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Chapter 7, 

System Design: 
Addressing Design Goals 
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Overview 

System Design I 
ü 0. Overview of System Design 
ü 1. Design Goals 
ü 2. Subsystem Decomposition 

ü Architectural Styles 

System Design II 
3. Concurrency 
4. Hardware/Software Mapping 
5. Persistent Data Management 
6. Global Resource Handling and Access Control 
7. Software Control 
8. Boundary Conditions 
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System Design

ü 2. Subsystem Decomposition
Layers vs Partitions
Coherence/Coupling

 
4. Hardware/
Software Mapping
Special Purpose
Buy vs Build
Allocation of Resources
Connectivity

 5. Data
Management 

Persistent Objects
File system vs Database

Access Control List
vs Capabilities
Security

6. Global Resource 
Handlung 

8. Boundary
Conditions

Initialization
Termination
Failure

Ø 3. Concurrency
Identification of 
Threads

7. Software 
Control

Monolithic
Event-Driven
Conc. Processes

ü 1. Design Goals
Definition
Trade-offs
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Concurrency 

•  Nonfunctional Requirements to be addressed: 
Performance, Response time, latency, 
availability. 

•   Two objects are inherently concurrent if they 
can receive events at the same time without 
interacting 

•  Source for identification: Objects in a sequence 
diagram  that can simultaneously receive events 

•  Unrelated events, instances of the same event 

•  Inherently concurrent objects can be assigned to 
different threads of control 

•  Objects with mutual exclusive activity could be 
folded into a single thread of control 
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Thread of Control 

•  A thread of control is a path through a set of 
state diagrams on which a single object is active 
at a time 

•  A thread remains within a state diagram until an object 
sends an event to different object and waits for 
another event 

•  Thread splitting: Object does a non-blocking send of an 
event to another object. 

•  Concurrent threads can lead to race conditions. 
•  A race condition  (also race hazard) is a design 

flaw where the output of a process depends on 
the specific sequence of other events. 

•  The name originated in digital circuit design: Two 
signals racing each other to influence the output. 
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Example: Problem with threads 

:BankAccount 
c1:Customer  c2:Customer 

:WithdrawCtrl :WithdrawCtrl 

getBalance() 

200 

withdraw(50) 

setBalance(150) 

getBalance() 

200 

withdraw(50) 

setBalance(150) 

computeNewBalance(200,50) 

computeNewBalance(200,50) 

Assume: Initial 
balance = 200 

Final  
balance = 150 ??! 

Thread 1 

Thread 2 

Should BankAccount 
  be another Thread ? 
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Solution: Synchronization of Threads 

c1:Customer  c2:Customer  
:BankAccount :WithdrawCtrl 

getBalance() 

200 

withdraw(50) 

setBalance(150) 

computeNewBalance(200,50) 

Initial 
balance = 200 

withdraw(50) 

Single WithdrawCtrl 
Instance 

Synchronized method 

End 
balance = 100 
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Concurrency Questions 

•  To identify threads for concurrency we ask the 
following questions:  

•  Does the system provide access to multiple users? 
•  Which entity objects of the object model can be 

executed independently from each other? 
•  What kinds of control objects are identifiable? 
•  Can a single request to the system be decomposed into 

multiple requests? Can these requests be handled in 
parallel? (Example: a distributed query) 
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Implementing Concurrency 

•  Concurrent systems can be implemented on any 
system that provides  

•  Physical concurrency: Threads are provided by hardware 

    or 
•  Logical concurrency: Threads are provided by software  

•  Physical concurrency is provided by 
multiprocessors and computer networks 

•  Logical concurrency is provided by threads 
packages. 
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Implementing Concurrency (2) 

•  In both cases, - physical concurrency as well as 
logical concurrency - we have to solve the 
scheduling of these threads: 

•  Which thread runs when?  
•  Today’s operating systems provide a variety of 

scheduling mechanisms:  
•  Round robin, time slicing, collaborating processes, 

interrupt handling  
•  General question addresses starvation, 

deadlocks, fairness -> Topic for researchers in 
operating systems 

•  Sometimes  we have to solve the scheduling 
problem ourselves 

•  Topic addressed by software control (system design 
topic 7). 
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System Design

ü 2. Subsystem Decomposition
Layers vs Partitions
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Ø  4. Hardware/
Software Mapping
Special Purpose
Buy vs Build
Allocation of Resources
Connectivity

 5. Data
Management 
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vs Capabilities
Security
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Handlung 

8. Boundary
Conditions
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Failure

ü 3. Concurrency
Identification of 
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ü 1. Design Goals
Definition
Trade-offs
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4. Hardware Software Mapping 

•  This system design activity addresses two 
questions:  

•  How shall we realize the subsystems: With hardware or 
with software?  

•  If hardware is chosen, how to proceed is out of the 
scope of the current course 

•  How do we map the object model onto the chosen 
hardware and/or software? 

•  Mapping the Objects:  
•  Processor, Memory, Input/Output 

•  Mapping the Associations:  
• Network connections 
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Mapping Objects onto Hardware 

•  Control Objects -> Processor  
•  Is the computation rate too demanding for a single 

processor? 
•  Can we get a speedup by distributing objects across 

several processors? 
•  How many processors are required to maintain a 

steady state load? 
•  Entity Objects -> Memory 

•  Is there enough memory to buffer bursts of requests? 
•  Boundary Objects -> Input/Output Devices 

•  Do we need an extra piece of hardware to  handle the 
data generation rates?  

•  Can the desired response time be realized with the 
available communication bandwidth between 
subsystems? 
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Mapping the Associations: Connectivity 

•  Describe the physical connectivity 
•  (“Physical layer in the OSI reference model”) 

•  Describes which associations in the object model  
are mapped to physical connections 

•  Describe the logical connectivity (subsystem 
associations) 

•  Associations that do not directly map into physical 
connections 

•  In which layer should these associations be 
implemented? 

•  Informal connectivity drawings often contain 
both types of connectivity 

•  Practiced by many developers, sometimes confusing. 
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DistributedDatabaseArchitecture Tue, Oct 13, 1992 12:53 AM

Application 
Client

Application 
Client

Application 
Client

Communication
Agent for  

Application Clients

Communication
Agent for  

Application Clients

Communication
Agent for Data 

Server

Communication
Agent for Data 

Server

Local Data
Server

Global Data
Server

Global 
Data 
Server

Global 
Data 

Server

OODBMS

RDBMS

Backbone Network

LAN

LAN

LAN
TCP/IP

Ethernet Cat 5
Physical 

Connectivity

Logical 
Connectivity

Example: Informal Connectivity Drawing 
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Logical vs Physical Connectivity and the 
relationship to Subsystem Layering 

Application LayerApplication Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Bidirectional associa- 
tions for each layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Processor 1 Processor 2

Logical
Connectivity

Physical
Connectivity
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Hardware-Software Mapping Difficulties 

•  Much of the difficulty of designing a system 
comes from addressing externally-imposed 
hardware and software constraints 

•  Certain tasks have to be at specific locations 
•  Example: Withdrawing money from an ATM 

machine 
•  Some hardware components have to be used from a 

specific manufacturer 
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Hardware/Software Mappings in UML 

•  A UML component is a building block of the system. 
It is represented as a rectangle with a tabbed 
rectangle symbol inside 

•  The Hardware/Software Mapping addresses 
dependencies and distribution issues of UML 
components during system design.  
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Two New UML Diagram Types 

•  Deployment Diagram:  
•  Illustrates the distribution of components at run-time. 
•  Deployment diagrams use nodes and connections to 

depict the physical resources in the system. 

•   Component Diagram:  
•  Illustrates dependencies between components at 

design time, compilation time and runtime 
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Component Diagram Example 

UML Interface

UML
 Component

reservations 

update 

   Dependency.

Scheduler

Planner

GUI
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UML Component Diagram 

•  Used to model the top-level view of the system 
design in terms of components and dependencies 
among the components. Components can be 

•  source code, linkable libraries, executables  

•  The dependencies (edges in the graph) are shown 
as dashed lines with arrows from the client 
component to the supplier component: 

•   The lines are often also called connectors 
•  The types of dependencies are implementation language 

specific  

•  Informally also called “software wiring diagram“ 
because it show how the software components are 
wired together in the overall application. 
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UML Superstructure Specification, v2.4.1        153

Figure 8.6 - A Component with two provided and three required interfaces

An external view of a Component is by means of Interface symbols sticking out of the Component box (external or black-
box view). Alternatively, the interfaces and/or individual operations and attributes can be listed in the compartments of a 
component box (for scalability, tools may offer a way of listing and abbreviating component properties and behavior).

Figure 8.7 - Black box notation showing a listing of the properties of a component

For displaying the full signature of an interface of a component, the interfaces can also be displayed as typical classifier 
rectangles that can be expanded to show details of operations and events.

Figure 8.8 - Explicit representation of the provided and required interfaces, allowing interface details such  
                     as operation to be displayed (when desired).

Order

OrderableItem

«component» Person

Invoice

ItemAllocation

Tracking

Order
«component»

«provided interfaces»
   OrderEntry
   Billing
«required interfaces»
   Invoice
      create (...)
      registerPayment (...)

Person«component»
Order

FindbyName()
Create()
GetDetails()

«use» «Interface»
OrderEntry

Create()
ValidateDetails()
AddOrderline()

«Interface»

UML Interfaces: Lollipops and Sockets 

•  A UML interface describes a group of 
operations used or created by UML 
components. 

•  There are two types of interfaces: provided and 
required interfaces.   

•  A provided interface is modeled using the 
lollipop notation  

•  A required interface is modeled using the 
socket notation.  

•   A port specifies a distinct interaction point 
between the component and its 
environment. 

•  Ports are depicted as small squares on the sides of 
classifiers.   
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An external view of a Component is by means of Interface symbols sticking out of the Component box (external or black-
box view). Alternatively, the interfaces and/or individual operations and attributes can be listed in the compartments of a 
component box (for scalability, tools may offer a way of listing and abbreviating component properties and behavior).

Figure 8.7 - Black box notation showing a listing of the properties of a component

For displaying the full signature of an interface of a component, the interfaces can also be displayed as typical classifier 
rectangles that can be expanded to show details of operations and events.

Figure 8.8 - Explicit representation of the provided and required interfaces, allowing interface details such  
                     as operation to be displayed (when desired).

Order

OrderableItem

«component» Person

Invoice

ItemAllocation

Tracking

Order
«component»

«provided interfaces»
   OrderEntry
   Billing
«required interfaces»
   Invoice
      create (...)
      registerPayment (...)

Person«component»
Order

FindbyName()
Create()
GetDetails()

«use» «Interface»
OrderEntry

Create()
ValidateDetails()
AddOrderline()

«Interface»
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Component diagram – details from UML 
2.4.1 

UML Superstructure Specification, v2.4.1        153

Figure 8.6 - A Component with two provided and three required interfaces

An external view of a Component is by means of Interface symbols sticking out of the Component box (external or black-
box view). Alternatively, the interfaces and/or individual operations and attributes can be listed in the compartments of a 
component box (for scalability, tools may offer a way of listing and abbreviating component properties and behavior).

Figure 8.7 - Black box notation showing a listing of the properties of a component

For displaying the full signature of an interface of a component, the interfaces can also be displayed as typical classifier 
rectangles that can be expanded to show details of operations and events.

Figure 8.8 - Explicit representation of the provided and required interfaces, allowing interface details such  
                     as operation to be displayed (when desired).

Order

OrderableItem

«component» Person

Invoice

ItemAllocation

Tracking

Order
«component»

«provided interfaces»
   OrderEntry
   Billing
«required interfaces»
   Invoice
      create (...)
      registerPayment (...)

Person«component»
Order

FindbyName()
Create()
GetDetails()

«use» «Interface»
OrderEntry
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ValidateDetails()
AddOrderline()

«Interface»
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An internal or white box view of a Component is where the realizing classifiers are listed in an additional compartment. 
Compartments may also be used to display a listing of any parts and connectors, or any implementing artifacts.

Figure 8.9 - A white-box representation of a component

The internal classifiers that realize the behavior of a component may be displayed using realization arrows.

Figure 8.10 - A representation of the realization of a complex component

Alternatively, the internal classifiers that realize the behavior of a component may be displayed nested within the 
component shape.

Order
«component»

«provided interfaces»
   OrderEntry
   AccountPayable
«required interfaces»
   Person

«realizations»
   OrderHeader
   LineItem

«artifacts»
   Order.jar

«component»
Customer

CustomerImpl CustomerColl CustomerDef

154                 UML Superstructure Specification, v2.4.1

An internal or white box view of a Component is where the realizing classifiers are listed in an additional compartment. 
Compartments may also be used to display a listing of any parts and connectors, or any implementing artifacts.

Figure 8.9 - A white-box representation of a component

The internal classifiers that realize the behavior of a component may be displayed using realization arrows.

Figure 8.10 - A representation of the realization of a complex component

Alternatively, the internal classifiers that realize the behavior of a component may be displayed nested within the 
component shape.

Order
«component»

«provided interfaces»
   OrderEntry
   AccountPayable
«required interfaces»
   Person

«realizations»
   OrderHeader
   LineItem

«artifacts»
   Order.jar

«component»
Customer

CustomerImpl CustomerColl CustomerDef
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Figure 8.6 - A Component with two provided and three required interfaces

An external view of a Component is by means of Interface symbols sticking out of the Component box (external or black-
box view). Alternatively, the interfaces and/or individual operations and attributes can be listed in the compartments of a 
component box (for scalability, tools may offer a way of listing and abbreviating component properties and behavior).

Figure 8.7 - Black box notation showing a listing of the properties of a component

For displaying the full signature of an interface of a component, the interfaces can also be displayed as typical classifier 
rectangles that can be expanded to show details of operations and events.

Figure 8.8 - Explicit representation of the provided and required interfaces, allowing interface details such  
                     as operation to be displayed (when desired).

Order

OrderableItem

«component» Person

Invoice

ItemAllocation

Tracking

Order
«component»

«provided interfaces»
   OrderEntry
   Billing
«required interfaces»
   Invoice
      create (...)
      registerPayment (...)

Person«component»
Order

FindbyName()
Create()
GetDetails()

«use» «Interface»
OrderEntry

Create()
ValidateDetails()
AddOrderline()

«Interface»
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Figure 8.11 - An alternative nested representation of a complex component

If more detail is required of the role or instance level containment of a component, then an internal structure consisting of 
parts and connectors can be defined for that component. This allows, for example, explicit part names or connector names 
to be shown in situations where the same Classifier (Association) is the type of more than one Part (Connector). That is, 
the Classifier is instantiated more than once inside the component, playing different roles in its realization. Optionally, 
specific instances (InstanceSpecifications) can also be referred to as in this notation. If the icon symbol is shown, the 
keyword «component» could be hidden.

If the parts have simple ports (ports with a single required or provided interface), then ball-and-socket notation can be 
used to represent connectors between those ports, and normal connector notation for assembly or delegation may be 
shown connected to the ball or socket symbol rather than to the port symbol itself.

If a part has no ports, or complex ports, the notation for connector wiring is as specified in Clause Composite Structures.

Interfaces that are exposed by a Component and notated on a diagram, either directly or through a port definition, may be 
inherited from a supertype component. These interfaces are indicated on the diagram by preceding the name of the 
interface by a forward slash. An example of this can be found in Figure 8.14, where “/orderedItem” is an interface that is 
implemented by a supertype of the Product component.

«component»
Order

OrderHeader

LineItem

Person

OrderEntry

*

order

item

1
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Component diagram – details from UML 
2.4.1 / 2 

156                 UML Superstructure Specification, v2.4.1

Figure 8.12 - An internal or white-box view of the internal structure of a component that contains other components 
with simple ports as parts of its internal assembly

Artifacts that implement components can be connected to them by physical containment or by an «implement» 
relationship, which is an instance of the meta association between Component and Artifact.

Examples 

Figure 8.13 - Example of an overview diagram showing components  
and their general dependencies

When a Dependency is wired from a Usage to an InterfaceRealization, the dependency arrow should be shown joining the 
socket to the lollipop. 

A Dependency may be wired from a simple Port with a required interface to a simple Port to a provided interface, in 
which case it is a notational option to show the dependency arrow joining the socket to the lollipop.

A Dependency may be shown from a simple Port to an internal realizing Classifier to indicate that the interface provided 
or required by the Port is in fact provided or required by the Dependency’s supplier.

All of these options are shown in Figure 8.14.

«component»
Store

«component»

:Order

«component»

:Product

«component»

:Customer

Person

Person

OrderableItem

OrderableItem

OrderEntry

OrderEntry

Account

Account

Order
«component»

Account
«component»

Product
«component»

•  A port specifies a distinct interaction point between 
the component and its environment. 

•  Ports are depicted as small squares on the sides of 
classifiers. 

•  The interfaces associated with a port specify the nature 
of the interactions that may occur over a port.   
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Component diagram – details from UML 
2.4.1 / 3 

UML Superstructure Specification, v2.4.1        157

Figure 8.14 - Example of a platform independent model of a component,  its provided and required interfaces,  
and wiring through dependencies on a structure diagram.

Figure 8.15 shows a set of parts wired through ball-and-socket notation between simple ports. The diagram shows a 
binary connector between :ShoppingCart and :Order, a ternary connector between :Order, :Service and :Product, and a 
quaternary connector between :BackOrder, :Order, :Customer and :Organization.

 

Figure 8.15 -Example of a composite structure of components, with connector wiring between simple ports on parts 
(Note: “Client” interface is a subtype of “Person”).

Order
«component»

LineItem

OrderHeader
«focus»

*

concerns

Account
«component»

Product
«component»

OrderableItem

/orderedItem

account

AccountPayable

«component»

:BackOrder

«component»

:Order

«component»

:Product

«component»

:Customer

Person

Person

«component»

:Organization

«component»

:Service

Person

Client
OrderableItem

OrderableItem
OrderableItem

OrderEntry«component»

:ShoppingCart OrderEntry

Where multiple components have simple ports that provide or require the same 
interface, a single symbol representing the interface can be shown, and lines 
from the components can be drawn to that symbol 
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Graphical paths

The graphic paths that can be included in structure diagrams are shown in Table 8.2.

Component has required Port (typed by Interface) See “Port”

Component has complex Port (typed by provided and 
required Interfaces)

See “Port”

Table 8.2 - Graphic paths included in structure diagrams

PATH TYPE NOTATION REFERENCE

Component realization See “ComponentRealization”

Table 8.3 - Graphic paths included in composite structure diagrams

PATH TYPE NOTATION REFERENCE

Assembly connector See “Connector” - also used as notation option for wiring 
between interfaces using Dependencies.

Delegate connector See “Connector”

Table 8.1 - Graphic nodes included in structure diagrams

NODE TYPE NOTATION REFERENCE

Name
«component»

Name
«component»

Component with a 
complex port
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:HostMachine

:PC

:Scheduler

:Planner

 

 

MeetingDB: 
Database

Deployment Diagram Example 

Dependency 
(between nodes)

Dependency 
(in a node)UML Node

UML
 Interface
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•  Deployment diagrams are useful for showing a 
system design after these system design 
decisions have been made: 

•  Subsystem decomposition 
•  Concurrency 
•  Hardware/Software Mapping  

•  A deployment diagram is a graph of nodes and 
connections (“communication associations”) 

•  Nodes are shown as 3-D boxes 
•  Connections  between nodes are shown as solid lines 
•  Nodes may contain components  

•  Components can be connected by “lollipops” and 
“grabbers” 

•  Components may contain objects (indicating that 
the object is part of the component). 

:PC 

Deployment Diagram 

:Server 
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ARENA Deployment Diagram 

:ServerMachine

:UserMachine

:ArenaServer

:ArenaClient

:ArenaStorage

:Advertisement
Server

:MatchFrontEndPeer

:GamePeer
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5. Data Management 

•  Some objects in the system model need to be 
persistent: 

•  Values for their attributes have a lifetime longer than a 
single execution  

•  A persistent object can be realized with one of 
the following mechanisms: 

•  Filesystem: 
•  If the data are used by multiple readers but a 

single writer 
•  Database: 

•  If the data are used by concurrent writers and 
readers. 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        30

Data Management Questions 

•  How often is the database accessed? 
•  What is the expected request (query) rate? The worst  

case? 
•  What is the size of typical and worst case requests? 

•  Do the data need to be archived? 
•  Should the data be distributed?  

•  Does the system design try to hide the location of the 
databases (location transparency)? 

•  Is there a  need for a single interface to access 
the data? 

•  What is the query format? 
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Mapping Object Models 

•  UML object models can be mapped to relational 
databases 

•  The mapping: 
•  Each class is mapped to its own table 
•  Each class attribute is mapped to a column in the table 
•  An instance of a class represents a row in the table 
•  One-to-many associations are implemented with a 

buried foreign key 
•  Many-to-many associations are mapped to their own 

tables 
•  Methods are not mapped 
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6. Global Resource Handling 

•  Discusses access control 
•  Describes access rights for different classes of 

actors 
•  Describes how object guard against 

unauthorized access. 
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Defining Access Control 

•  In multi-user systems different actors usually 
have different access rights to different 
functionality and data 

•  How do we model these accesses? 
•  During analysis we model them by associating different 

use cases with different actors  
•  During system design we model them determining 

which objects are shared among actors. 
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Access Matrix 

•  We model access on classes with an access 
matrix: 

•  The rows of the matrix represents the actors of the 
system 

•  The column represent classes whose access we want to 
control 

•  Access Right: An entry in the access matrix. It 
lists the operations that can be executed on 
instances of the class by the actor.  

Class 1 Class 2 Class 3 
Actor 1 methodX() 

methodZ() 
methodW() 

Actor 2 MethodY() methodV() 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        35

Access Matrix Example 

Arena League 

Operator 

LeagueOwner 

Player 

Spectator 

Tournament 

<<create>> 
archive() 
schedule() 
view() 
applyFor() 
view() 

view() 

<<create>> 
createUser() 
view () 

view () 

view() 
applyForPlayer() 

view() 
applyForOwner() 

<<create>> 
archive() 

view() 
subscribe() 

view() 
subscribe() 

edit () 

Match 

<<create>> 
end() 

play() 
forfeit() 

view() 
replay() 

Actors 

Classes Access Rights 
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Access Matrix Implementations (1 of 2) 

•  Global access table: Represents explicitly every 
cell in the matrix as a triple (actor,class, 
operation)  

 
LeagueOwner, Arena, view()  
LeagueOwner,  League, edit() 
LeagueOwner, Tournament, <<create>> 
LeagueOwner, Tournament, view() 
LeagueOwner, Tournament, schedule() 
LeagueOwner, Tournament, archive() 
LeagueOwner, Match, <<create>> 
LeagueOwner, Match, end() 
 
. 
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Access Matrix Implementations (2 of 2) 

•  Access control list  
•  Associates a list of (actor,operation) pairs with each 

class to be accessed.  
•  Every time an instance of this class is accessed, the 

access list is checked for the corresponding actor and 
operation. 

•  Capability 
•  Associates a (class,operation) pair with an actor. 
•  A capability provides an actor to gain control access to 

an object of the class described in the capability.  
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Arena League 

Operator 

LeagueOwner 

Player 

Spectator 

Tournament 

<<create>> 
archive() 
schedule() 
view() 
applyFor() 
view() 

view() 

<<create>> 
createUser() 
view () 

view () 

view() 
applyForPlayer() 

view() 
applyForOwner() 

<<create>> 
archive() 

view() 
subscribe() 

view() 
subscribe() 

edit () 

Match 

<<create>> 
end() 

play() 
forfeit() 

view() 
replay() 

Access Matrix Example 

Player 

Match 

play() 
forfeit() 
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Player 

Match 

play() 
forfeit() 
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Access Control List Realization 

joe:Player 

m1:Match 

joe may play���
alice may play

I am joe, 
I want to  play in 

match m1 

Gatekeeper checks 
identification against 
list and allows access.

Access Control 
List for m1
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Capability Realization 

joe:Player 

m1:Match 

Capability

Here’s my ticket, 
I’d like to play in 

match m1 

Gatekeeper checks if 
ticket is valid and 

allows access.Ticket for���

match “m1”
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Global Resource Questions 

•  Does the system need authentication? 
•  If yes, what is the authentication scheme? 

•  User name and password? Access control list 
•  Tickets? Capability-based 

•  What is the user interface for authentication? 
•  Does the system need a network-wide name 

server? 
•  How is a service known to the rest of the 

system? 
•  At runtime? At compile time? 
•  By Port? 
•  By Name? 
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7. Decide on Software Control  

Two major design choices: 
 1. Choose implicit  control  

•  Rule-based systems, Logic programming  
 2. Choose explicit control 

•  Procedural languages: Centralized or decentralized 
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Centralized vs. Decentralized Designs 

•  (Explicit) Centralized Design 
•  One control object or subsystem ("spider") controls 

everything 
•  Pro: Change in the control structure is very easy 
•  Con: The single control object is a possible 

performance bottleneck 

•  Decentralized Design 
•  Not a single object is in control, control is distributed; 

That means, there is more than one control object 
•  Con: The responsibility is spread out 
•  Pro: Fits nicely into object-oriented development 
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Centralized vs Decentralized Design/2 

•  (Explicit) Centralized control:  
•  Procedure-driven: Control resides within program code.  
•  Event-driven: Control resides within a dispatcher calling 

functions via callbacks. 
•  (Explicit) Decentralized control 

•  Control resides in several independent objects.  
•  Examples: Message based system, RMI 

•  Possible speedup by mapping the objects on different 
processors, increased communication overhead.  
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Software Control 

Explicit Control Implicit Control 

Rule-based 
Control Logic Programming 

Event-based 
Control 

Procedural 
Control. 

Centralized 
Control 

Decentralized 
Control 
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Centralized vs. Decentralized Designs (2) 

•  Should you  use a centralized or decentralized 
design?   

•  Take the sequence diagrams and control objects 
from the analysis model 

•  Check the participation of the control objects in 
the sequence diagrams 

•  If the  sequence diagram looks like a fork => 
Centralized design 

•  If the sequence diagram looks like a stair =>  
Decentralized design. 
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8. Boundary Conditions 

•  Initialization  
•  The system is brought from a non-initialized state to 

steady-state 

•  Termination 
•  Resources are cleaned up and other systems are 

notified upon termination  

•  Failure 
•  Possible failures: Bugs, errors, external problems 

•  Good system design foresees fatal failures and 
provides mechanisms to deal with them.  
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Boundary Condition Questions 

•  Initialization 
•  What data need to be accessed at startup time? 
•  What services have to registered? 
•  What does the user interface do at start up time? 

•  Termination 
•  Are single subsystems allowed to terminate? 
•  Are subsystems notified if a single subsystem 

terminates? 
•  How are updates communicated to the database? 

•  Failure 
•  How does the system behave when a node or 

communication link fails?  
•  How does the system recover from failure?.  
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Modeling Boundary Conditions 

•  Boundary conditions are best modeled as use 
cases with actors and objects 

•  We call them boundary use cases or 
administrative use cases 

•  Actor: often the system administrator 
•  Interesting use cases:  

•  Start up of a subsystem 
•  Start up of the full system 
•  Termination of a subsystem 
•  Error in a subsystem or component, failure of a 

subsystem or component.  
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Example: Boundary Use Case for ARENA 

•  Let us assume, we identified the subsystem 
AdvertisementServer during system design 

•  This server takes a big load during the holiday 
season 

•  During hardware software mapping we decide to 
dedicate a special node for this server 

•  For this node we define a new boundary use  
case ManageServer  

•  ManageServer includes all the functions 
necessary to start up and shutdown the 
AdvertisementServer. 
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ManageServer Boundary Use Case 

Server 
Administrator

ManageServer

StartServer

ShutdownServer

ConfigureServer

<<include>>

<<include>>

<<include>>
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Summary 

•  System design activities: 
•  Concurrency identification 
•  Hardware/Software mapping 
•  Persistent data management 
•  Global resource handling 
•  Software control selection 
•  Boundary conditions 

•  Each of these activities may affect the 
subsystem decomposition 

•  Two new UML Notations 
•  UML Component Diagram: Showing compile time and 

runtime dependencies between subsystems  
•  UML Deployment Diagram: Drawing the runtime 

configuration of the system. 


