.net

•  Metrics
•  Checks for structural anomalies
•  http://metrics.sourceforge.net

•  FindBugs
•  Uses static analysis to look for bugs in Java code
•  http://findbugs.sourceforge.net

•  Correctness bug: Probable bug - an apparent coding mistake resulting in code
that was probably not what the developer intended. We strive for a low false
positive rate.

•  Bad Practice: Violations of recommended and essential coding practice.
•  Dodgy: Code that is confusing, anomalous, or written in a way that leads itself

to errors.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 57

FindBugs

•  FindBugs is an open source static analysis tool, developed
at the University of Maryland
•  Looks for bug patterns, inspired by real problems in real code

•  Example: FindBugs is used by Google at socalled
„engineering fixit“ meetings

•  Example from an engineering fixit at May 13-14, 2007
•  Scope: All the Google software written in Java

•  700 engineers participated by running FindBugs
•  250 provided 8,000 reviews of 4,000 issues

•  More than 75% of the reviews contained issues that were marked „should
fix“ or „must fix“, „I will fix“

•  Engineers filed more than 1700 bug reports
•  Source: http://findbugs.sourceforge.net/

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 58

Observation about Static Analysis

•  Static analysis typically finds mistakes but some mistakes
don’t matter

•  Not a magic bullet but if used effectively, static analysis is
cheaper than other techniques for catching the same bugs

•  Static analysis, at best, catches 5-10% of software quality
problems
•  Source: William Pugh, Mistakes that Matter, JavaOne Conference

•  http://www.cs.umd.edu/~pugh/MistakesThatMatter.pdf

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 59

Comparison of White & Black-box Testing

•  White-box Testing
•  Potentially infinite number of

paths have to be tested
• White-box testing often tests

what is done, instead of
what should be done

• Cannot detect missing use
cases

•  Black-box Testing
•  Potential combinatorical

explosion of test cases (valid
& invalid data)

• Often not clear whether the
selected test cases uncover
a particular error

• Does not discover
extraneous use cases
(unexpected "features")

•  Both types of testing are
needed

•  White-box testing and black
box testing are the extreme
ends of a testing
continuum.

•  Any choice of test case lies
in between and depends on
the following:
• Number of possible logical

paths
• Nature of input data
•  Amount of computation
• Complexity of algorithms and

data structures

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 60

Unit Testing Heuristics
1. Create unit tests when

object design is completed
• Black-box test: Test the
functional model

• White-box test: Test the
dynamic model

2. Develop the test cases
• Goal: Find effective num-
ber of test cases

3. Cross-check the test cases
to eliminate duplicates
• Don't waste your time!

4. Desk check your source code
• Sometimes reduces testing
time

5. Create a test harness
• Test drivers and test stubs
are needed for integration
testing

6. Describe the test oracle
• Often the result of the first
successfully executed test

7. Execute the test cases
• Re-execute test whenever a
change is made (“regression
testing”)

8. Compare the results of the
test with the test oracle
• Automate this if possible.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 61

The test case (reminder)

It is a set of input data and expected results that exercises a
component with the purpose of causing failures and detecting
faults.
Attributes of the test case:

•  Name
•  it allows the designer to distinguish different test cases

•  Location
•  where the test case is located; it could address the pathname or the URL of the

executable and input data
•  Input

•  the set of input data
•  Oracle

•  the expected behavior of the component (the set of output data/ commands that the
system should provide)

•  Log
•  a set of time-stamped correlations of the observed and expected behavior (for

various test runs)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 62

When should you write a test?

•  Traditionally after the source code is written
•  In XP before the source code is written

•  Test-Driven Development Cycle
• Add a new test to the test model
• Run the automated tests
 => the new test will find a failure

• Write code to deal with the failure
• Run the automated tests

 => see them succeed
• Refactor code.

