ineering

Object-Oriented Software Eng

Using UML, Patterns, and Java

di riferimento

scendario

Ingegneria del software:

eAe[pue ‘surapeJ “JAN 3UIsn
SuLIdaUIdUY 31eM}JOS PIIUILIN-}I3[qO

di riferimento

scendario

Ingegneria del software:

eAe[pue ‘surapeJ “JAN 3UIsn
SuLIdaUIdUY 31eM}JOS PIIUILIN-}I3[qO

imento

iferi

1 Tl

d

scendario

Ingegneria del software

eAe[pue ‘surapeJ “JAN 3UIsn
SuLIdaUIdUY 31eM}JOS PIIUILIN-}I3[qO

Object-Oriented Software Engineering
Using UML, Patterns, and Java

Ingegneria del software:
scenario di riferimento

How the customer explained it How the Project Leader

How the Analyst designed it

fo

ferimen

1 Tl

d

scendario

Ingegneria del software

eAe[pue ‘surapeJ “JAN 3UIsn
SuLIdaUIdUY 31eM}JOS PIIUILIN-}I3[qO

fo

ferimen

1 Tl

d

scendario

i

Ingegneria del software

eAe[pue ‘surapeJ “JAN 3UIsn
SuLIdaUIdUY 31eM}JOS PIIUILIN-}I3[qO

vo
9%
Fy-
O~
“ O
®"m
a..m
.m.m
 —
¥
O
Rl Yw)l
gc ‘l
ms

eAe[pue ‘surapeJ “JAN 3UIsn
SuLIdaUIdUY 31eM}JOS PIIUILIN-}I3[qO

Object-Oriented Software Engineering
Using UML, Patterns, and Java

Ingegneria del software:
scenario di riferimento

I

How the customer explained it How the Project Leader How the Analyst designed it How the Programmer wrote it
understood it

How the customer was billed

How the project was What operatiens installed
documented

Object-Oriented Software Engineering
Using UML, Patterns, and Java

Ingegneria del software:
scenario di riferimento

I

How the customer explained it How the Project Leader How the Analyst designed it How the Programmer wrote it How the Business Consultant
understood it described it

How the customer was billed How it was supported

How the project was What operatiens installed
documented

Object-Oriented Software Engineering
Using UML, Patterns, and Java

Ingegneria del software:
scenario di riferimento

I

How the customer explained it How the Project Leader How the Analyst designed it How the Programmer wrote it How the Business Consultant
understood it described it

How the project was What operatiens installed

How the customer was billed How it was supported

documented

Object-Oriented Software Engineering
Using UML, Patterns, and Java

Software: il modello a
cipolla

Sistema
Esequibile

Progetto di dettaglio

Architettura

Requisiti

ineering

Object-Oriented Software Eng

Using UML, Patterns, and Java

Il modello a cipolla/2

NOT
Ingegneria del

Strutture dati software

Algoritmi

Sistema
Eseguibile
Testing

Metodi

Classi
Progetto di dettaglio

Architettura

Object-Oriented Software Engineering
Using UML, Patterns, and Java

Il modello a cipolla/2

 Fino ad oggi avete
wr Studiato:

Ingegneria del

sotware o Algoritmi

o Strutture dati
o Agliinizi
dell'informatica
bastavano a fare i
‘programmi’

e Wirth: Algoritmi
+strutture dati =
programmi

* L'ingegneria del
software aggiunge

Strutture dati

Algoritmi

Sistema
Eseguibile

Testing

Architettura

altri 4 FONDAMENTALI

strati e completa il
modello

Can you develop this system?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

Can you develop this system?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

16

Can you develop this system?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

Can you develop this system?

The impossible
Fork

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, an d Java

Why is Software Development difficult?

The problem is usually ambiguous

The requirements are usually unclear and changing
when they become clearer

The problem domain (called application domain) is
complex, and so is the solution domain

The development process is difficult to manage
Software offers extreme flexibility

Software is a discrete system
e Continuous systems have no hidden surprises
» Discrete systems can have hidden surprises!

David Lorge Parnas - an early pioneer in
software engineering who developed the
concepts of modularity and information hiding
in systems which are the foundation of

object oriented methodologies.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

Software Development is more ihcm just
Writing Code

e It is problem solving
e Understanding a problem
* Proposing a solution and plan

 Engineering a system based on the
proposed solution using a good design

e It is about dealing with complexity
» Creating abstractions and models
* Notations for abstractions

o It is knowledge management

» Elicitation, analysis, design, validation of
the system and the solution process

e It is rationale management

 Making the design and development
decisions explicit to all stakeholders
involved.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

Computer Science vs. Engineering

e Assumes techniques and tools have to be developed.

* Proves theorems about algorithms, designs languages,
defines knowledge representation schemes

 Has infinite time...

* Develops a solution for a problem formulated by a client
« Uses computers & languages, techniques and tools

 Works in multiple application domains
e Has only 3 months...

...while changes occurs in the problem formulation
(requirements) and also in the available technology.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

Software Engineering: A Working
Definition

Software Engineering is a collection of techniques,
methodologies and tools that help with the
production of

software system developed with a
given before a given
while occurs

Challenge: Dealing with complexity and
change

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22
20

Software Engineering:
A Problem Solving Activity

 Analysis:
* Understand the nature of the problem and break the
problem into pieces

 Synthesis:
» Put the pieces together into a large structure

For problem solving we use techniques,
methodologies and tools.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

23

Course Outline
Dealing with Complexity Dealing with Change

e Notations (UML, OCL) e Rationale Management
« Requirements Engineering, * Knowledge Management
Analysis and Design * Patterns
- OOSE, SA/SD, scenario-based Release Management
design, formal specifications . Configuration Management,
e Testing Continuous Integration
« Vertical and horizontal testing « Software Life Cycle

e Linear models
o Iterative models

e Activity-vs Entity-based
views

» Project

Application of these Concepts in the
Exercises

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 24

