
U
sin

g
U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-O
ri

en
te

d
So

ftw
ar

e
En

gi
ne

er
in

g

Chapter 7,

System Design:
Addressing Design Goals

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

Overview

System Design I
ü 0. Overview of System Design
ü 1. Design Goals
ü 2. Subsystem Decomposition

ü Architectural Styles

System Design II
3. Concurrency
4. Hardware/Software Mapping
5. Persistent Data Management
6. Global Resource Handling and Access Control
7. Software Control
8. Boundary Conditions

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

System Design

ü 2. Subsystem Decomposition
Layers vs Partitions
Coherence/Coupling

4. Hardware/
Software Mapping
Special Purpose
Buy vs Build
Allocation of Resources
Connectivity

 5. Data
Management

Persistent Objects
File system vs Database

Access Control List
vs Capabilities
Security

6. Global Resource
Handlung

8. Boundary
Conditions

Initialization
Termination
Failure

Ø 3. Concurrency
Identification of
Threads

7. Software
Control

Monolithic
Event-Driven
Conc. Processes

ü 1. Design Goals
Definition
Trade-offs

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

Concurrency

•  Nonfunctional Requirements to be addressed:
Performance, Response time, latency,
availability.

•  Two objects are inherently concurrent if they
can receive events at the same time without
interacting

•  Source for identification: Objects in a sequence
diagram that can simultaneously receive events

•  Unrelated events, instances of the same event

•  Inherently concurrent objects can be assigned to
different threads of control

•  Objects with mutual exclusive activity could be
folded into a single thread of control

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

Thread of Control

•  A thread of control is a path through a set of
state diagrams on which a single object is active
at a time

•  A thread remains within a state diagram until an object
sends an event to different object and waits for
another event

•  Thread splitting: Object does a non-blocking send of an
event to another object.

•  Concurrent threads can lead to race conditions.
•  A race condition (also race hazard) is a design

flaw where the output of a process depends on
the specific sequence of other events.

•  The name originated in digital circuit design: Two
signals racing each other to influence the output.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

Example: Problem with threads

:BankAccount
c1:Customer c2:Customer

:WithdrawCtrl :WithdrawCtrl

getBalance()

200

withdraw(50)

setBalance(150)

getBalance()

200

withdraw(50)

setBalance(150)

computeNewBalance(200,50)

computeNewBalance(200,50)

Assume: Initial
balance = 200

Final
balance = 150 ??!

Thread 1

Thread 2

Should BankAccount
 be another Thread ?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

Solution: Synchronization of Threads

c1:Customer c2:Customer
:BankAccount :WithdrawCtrl

getBalance()

200

withdraw(50)

setBalance(150)

computeNewBalance(200,50)

Initial
balance = 200

withdraw(50)

Single WithdrawCtrl
Instance

Synchronized method

End
balance = 100

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

Concurrency Questions

•  To identify threads for concurrency we ask the
following questions:

•  Does the system provide access to multiple users?
•  Which entity objects of the object model can be

executed independently from each other?
•  What kinds of control objects are identifiable?
•  Can a single request to the system be decomposed into

multiple requests? Can these requests be handled in
parallel? (Example: a distributed query)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

Implementing Concurrency

•  Concurrent systems can be implemented on any
system that provides

•  Physical concurrency: Threads are provided by hardware

 or
•  Logical concurrency: Threads are provided by software

•  Physical concurrency is provided by
multiprocessors and computer networks

•  Logical concurrency is provided by threads
packages.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

Implementing Concurrency (2)

•  In both cases, - physical concurrency as well as
logical concurrency - we have to solve the
scheduling of these threads:

•  Which thread runs when?
•  Today’s operating systems provide a variety of

scheduling mechanisms:
•  Round robin, time slicing, collaborating processes,

interrupt handling
•  General question addresses starvation,

deadlocks, fairness -> Topic for researchers in
operating systems

•  Sometimes we have to solve the scheduling
problem ourselves

•  Topic addressed by software control (system design
topic 7).

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

System Design

ü 2. Subsystem Decomposition
Layers vs Partitions
Coherence/Coupling

Ø  4. Hardware/
Software Mapping
Special Purpose
Buy vs Build
Allocation of Resources
Connectivity

 5. Data
Management

Persistent Objects
Filesystem vs Database

Access Control List
vs Capabilities
Security

6. Global Resource
Handlung

8. Boundary
Conditions

Initialization
Termination
Failure

ü 3. Concurrency
Identification of
Threads

7. Software
Control

Monolithic
Event-Driven
Conc. Processes

ü 1. Design Goals
Definition
Trade-offs

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

4. Hardware Software Mapping

•  This system design activity addresses two
questions:

•  How shall we realize the subsystems: With hardware or
with software?

•  If hardware is chosen, how to proceed is out of the
scope of the current course

•  How do we map the object model onto the chosen
hardware and/or software?

•  Mapping the Objects:
•  Processor, Memory, Input/Output

•  Mapping the Associations:
• Network connections

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

Mapping Objects onto Hardware

•  Control Objects -> Processor
•  Is the computation rate too demanding for a single

processor?
•  Can we get a speedup by distributing objects across

several processors?
•  How many processors are required to maintain a

steady state load?
•  Entity Objects -> Memory

•  Is there enough memory to buffer bursts of requests?
•  Boundary Objects -> Input/Output Devices

•  Do we need an extra piece of hardware to handle the
data generation rates?

•  Can the desired response time be realized with the
available communication bandwidth between
subsystems?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Mapping the Associations: Connectivity

•  Describe the physical connectivity
•  (“Physical layer in the OSI reference model”)

•  Describes which associations in the object model
are mapped to physical connections

•  Describe the logical connectivity (subsystem
associations)

•  Associations that do not directly map into physical
connections

•  In which layer should these associations be
implemented?

•  Informal connectivity drawings often contain
both types of connectivity

•  Practiced by many developers, sometimes confusing.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

DistributedDatabaseArchitecture Tue, Oct 13, 1992 12:53 AM

Application
Client

Application
Client

Application
Client

Communication
Agent for

Application Clients

Communication
Agent for

Application Clients

Communication
Agent for Data

Server

Communication
Agent for Data

Server

Local Data
Server

Global Data
Server

Global
Data
Server

Global
Data

Server

OODBMS

RDBMS

Backbone Network

LAN

LAN

LAN
TCP/IP

Ethernet Cat 5
Physical

Connectivity

Logical
Connectivity

Example: Informal Connectivity Drawing

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

Logical vs Physical Connectivity and the
relationship to Subsystem Layering

Application LayerApplication Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Bidirectional associa-
tions for each layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Processor 1 Processor 2

Logical
Connectivity

Physical
Connectivity

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

Hardware-Software Mapping Difficulties

•  Much of the difficulty of designing a system
comes from addressing externally-imposed
hardware and software constraints

•  Certain tasks have to be at specific locations
•  Example: Withdrawing money from an ATM

machine
•  Some hardware components have to be used from a

specific manufacturer

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

Hardware/Software Mappings in UML

•  A UML component is a building block of the system.
It is represented as a rectangle with a tabbed
rectangle symbol inside

•  The Hardware/Software Mapping addresses
dependencies and distribution issues of UML
components during system design.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

Two New UML Diagram Types

•  Deployment Diagram:
•  Illustrates the distribution of components at run-time.
•  Deployment diagrams use nodes and connections to

depict the physical resources in the system.

•  Component Diagram:
•  Illustrates dependencies between components at

design time, compilation time and runtime

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

Component Diagram Example

UML Interface

UML
 Component

reservations

update

 Dependency.

Scheduler

Planner

GUI

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

UML Component Diagram

•  Used to model the top-level view of the system
design in terms of components and dependencies
among the components. Components can be

•  source code, linkable libraries, executables

•  The dependencies (edges in the graph) are shown
as dashed lines with arrows from the client
component to the supplier component:

•  The lines are often also called connectors
•  The types of dependencies are implementation language

specific

•  Informally also called “software wiring diagram“
because it show how the software components are
wired together in the overall application.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

UML Superstructure Specification, v2.4.1 153

Figure 8.6 - A Component with two provided and three required interfaces

An external view of a Component is by means of Interface symbols sticking out of the Component box (external or black-
box view). Alternatively, the interfaces and/or individual operations and attributes can be listed in the compartments of a
component box (for scalability, tools may offer a way of listing and abbreviating component properties and behavior).

Figure 8.7 - Black box notation showing a listing of the properties of a component

For displaying the full signature of an interface of a component, the interfaces can also be displayed as typical classifier
rectangles that can be expanded to show details of operations and events.

Figure 8.8 - Explicit representation of the provided and required interfaces, allowing interface details such
 as operation to be displayed (when desired).

Order

OrderableItem

«component» Person

Invoice

ItemAllocation

Tracking

Order
«component»

«provided interfaces»
 OrderEntry
 Billing
«required interfaces»
 Invoice
 create (...)
 registerPayment (...)

Person«component»
Order

FindbyName()
Create()
GetDetails()

«use» «Interface»
OrderEntry

Create()
ValidateDetails()
AddOrderline()

«Interface»

UML Interfaces: Lollipops and Sockets

•  A UML interface describes a group of
operations used or created by UML
components.

•  There are two types of interfaces: provided and
required interfaces.

•  A provided interface is modeled using the
lollipop notation

•  A required interface is modeled using the
socket notation.

•  A port specifies a distinct interaction point
between the component and its
environment.

•  Ports are depicted as small squares on the sides of
classifiers.

UML Superstructure Specification, v2.4.1 153

Figure 8.6 - A Component with two provided and three required interfaces

An external view of a Component is by means of Interface symbols sticking out of the Component box (external or black-
box view). Alternatively, the interfaces and/or individual operations and attributes can be listed in the compartments of a
component box (for scalability, tools may offer a way of listing and abbreviating component properties and behavior).

Figure 8.7 - Black box notation showing a listing of the properties of a component

For displaying the full signature of an interface of a component, the interfaces can also be displayed as typical classifier
rectangles that can be expanded to show details of operations and events.

Figure 8.8 - Explicit representation of the provided and required interfaces, allowing interface details such
 as operation to be displayed (when desired).

Order

OrderableItem

«component» Person

Invoice

ItemAllocation

Tracking

Order
«component»

«provided interfaces»
 OrderEntry
 Billing
«required interfaces»
 Invoice
 create (...)
 registerPayment (...)

Person«component»
Order

FindbyName()
Create()
GetDetails()

«use» «Interface»
OrderEntry

Create()
ValidateDetails()
AddOrderline()

«Interface»

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

Component diagram – details from UML
2.4.1

UML Superstructure Specification, v2.4.1 153

Figure 8.6 - A Component with two provided and three required interfaces

An external view of a Component is by means of Interface symbols sticking out of the Component box (external or black-
box view). Alternatively, the interfaces and/or individual operations and attributes can be listed in the compartments of a
component box (for scalability, tools may offer a way of listing and abbreviating component properties and behavior).

Figure 8.7 - Black box notation showing a listing of the properties of a component

For displaying the full signature of an interface of a component, the interfaces can also be displayed as typical classifier
rectangles that can be expanded to show details of operations and events.

Figure 8.8 - Explicit representation of the provided and required interfaces, allowing interface details such
 as operation to be displayed (when desired).

Order

OrderableItem

«component» Person

Invoice

ItemAllocation

Tracking

Order
«component»

«provided interfaces»
 OrderEntry
 Billing
«required interfaces»
 Invoice
 create (...)
 registerPayment (...)

Person«component»
Order

FindbyName()
Create()
GetDetails()

«use» «Interface»
OrderEntry

Create()
ValidateDetails()
AddOrderline()

«Interface»

154 UML Superstructure Specification, v2.4.1

An internal or white box view of a Component is where the realizing classifiers are listed in an additional compartment.
Compartments may also be used to display a listing of any parts and connectors, or any implementing artifacts.

Figure 8.9 - A white-box representation of a component

The internal classifiers that realize the behavior of a component may be displayed using realization arrows.

Figure 8.10 - A representation of the realization of a complex component

Alternatively, the internal classifiers that realize the behavior of a component may be displayed nested within the
component shape.

Order
«component»

«provided interfaces»
 OrderEntry
 AccountPayable
«required interfaces»
 Person

«realizations»
 OrderHeader
 LineItem

«artifacts»
 Order.jar

«component»
Customer

CustomerImpl CustomerColl CustomerDef

154 UML Superstructure Specification, v2.4.1

An internal or white box view of a Component is where the realizing classifiers are listed in an additional compartment.
Compartments may also be used to display a listing of any parts and connectors, or any implementing artifacts.

Figure 8.9 - A white-box representation of a component

The internal classifiers that realize the behavior of a component may be displayed using realization arrows.

Figure 8.10 - A representation of the realization of a complex component

Alternatively, the internal classifiers that realize the behavior of a component may be displayed nested within the
component shape.

Order
«component»

«provided interfaces»
 OrderEntry
 AccountPayable
«required interfaces»
 Person

«realizations»
 OrderHeader
 LineItem

«artifacts»
 Order.jar

«component»
Customer

CustomerImpl CustomerColl CustomerDef

UML Superstructure Specification, v2.4.1 153

Figure 8.6 - A Component with two provided and three required interfaces

An external view of a Component is by means of Interface symbols sticking out of the Component box (external or black-
box view). Alternatively, the interfaces and/or individual operations and attributes can be listed in the compartments of a
component box (for scalability, tools may offer a way of listing and abbreviating component properties and behavior).

Figure 8.7 - Black box notation showing a listing of the properties of a component

For displaying the full signature of an interface of a component, the interfaces can also be displayed as typical classifier
rectangles that can be expanded to show details of operations and events.

Figure 8.8 - Explicit representation of the provided and required interfaces, allowing interface details such
 as operation to be displayed (when desired).

Order

OrderableItem

«component» Person

Invoice

ItemAllocation

Tracking

Order
«component»

«provided interfaces»
 OrderEntry
 Billing
«required interfaces»
 Invoice
 create (...)
 registerPayment (...)

Person«component»
Order

FindbyName()
Create()
GetDetails()

«use» «Interface»
OrderEntry

Create()
ValidateDetails()
AddOrderline()

«Interface»

UML Superstructure Specification, v2.4.1 155

Figure 8.11 - An alternative nested representation of a complex component

If more detail is required of the role or instance level containment of a component, then an internal structure consisting of
parts and connectors can be defined for that component. This allows, for example, explicit part names or connector names
to be shown in situations where the same Classifier (Association) is the type of more than one Part (Connector). That is,
the Classifier is instantiated more than once inside the component, playing different roles in its realization. Optionally,
specific instances (InstanceSpecifications) can also be referred to as in this notation. If the icon symbol is shown, the
keyword «component» could be hidden.

If the parts have simple ports (ports with a single required or provided interface), then ball-and-socket notation can be
used to represent connectors between those ports, and normal connector notation for assembly or delegation may be
shown connected to the ball or socket symbol rather than to the port symbol itself.

If a part has no ports, or complex ports, the notation for connector wiring is as specified in Clause Composite Structures.

Interfaces that are exposed by a Component and notated on a diagram, either directly or through a port definition, may be
inherited from a supertype component. These interfaces are indicated on the diagram by preceding the name of the
interface by a forward slash. An example of this can be found in Figure 8.14, where “/orderedItem” is an interface that is
implemented by a supertype of the Product component.

«component»
Order

OrderHeader

LineItem

Person

OrderEntry

*

order

item

1

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 24

Component diagram – details from UML
2.4.1 / 2

156 UML Superstructure Specification, v2.4.1

Figure 8.12 - An internal or white-box view of the internal structure of a component that contains other components
with simple ports as parts of its internal assembly

Artifacts that implement components can be connected to them by physical containment or by an «implement»
relationship, which is an instance of the meta association between Component and Artifact.

Examples

Figure 8.13 - Example of an overview diagram showing components
and their general dependencies

When a Dependency is wired from a Usage to an InterfaceRealization, the dependency arrow should be shown joining the
socket to the lollipop.

A Dependency may be wired from a simple Port with a required interface to a simple Port to a provided interface, in
which case it is a notational option to show the dependency arrow joining the socket to the lollipop.

A Dependency may be shown from a simple Port to an internal realizing Classifier to indicate that the interface provided
or required by the Port is in fact provided or required by the Dependency’s supplier.

All of these options are shown in Figure 8.14.

«component»
Store

«component»

:Order

«component»

:Product

«component»

:Customer

Person

Person

OrderableItem

OrderableItem

OrderEntry

OrderEntry

Account

Account

Order
«component»

Account
«component»

Product
«component»

•  A port specifies a distinct interaction point between
the component and its environment.

•  Ports are depicted as small squares on the sides of
classifiers.

•  The interfaces associated with a port specify the nature
of the interactions that may occur over a port.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25

Component diagram – details from UML
2.4.1 / 3

UML Superstructure Specification, v2.4.1 157

Figure 8.14 - Example of a platform independent model of a component, its provided and required interfaces,
and wiring through dependencies on a structure diagram.

Figure 8.15 shows a set of parts wired through ball-and-socket notation between simple ports. The diagram shows a
binary connector between :ShoppingCart and :Order, a ternary connector between :Order, :Service and :Product, and a
quaternary connector between :BackOrder, :Order, :Customer and :Organization.

Figure 8.15 -Example of a composite structure of components, with connector wiring between simple ports on parts
(Note: “Client” interface is a subtype of “Person”).

Order
«component»

LineItem

OrderHeader
«focus»

*

concerns

Account
«component»

Product
«component»

OrderableItem

/orderedItem

account

AccountPayable

«component»

:BackOrder

«component»

:Order

«component»

:Product

«component»

:Customer

Person

Person

«component»

:Organization

«component»

:Service

Person

Client
OrderableItem

OrderableItem
OrderableItem

OrderEntry«component»

:ShoppingCart OrderEntry

Where multiple components have simple ports that provide or require the same
interface, a single symbol representing the interface can be shown, and lines
from the components can be drawn to that symbol

UML Superstructure Specification, v2.4.1 165

Graphical paths

The graphic paths that can be included in structure diagrams are shown in Table 8.2.

Component has required Port (typed by Interface) See “Port”

Component has complex Port (typed by provided and
required Interfaces)

See “Port”

Table 8.2 - Graphic paths included in structure diagrams

PATH TYPE NOTATION REFERENCE

Component realization See “ComponentRealization”

Table 8.3 - Graphic paths included in composite structure diagrams

PATH TYPE NOTATION REFERENCE

Assembly connector See “Connector” - also used as notation option for wiring
between interfaces using Dependencies.

Delegate connector See “Connector”

Table 8.1 - Graphic nodes included in structure diagrams

NODE TYPE NOTATION REFERENCE

Name
«component»

Name
«component»

Component with a
complex port

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 26

:HostMachine

:PC

:Scheduler

:Planner

MeetingDB:
Database

Deployment Diagram Example

Dependency
(between nodes)

Dependency
(in a node)UML Node

UML
 Interface

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 27

•  Deployment diagrams are useful for showing a
system design after these system design
decisions have been made:

•  Subsystem decomposition
•  Concurrency
•  Hardware/Software Mapping

•  A deployment diagram is a graph of nodes and
connections (“communication associations”)

•  Nodes are shown as 3-D boxes
•  Connections between nodes are shown as solid lines
•  Nodes may contain components

•  Components can be connected by “lollipops” and
“grabbers”

•  Components may contain objects (indicating that
the object is part of the component).

:PC

Deployment Diagram

:Server

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 28

ARENA Deployment Diagram

:ServerMachine

:UserMachine

:ArenaServer

:ArenaClient

:ArenaStorage

:Advertisement
Server

:MatchFrontEndPeer

:GamePeer

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 29

5. Data Management

•  Some objects in the system model need to be
persistent:

•  Values for their attributes have a lifetime longer than a
single execution

•  A persistent object can be realized with one of
the following mechanisms:

•  Filesystem:
•  If the data are used by multiple readers but a

single writer
•  Database:

•  If the data are used by concurrent writers and
readers.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 30

Data Management Questions

•  How often is the database accessed?
•  What is the expected request (query) rate? The worst

case?
•  What is the size of typical and worst case requests?

•  Do the data need to be archived?
•  Should the data be distributed?

•  Does the system design try to hide the location of the
databases (location transparency)?

•  Is there a need for a single interface to access
the data?

•  What is the query format?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 31

Mapping Object Models

•  UML object models can be mapped to relational
databases

•  The mapping:
•  Each class is mapped to its own table
•  Each class attribute is mapped to a column in the table
•  An instance of a class represents a row in the table
•  One-to-many associations are implemented with a

buried foreign key
•  Many-to-many associations are mapped to their own

tables
•  Methods are not mapped

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 32

6. Global Resource Handling

•  Discusses access control
•  Describes access rights for different classes of

actors
•  Describes how object guard against

unauthorized access.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 33

Defining Access Control

•  In multi-user systems different actors usually
have different access rights to different
functionality and data

•  How do we model these accesses?
•  During analysis we model them by associating different

use cases with different actors
•  During system design we model them determining

which objects are shared among actors.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 34

Access Matrix

•  We model access on classes with an access
matrix:

•  The rows of the matrix represents the actors of the
system

•  The column represent classes whose access we want to
control

•  Access Right: An entry in the access matrix. It
lists the operations that can be executed on
instances of the class by the actor.

Class 1 Class 2 Class 3
Actor 1 methodX()

methodZ()
methodW()

Actor 2 MethodY() methodV()

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 35

Access Matrix Example

Arena League

Operator

LeagueOwner

Player

Spectator

Tournament

<<create>>
archive()
schedule()
view()
applyFor()
view()

view()

<<create>>
createUser()
view ()

view ()

view()
applyForPlayer()

view()
applyForOwner()

<<create>>
archive()

view()
subscribe()

view()
subscribe()

edit ()

Match

<<create>>
end()

play()
forfeit()

view()
replay()

Actors

Classes Access Rights

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 36

Access Matrix Implementations (1 of 2)

•  Global access table: Represents explicitly every
cell in the matrix as a triple (actor,class,
operation)

LeagueOwner, Arena, view()
LeagueOwner, League, edit()
LeagueOwner, Tournament, <<create>>
LeagueOwner, Tournament, view()
LeagueOwner, Tournament, schedule()
LeagueOwner, Tournament, archive()
LeagueOwner, Match, <<create>>
LeagueOwner, Match, end()

.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 37

Access Matrix Implementations (2 of 2)

•  Access control list
•  Associates a list of (actor,operation) pairs with each

class to be accessed.
•  Every time an instance of this class is accessed, the

access list is checked for the corresponding actor and
operation.

•  Capability
•  Associates a (class,operation) pair with an actor.
•  A capability provides an actor to gain control access to

an object of the class described in the capability.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 38

Arena League

Operator

LeagueOwner

Player

Spectator

Tournament

<<create>>
archive()
schedule()
view()
applyFor()
view()

view()

<<create>>
createUser()
view ()

view ()

view()
applyForPlayer()

view()
applyForOwner()

<<create>>
archive()

view()
subscribe()

view()
subscribe()

edit ()

Match

<<create>>
end()

play()
forfeit()

view()
replay()

Access Matrix Example

Player

Match

play()
forfeit()

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 39

Player

Match

play()
forfeit()

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 40

Access Control List Realization

joe:Player

m1:Match

joe may play���
alice may play

I am joe,
I want to play in

match m1

Gatekeeper checks
identification against
list and allows access.

Access Control
List for m1

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 41

Capability Realization

joe:Player

m1:Match

Capability

Here’s my ticket,
I’d like to play in

match m1

Gatekeeper checks if
ticket is valid and

allows access.Ticket for���

match “m1”

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 42

Global Resource Questions

•  Does the system need authentication?
•  If yes, what is the authentication scheme?

•  User name and password? Access control list
•  Tickets? Capability-based

•  What is the user interface for authentication?
•  Does the system need a network-wide name

server?
•  How is a service known to the rest of the

system?
•  At runtime? At compile time?
•  By Port?
•  By Name?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 43

7. Decide on Software Control

Two major design choices:
 1. Choose implicit control

•  Rule-based systems, Logic programming
 2. Choose explicit control

•  Procedural languages: Centralized or decentralized

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 44

Centralized vs. Decentralized Designs

•  (Explicit) Centralized Design
•  One control object or subsystem ("spider") controls

everything
•  Pro: Change in the control structure is very easy
•  Con: The single control object is a possible

performance bottleneck

•  Decentralized Design
•  Not a single object is in control, control is distributed;

That means, there is more than one control object
•  Con: The responsibility is spread out
•  Pro: Fits nicely into object-oriented development

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 45

Centralized vs Decentralized Design/2

•  (Explicit) Centralized control:
•  Procedure-driven: Control resides within program code.
•  Event-driven: Control resides within a dispatcher calling

functions via callbacks.
•  (Explicit) Decentralized control

•  Control resides in several independent objects.
•  Examples: Message based system, RMI

•  Possible speedup by mapping the objects on different
processors, increased communication overhead.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 46

Software Control

Explicit Control Implicit Control

Rule-based
Control Logic Programming

Event-based
Control

Procedural
Control.

Centralized
Control

Decentralized
Control

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 47

Centralized vs. Decentralized Designs (2)

•  Should you use a centralized or decentralized
design?

•  Take the sequence diagrams and control objects
from the analysis model

•  Check the participation of the control objects in
the sequence diagrams

•  If the sequence diagram looks like a fork =>
Centralized design

•  If the sequence diagram looks like a stair =>
Decentralized design.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 48

8. Boundary Conditions

•  Initialization
•  The system is brought from a non-initialized state to

steady-state

•  Termination
•  Resources are cleaned up and other systems are

notified upon termination

•  Failure
•  Possible failures: Bugs, errors, external problems

•  Good system design foresees fatal failures and
provides mechanisms to deal with them.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 49

Boundary Condition Questions

•  Initialization
•  What data need to be accessed at startup time?
•  What services have to registered?
•  What does the user interface do at start up time?

•  Termination
•  Are single subsystems allowed to terminate?
•  Are subsystems notified if a single subsystem

terminates?
•  How are updates communicated to the database?

•  Failure
•  How does the system behave when a node or

communication link fails?
•  How does the system recover from failure?.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 50

Modeling Boundary Conditions

•  Boundary conditions are best modeled as use
cases with actors and objects

•  We call them boundary use cases or
administrative use cases

•  Actor: often the system administrator
•  Interesting use cases:

•  Start up of a subsystem
•  Start up of the full system
•  Termination of a subsystem
•  Error in a subsystem or component, failure of a

subsystem or component.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 51

Example: Boundary Use Case for ARENA

•  Let us assume, we identified the subsystem
AdvertisementServer during system design

•  This server takes a big load during the holiday
season

•  During hardware software mapping we decide to
dedicate a special node for this server

•  For this node we define a new boundary use
case ManageServer

•  ManageServer includes all the functions
necessary to start up and shutdown the
AdvertisementServer.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 52

ManageServer Boundary Use Case

Server
Administrator

ManageServer

StartServer

ShutdownServer

ConfigureServer

<<include>>

<<include>>

<<include>>

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 53

Summary

•  System design activities:
•  Concurrency identification
•  Hardware/Software mapping
•  Persistent data management
•  Global resource handling
•  Software control selection
•  Boundary conditions

•  Each of these activities may affect the
subsystem decomposition

•  Two new UML Notations
•  UML Component Diagram: Showing compile time and

runtime dependencies between subsystems
•  UML Deployment Diagram: Drawing the runtime

configuration of the system.

