
Software Measurements and
Metrics

Massimo Cossentino
(cossentino@pa.icar.cnr.it)

09-06-2014	

Software Metrics-M. Cossentino	

 2	

Outline
�  Software metric fundamentals

�  Quality models (McCall, Bohem, FURPS+)

�  Measuring Software

�  Software Metrics
�  Product Metrics
�  Process Metrics

�  Architecture-based Metrics

�  Limits of Software Metrics

09-06-2014	

Software Metrics-M. Cossentino	

 3	

Objectives
�  To explain the concept of a software metric;

�  To explain how measurement may be used in assessing
software quality, software development plans and the
limitations of software measurement;

�  To introduce some metrics and the rationale for
choosing the right one

09-06-2014	

Software Metrics-M. Cossentino	

 4	

What is a
software metric

�  Any type of measurement which relates to a software system,
process or related documentation
�  Lines of code in a program, number of person-days required to

develop a component, ...

�  Allows the software and the software process to be
quantified.

�  May be used to predict product attributes or to control the
software process.

�  Product metrics can be used for general predictions or to
identify anomalous components.

09-06-2014	

Software Metrics-M. Cossentino	

 5	

Why measure?
�  Gilb’s principle of fuzzy targets:

�  Projects without clear goals will not achieve goals clearly

�  Tom DeMarco
�  You can neither predict nor control what you cannot

measure

Project goal:
I want to build a small car

Lotus Elise

Chevrolet Spark

Length= 379 cm
1796 cm3
192 HP
241 KM/h Vmax
50K€

Length= 359 cm
995 cm3
50 HP
152 KM/h Vmax
10K€ ?	

09-06-2014	

Software Metrics-M. Cossentino	

 6	

Metrics Domains
�  Process

�  duration or effort of tasks, no. of changes in requirements

�  Resources
�  no. of staff working on a task; staff overturn

�  staff experience/skills

�  Product
�  requirements document

�  architecture document

�  design document

�  implementation (code, libraries)

size (n. of pages or
 lines of code)
complexity
functionality

09-06-2014	

Software Metrics-M. Cossentino	

 7	

Direct and Indirect Metrics
�  Direct metric

�  Only one attribute or entity is involved
�  Lines of code, Number of Methods, Number of Requirements

�  Indirect metric
�  Measuring an attribute by combining more than one

attribute
�  Defect Density = # of defects per Lines of Code

�  Requirement Stability = # of initial requirements / # of total
requirements

09-06-2014	

Software Metrics-M. Cossentino	

 8	

Internal and External
Attributes

�  Internal attributes
�  Can be measured in terms of only the entity itself

�  Size, reuse, time, effort, age, price, …

�  External attributes
�  Can only be measured with respect to the entity’s

environment
�  Comprehensibility, maintainability, reliability, usability,…

�  External attributes often concern product quality

09-06-2014	

Software Metrics-M. Cossentino	

 9	

Quality Models

09-06-2014	

Software Metrics-M. Cossentino	

 10	

Outline
�  Software metric fundamentals

�  Quality models (McCall, Bohem, FURPS+)

�  Measuring Software

�  Software Metrics
�  Product Metrics
�  Process Metrics

�  Architecture-based Metrics

�  Limits of Software Metrics

09-06-2014	

Software Metrics-M. Cossentino	

 11	

Quality Models
�  Two classical and well known software quality models:

�  Boehm (1977)

�  McCall (1978)

�  A more recent (and diffused) model is FURPS+ by R.
Grady and D. Caswell (1987)

09-06-2014	

Software Metrics-M. Cossentino	

 12	

Quality Models /2
�  Common objectives of these models are:

�  The benefits and costs of software are represented in their
totality with no overlap between the attributes.

�  The presence, or absence, of these attributes can be
measured objectively.

�  The degree to which each of these attributes is present
reflects the overall quality of the software product.

�  These attribute facilitate continuous improvement, allowing
cause and effect analysis which maps to these attributes,
or measure of the attribute.

09-06-2014	

Software Metrics-M. Cossentino	

 13	

McCall's Quality Model
�  Jim McCall produced this model for the US Air Force to

bridge the gap between users and developers.

�  McCall identified three main perspectives:
�  Product revision (ability to change).
�  Product transition (adaptability to new environments).

�  Product operations (basic operational characteristics).

09-06-2014	

Software Metrics-M. Cossentino	

 14	

McCall’s Quality Model

09-06-2014	

Software Metrics-M. Cossentino	

 15	

McCall’s Quality Factors

09-06-2014	

Software Metrics-M. Cossentino	

 16	

Quality Factors in McCall
perspectives (1/2)

�  Product revision (quality factors that influence the ability to change
the software product):
�  Maintainability, the ability to find and fix a defect.
�  Flexibility, the ability to make changes required as dictated by the

business.
�  Testability, the ability to Validate the software requirements.

�  Product transition (quality factors that influence the ability to
adapt the software to new environments):
�  Portability, the ability to transfer the software from one environment

to another.
�  Reusability, the ease of using existing software components in a

different context.
�  Interoperability, the extent, or ease, to which software components

work together.

09-06-2014	

Software Metrics-M. Cossentino	

 17	

Quality Factors in McCall
perspectives (2/2)

�  Product operations (quality factors that influence the
extent to which the software fulfils its specification):
�  Correctness, the functionality matches the specification.

�  Reliability, the extent to which the system fails.
�  Efficiency, system resource (including cpu, disk, memory,

network) usage.

�  Integrity, protection from unauthorized access.
�  Usability, ease of use.

09-06-2014	

Software Metrics-M. Cossentino	

 18	

Boehm's Quality Model (1/3)
�  A hierarchical model of software quality characteristics

�  Characteristics qualitatively define software quality as a
set of attributes and metrics (measurements).

�  At the highest level of his model, Boehm defined three
primary uses:
�  As-is utility, the extent to which the as-is software can be

used (i.e. ease of use, reliability and efficiency).

�  Maintainability, ease of identifying what needs to be
changed, the ease of modification and retesting.

�  Portability, ease of changing software to accommodate a
new environment.

09-06-2014	

Software Metrics-M. Cossentino	

 19	

Boehm's Quality Model (2/3)
�  The three primary uses had quality factors associated with them,

representing the next level of Boehm's hierarchical model.

�  Boehm identified seven quality factors, namely:
�  Portability, the extent to which the software will work under

different computer configurations (i.e. operating systems, databases
etc.).

�  Reliability, the extent to which the software performs as required,
i.e. the absence of defects.

�  Efficiency, optimum use of system resources during correct
execution.

�  Usability, ease of use.
�  Testability, ease of validation, that the software meets the

requirements.
�  Understandability, the extent to which the software is easily

comprehended with regard to purpose and structure.
�  Flexibility, the ease of changing the software to meet revised

requirements.

09-06-2014	

Software Metrics-M. Cossentino	

 20	

Boehm's Quality Model (3/3)
�  These quality factors are further broken down into

Primitive constructs that can be measured, for
example:
�  Testability is broken down into:

�  accessibility,

�  communicativeness,

�  structure,

�  self descriptiveness.

The intention is to be able to measure the lowest level of
the model.

09-06-2014	

Software Metrics-M. Cossentino	

 21	

FURPS+ MODEL
�  The FURPS quality model has been developed by Grady and Caswel in

Hewlett-Packard for classifying software quality attributes (both functional
and non-functional).

�  HP used this model for evaluating customer satisfaction

�  FURPS is an acronym built by considering the initials of the following
categories of software attributes:

�  Functionality, Usability, Reliability, Performance, Supportability

�  FURPS+ is now widely used in the software industry and adopted in the
Unified Process for non functional requirements.

�  The + was later added to the model after various campaigns at HP to
extend the acronym to emphasize various attributes.

09-06-2014	

Software Metrics-M. Cossentino	

 22	

Software requirements
in FURPS

�  The FURPS model addresses the following requirements
within the categories used for the acronym:
�  Functionality - features, capabilities, security.

�  Usability - human factors, help, documentation.
�  Reliability - frequency of failure, recoverability,

predictability.

�  Performance - response times, throughput, accuracy,
availability, resource usage.

�  Supportability - adaptability, maintainability,
internationalization, configurability.

09-06-2014	

Software Metrics-M. Cossentino	

 23	

The “+” in FURPS+
�  The "+" in FURPS+ indicates other requirements not

specifically included in previous categories, such as:
�  Implementation—resource limitations, languages and

tools, hardware, ...
�  Interface—constraints imposed by interfacing with external

systems.

�  Operations—system management in its operational
setting.

�  Packaging

�  Legal—licensing and so forth.

09-06-2014	

Software Metrics-M. Cossentino	

 24	

FURPS MODEL

�  Functionality: Capability (Size & Generality of Feature Set),
Reusability (Compatibility, Interoperability, Portability), Security
(Safety & Exploitability)

�  Usability: Human Factors, Aesthetics, Consistency,
Documentation, Responsiveness

�  Reliability: Availability (Failure Frequency), Robustness/
Durability/Resilience, Failure Extent & Time-Length
(Recoverability/Survivability), Predictability (Stability), Accuracy
(Frequency/Severity of Error)

�  Performance: Speed, Efficiency, Resource Consumption (power,
ram, cache, etc.), Throughput, Capacity, Scalability

�  Supportability: Serviceability, Maintainability, Sustainability,
Repair Speed, Testability, Flexibility (Modifiability, Configurability,
Adaptability, Extensibility, Modularity), Installability,
Localizability

09-06-2014	

Software Metrics-M. Cossentino	

 25	

Using the FURPS+ Model
�  The FURPS+ Model may have different uses during the

development process, for instance:
�  To elicit non functional requirements

�  To evaluate software qualities (e.g. completeness)
�  To evaluate customer satisfaction

09-06-2014	

Software Metrics-M. Cossentino	

 26	

Eliciting non–functional
requirements with FURPS

�  There are very few methods for eliciting non functional requirements.
FURPS may be used for that by adopting check lists of questions

09-06-2014	

Software Metrics-M. Cossentino	

 27	

From B. Bruegge and H.
Dutoit, cited. Pag. 147

Evaluating Customer
Satisfaction

�  Customer satisfaction was evaluated in HP by
considering FURPS attributes

�  Many approaches may be used for that, most of them
adopt a percentage evaluation of satisfaction:
1.  Percent of completely satisfied customers
2.  Percent of satisfied customers (satisfied and completely

satisfied)

3.  Percent of dissatisfied customers (dissatisfied and
completely dissatisfied)

4.  Percent of nonsatisfied (neutral, dissatisfied, and
completely dissatisfied)

09-06-2014	

Software Metrics-M. Cossentino	

 28	

Measuring Software

09-06-2014	

Software Metrics-M. Cossentino	

 29	

Outline
�  Software metric fundamentals

�  Quality models (McCall, Bohem, FURPS+)

�  Measuring Software

�  Software Metrics
�  Product Metrics
�  Process Metrics

�  Architecture-based Metrics

�  Limits of Software Metrics

09-06-2014	

Software Metrics-M. Cossentino	

 30	

SW Metrics
Assumptions and Considerations

�  A software property can be measured.

�  A relationship exists between what we can
measure and what we want to know.

�  We can only measure internal attributes but we are
often more interested in external software attributes.

�  It may be difficult to relate what can be measured to
desirable external quality attributes.

09-06-2014	

Software Metrics-M. Cossentino	

 31	

Internal and external
attributes of software

External	

 Internal	

09-06-2014	

Software Metrics-M. Cossentino	

 32	

-	

-	

-	

-	

+	

+	

+	

+	

-	

-	

The measurement process
�  A software measurement process is often part of a

quality control process.

�  Data collected during this process should be maintained
as an organisational resource.
�  Quick obsolescence may be a problem

�  Once a measurement database has been established,
comparisons across projects become possible.

09-06-2014	

Software Metrics-M. Cossentino	

 33	

Product measurement
process

09-06-2014	

Software Metrics-M. Cossentino	

 34	

Data collection
�  Data should be collected immediately (not in retrospect)

and, if possible, automatically.

�  Three types of automatic data collection
�  Static product analysis;
�  Dynamic product analysis;

�  Process data collation.

09-06-2014	

Software Metrics-M. Cossentino	

 35	

Data accuracy
�  Don’t collect unnecessary data

�  The questions to be answered should be decided in
advance and the required data identified.

�  Tell people why the data is being collected.
�  It should not be part of personnel evaluation.

�  Don’t rely on memory
�  Collect data when it is generated not after a project has

finished.

09-06-2014	

Software Metrics-M. Cossentino	

 36	

GQM-Approach

�  Goal – Question – Metric (Basili)

�  Approach to select metrics
�  Avoids “let’s collect a lot of data and decide afterwards

what we do with the values”

�  GQM briefly is composed of:
1. Express goals of data collection
2. Derive from each goal the questions that must be

answered to determine if goals are achieved
3. Analyze questions and define metrics
4. Design and test data collection forms
5. Collect and validate data
6. Analyze data

09-06-2014	

Software Metrics-M. Cossentino	

 37	

The GQM approach
�  Conceptual Level à Goal

�  Operational Level à Question

�  Quantitative Level à Metric

09-06-2014	

Software Metrics-M. Cossentino	

 38	

3

1. Conceptual level (GOAL): A goal is defined for an object, for a variety of reasons,
with respect to various models of quality, from various points of view, relative to a
particular environment. Objects of measurement are

• Products: Artifacts, deliverables and documents that are produced during
the system life cycle; E.g., specifications, designs, programs, test suites.

• Processes: Software related activities normally associated with time; E.g.,
specifying, designing, testing, interviewing.

• Resources: Items used by processes in order to produce their outputs; E.g.,
personnel, hardware, software, office space.

2. Operational level (QUESTION): A set of questions is used to characterize the way
the assessment/achievement of a specific goal is going to be performed based on
some characterizing model. Questions try to characterize the object of
measurement (product, process, resource) with respect to a selected quality issue
and to determine its quality from the selected viewpoint.

3. Quantitative level (METRIC): A set of data is associated with every question in
order to answer it in a quantitative way. The data can be

• Objective: If they depend only on the object that is being measured and not
on the viewpoint from which they are taken; E.g., number of versions of a
document, staff hours spent on a task, size of a program.

• Subjective: If they depend on both the object that is being measured and
the viewpoint from which they are taken; E.g., readability of a text, level of
user satisfaction.

Figure 1

Goal 1

Question Question

Metric Metric Metric

Goal 2

Question Question Question

Metric Metric Metric

 GQM MEASUREMENT
GOALS DEFINITION

�  Measurement goals
should be formally
defined and well
structured on the basis
of pursued improvement
goals

�  Next table can be useful
in defining measurement
goals

What? the object under
measurement

Why?

understanding, controlling,
or improving the object

What
aspect?

the quality focus of the
object that measurement
focuses on

Who? the people that measures
the object

Context

the environment in which
measurement takes place

GQM: Example

09-06-2014	

Software Metrics-M. Cossentino	

 40	

GQM Example 2

09-06-2014	

Software Metrics-M. Cossentino	

 41	

4

A GQM model is a hierarchical structure (Figure 1) starting with a goal (specifying
purpose of measurement, object to be measured, issue to be measured, and viewpoint
from which the measure is taken). The goal is refined into several questions, such as the
one in the example, that usually break down the issue into its major components. Each
question is then refined into metrics, some of them objective such as the one in the
example, some of them subjective. The same metric can be used in order to answer
different questions under the same goal. Several GQM models can also have questions and
metrics in common, making sure that, when the measure is actually taken, the different
viewpoints are taken into account correctly (i.e., the metric might have different values
when taken from different viewpoints).

In order to give an example of application of the Goal/Question/Metric approach, let's
suppose we want to improve the timeliness of change request processing during the
maintenance phase of the life cycle of a system. The resulting goal will specify a purpose
(improve), a process (change request processing), a viewpoint (project manager), and a
quality issue (timeliness). This goal can be refined to a series of questions, about, for
instance, turn-around time and resources used. These questions can be answered by
metrics comparing specific turn-around times with the average ones. The complete
Goal/Question/Metric Model is shown in Figure 2.

Figure 2

Goal Purpose Improve
Issue the timeliness of
Object (process) change request processing
Viewpoint from the project manager's viewpoint

Question What is the current change request processing
speed?

Metrics Average cycle time
Standard deviation
% cases outside of the upper limit

Question Is the performance of the process improving?

Metrics Current average cycle time
Baseline average cycle time

100∗

Subjective rating of manager's satisfaction

3. THE GOAL QUESTION METRIC PROCESS

GQM QUESTIONS AND
HYPOTHESES

�  The main idea in this phase is gaining operational
definitions, i.e. a question is a goal refined to the
operational level.

�  Hypotheses are expected answers, and they are going to
be examined during the measurement.

09-06-2014	

Software Metrics-M. Cossentino	

 42	

GQM Metrics Definition

�  The next step is finding a way to provide all quantitative information
necessary for answering the questions.

�  Questions are refined into quantitative processes and/or product
measurements.

�  To make sure that no mistakes were made so far, completeness and
consistency check should be performed with respect to the
predefined models.

->

09-06-2014	

Software Metrics-M. Cossentino	

 43	

GQM Metrics Definition

09-06-2014	

Software Metrics-M. Cossentino	

 44	

Process
and
Product
Modeling

Software Metrics

09-06-2014	

Software Metrics-M. Cossentino	

 45	

Product Metrics

09-06-2014	

Software Metrics-M. Cossentino	

 46	

Outline
�  Software metric fundamentals

�  Quality models (McCall, Bohem, FURPS+)

�  Measuring Software

�  Software Metrics
�  Product Metrics
�  Process Metrics

�  Architecture-based Metrics

�  Limits of Software Metrics

09-06-2014	

Software Metrics-M. Cossentino	

 47	

Product metrics
�  Classes of product metric

�  Dynamic metrics which are collected by measurements
made of a program in execution;
�  help assess efficiency and reliability;

�  Static metrics which are collected by measurements made
of the system representations;
�  help assess complexity, understandability and maintainability.

09-06-2014	

Software Metrics-M. Cossentino	

 48	

Dynamic and static metrics
�  Dynamic metrics are closely related to software quality

attributes
�  It is relatively easy to measure the response time of a

system (performance attribute) or the number of failures
(reliability attribute).

�  Static metrics have an indirect relationship with quality
attributes
�  You need to try and derive a relationship between these

metrics and properties such as complexity,
understandability and maintainability.

09-06-2014	

Software Metrics-M. Cossentino	

 49	

Some Software product
metrics

Software
Metric

Description

Fan in/Fan-
out

Fan-in is a measure of the number of functions or methods that call
some other function or method (say X).
Fan-out is the number of functions that are called by function X.
A high value for fan-in means that X is tightly coupled to the rest of
the design and changes to X will have extensive knock-on effects.
A high value for fan-out suggests that the overall complexity of X
may be high because of the complexity of the control logic needed
to coordinate the called components.

Length of
code

This is a measure of the size of a program. Generally, the larger the
size of the code of a component, the more complex and error-prone
that component is likely to be. Length of code has been shown to be
one of the most reliable metrics for predicting error-proneness in
components.

Cyclomatic
complexity

This is a measure of the control complexity of a program. This
control complexity may be related to program understandability.

09-06-2014	

Software Metrics-M. Cossentino	

 50	

Some Software product
metrics/2

Software
Metric

Description

Length of
identifiers

This is a measure of the average length of distinct identifiers in a
program. The longer the identifiers, the more likely they are to be
meaningful and hence the more understandable the program.

Depth of
conditional
nesting

This is a measure of the depth of nesting of if-statements in a
program. Deeply nested if statements are hard to understand and
are potentially error-prone.

Fog index This is a measure of the average length of words and sentences
in documents. The higher the value for the Fog index, the more
difficult the document is to understand.

Measurement analysis
�  It is not always obvious what data means

�  Analysing collected data is very difficult.

�  Professional statisticians should be consulted if
available.

�  Data analysis must take local circumstances into
account.

09-06-2014	

Software Metrics-M. Cossentino	

 52	

Measurement surprises
�  Reducing the number of faults in a program leads to an

increased number of help desk calls
�  The program is now thought of as more reliable and so has

a wider more diverse market. The percentage of users who
call the help desk may have decreased but the total may
increase;

�  A more reliable system is used in a different way from a
system where users work around the faults. This leads to
more help desk calls.

09-06-2014	

Software Metrics-M. Cossentino	

 53	

Some Product Metrics

09-06-2014	

Software Metrics-M. Cossentino	

 54	

Size and Complexity
Metrics (1/2)

Lines of Code (LOC)
�  How to deal with…

�  Empty lines?

�  Comment?

�  Multiple statements in one line?

�  Counting method must be stated explicitly
�  Variation of LOC for equal program in different languages

�  Productivity = LOC / hour
�  Wrong incentive: verbose programming style

09-06-2014	

Software Metrics-M. Cossentino	

 55	

Size and Complexity
Metrics (2/2)

�  Cyclomatic Complexity.
�  It is measured by calculating the McCabe’s cyclomatic number of a module
�  Measures complexity of a module

G is a control flow graph
e edges and n nodes
V(G) = e – n + 2
(number of linearly independent paths in G)

�  (example on the right):
V(G) = 12 – 10 + 2 = 4
More simply, d is number of decision nodes

V(G) = d + 1

�  Heuristic: should be V(G)<10
�  It may be useful to consider the Total, Average

(per method) and Maximum Cyclomatic Complexity

09-06-2014	

Software Metrics-M. Cossentino	

 56	

Object-Oriented Metrics
Metric (Lorenz,1993)* Rules of Thumb and Comments

1. Average Method Size (LOC) Should be less than 24 LOC for C++

2. Average Number of Methods
per Class

Should be less than 20. Bigger averages
indicate too much responsibility in too few
classes

3. Average Number of Instance
Variables per Class

Should be less than 6. More instance
variables indicate that one class is doing more
than it should.

4. Class Hierarchy Nesting Level
(Depth of Inheritance Tree, DIT)

Should be less than 6, starting from the
framework classes or the root class.

* From: Lorenz, M., Object-Oriented Software Development: A Practical Guide, Englewood Cliffs, N.J.:
PTR Prentice Hall, 1993.	

Object-Oriented Metrics

Metric (Lorenz,1993) Rules of Thumb and Comments

Average Number of Comment
Lines (per Method)

Should be greater than 1.

Number of Problem Reports per
Class

Should be low (no specifics provided).

Number of Times Class Is
Reused

If a class is not being reused in different
applications (especially an abstract class), it
might need to be redesigned.

Number of Classes and Methods
Thrown Away

Should occur at a steady rate throughout most
of the development process.

Object-Oriented Metrics
Metric

(Sommerville, 2006*)
Rules of Thumb and Comments

Method fan-in/fan-out This is directly related to fan-in and fan-out as described
above and means essentially the same thing. However, it
may be appropriate to make a distinction between calls from
other methods within the object and calls from external
methods.

Weighted methods per
class (WMC)

This is the number of methods that are included in a class
weighted by the complexity of each method.
The larger the value for this metric, the more complex the
object class. Complex objects are more likely to be more
difficult to understand.

Number of overriding
operations

This is the number of operations in a super-class that are
over-ridden in a sub-class. A high value for this metric
indicates that the super-class used may not be an
appropriate parent for the sub-class.

* From: I. Sommerville. Software Engineering. 7th Edition. Addison Wesley. 2004.	

09-06-2014	

Software Metrics-M. Cossentino	

 59	

Object-Oriented Metrics
(from other authors)

Metric Rules of Thumb and Comments

Unweighted Class Size
(UWCS)

This is calculated from the number of methods plus the
number of attributes of a class.
Smaller class sizes usually indicate a better designed system
reflecting better distributed responsibilities.

Lack of cohesion of methods
(LCOM)

It measures the correlation between the methods and the
local instance variables of a class.
It is calculated as the ratio of methods in a class that do not
access a specific data field, averaged over all data fields in
the class.
High cohesion indicates good class subdivision. Lack of
cohesion or low cohesion increases complexity. Classes with
low cohesion could probably be subdivided into two or more
subclasses with increased cohesion.

Number of Children (NOC) It relates to the class as a node of the inheritance tree. NOC
is the number of immediate successors of the class

09-06-2014	

Software Metrics-M. Cossentino	

 60	

Object-Oriented Metrics
(from other authors)

Metric Rules of Thumb and Comments

Coupling Between Object
classes (CBO)

It is the number of other classes to which the class is coupled

Response For Class (RFC) It measures the complexity of the class in terms of method
calls. It is calculated by adding the number of methods in the
class (not including inherited methods) plus the number of
distinct method calls made by the methods in the class (each
method call is counted only once even if it is called from
different methods).

09-06-2014	

Software Metrics-M. Cossentino	

 61	

Process Metrics

09-06-2014	

Software Metrics-M. Cossentino	

 62	

Outline
�  Software metric fundamentals

�  Quality models (McCall, Bohem, FURPS+)

�  Measuring Software

�  Software Metrics
�  Product Metrics
�  Process Metrics

�  Architecture-based Metrics

�  Limits of Software Metrics

09-06-2014	

Software Metrics-M. Cossentino	

 63	

The software process
�  A structured set of activities required to develop a

software system
�  Specification;
�  Design;
�  Validation;

�  Evolution.

�  A software process model is an abstract
representation of a process. It presents a description
of a process from some particular perspective.

09-06-2014	

Software Metrics-M. Cossentino	

 64	

Process measurement
�  Wherever possible, quantitative process data

should be collected
�  Where organisations do not have clearly defined process

standards this is very difficult as you don’t know what to
measure.

�  A process may have to be defined before any measurement is
possible.

�  Process measurements should be used to
assess process improvements
�  Measurements should NOT drive the improvements à

Organizational objectives should drive the improvement.

09-06-2014	

Software Metrics-M. Cossentino	

 65	

Classes of process
measurement

�  Time taken for process activities to be completed
�  E.g. Calendar time or effort to complete an activity or

process.

�  Resources required for processes or activities
�  E.g. Total effort in person-days.

�  Number of occurrences of a particular event
�  E.g. Number of defects discovered.

09-06-2014	

Software Metrics-M. Cossentino	

 66	

Outline
�  Software metric fundamentals

�  Quality models (McCall, Bohem, FURPS+)

�  Measuring Software

�  Software Metrics
�  Product Metrics
�  Process Metrics

�  Architecture-based Metrics

�  Limits of Software Metrics

09-06-2014	

Software Metrics-M. Cossentino	

 67	

Architecture Metrics

09-06-2014	

Software Metrics-M. Cossentino	

 68	

Architecture Metrics
�  Software Architecture Metrics deal with the organization

of the software components and their relationships

�  Architecture metrics may have a dramatic impact on
non functional requirements of software

09-06-2014	

Software Metrics-M. Cossentino	

 69	

Modularity

�  Degree of modularity is an indicator for quality.

�  It has positive impact on:
�  subdivision of work

�  (design, implementation, test, maintain)

�  reuse

09-06-2014	

Software Metrics-M. Cossentino	

 70	

Dependency: Coupling
�  Coupling is the degree of interdependence between

modules

�  Heuristic: minimize coupling between modules

09-06-2014	

Software Metrics-M. Cossentino	

 71	

Types of Coupling

�  Data coupling
�  Data from one module is used in another

�  Data Type coupling
�  two modules use the same datatype

�  Control coupling
�  one module may control actions of another module

�  Content coupling
�  a module refers to the internals of another module

W
orse

Good

Not
Good

09-06-2014	

Software Metrics-M. Cossentino	

 72	

Dependency: Cohesion
�  Cohesion is concerned with the interactions within a

module

�  Heuristic: Keep together things that belong together.

�  High cohesion within a module reflects good design.

09-06-2014	

Software Metrics-M. Cossentino	

 73	

Types of Cohesion
�  Functional cohesion:

�  a module performs a single well-defined task

�  Communicational/Data cohesion:
�  a module performs multiple functions on the same data

�  Temporal cohesion:
�  a module performs a set of functions that must occur in a

limited/contiguous time-span.

�  Logical cohesion:
�  a module performs a set of similar functions, e.g. output to

screen + output to printer + output to file
�  problem: units may change independently

�  Heuristic: describe the purpose of a module in a single
sentence using a single verb and a single subject

09-06-2014	

Software Metrics-M. Cossentino	

 74	

Complexity: Fan-in & Fan-out
�  Fan-in = no. of ingoing dependencies

�  Fan-out = no. of outgoing dependencies

�  Heuristic: a high fan-in/fan-out indicates a high complexity

09-06-2014	

Software Metrics-M. Cossentino	

 75	

Extensibility
�  Metrics:

�  Complexity of topology

�  Number of changes

09-06-2014	

Software Metrics-M. Cossentino	

 76	

Outline
�  Software metric fundamentals

�  Quality models (McCall, Bohem, FURPS+)

�  Measuring Software

�  Software Metrics
�  Product Metrics
�  Process Metrics

�  Architecture-based Metrics

�  Limits of Software Metrics

09-06-2014	

Software Metrics-M. Cossentino	

 77	

Limits of software
metrics

09-06-2014	

Software Metrics-M. Cossentino	

 78	

Limits of software metrics/1
�  Most measures are misleadingly precise, yet not very

accurate
�  Size doesn’t map directly to functionality, complexity, or

quality

�  Incremental design requires measuring of incomplete
functions

�  The most meaningful software statistics are time
consuming to collect

09-06-2014	

Software Metrics-M. Cossentino	

 79	

Limits of software metrics/2
�  Many measures only apply after coding has been done

�  Performance and resource utilization may only be known
after integration and testing

�  Often no distinction between work and re-work

�  Time lag between problems and their appearance in
reports

09-06-2014	

Software Metrics-M. Cossentino	

 80	

Limits of software metrics/3
�  Difficult to compare relative importance of measures

�  Important measures may be spread across components

�  Hard to find reliable historical data to compare with
�  Technology quickly destroys usefulness of historical data

�  Changes suggested by one performance indicator may
affect others

09-06-2014	

Software Metrics-M. Cossentino	

 81	

Example from CUPRIMDA (capability,
usability, performance, reliability,
installability, maintainability, documentation,
and availability) approach proposed by IBM. 	

Image from: Stephen H. Kan. Metrics and
Models in Software Quality Engineering,
Second Edition. Addison Wesley. 2002. Pag. 5.	

	

Sources and
References

09-06-2014	

Software Metrics-M. Cossentino	

 82	

Sources and references
�  I. Sommerville. Software Engineering. 7th Edition. Addison Wesley. 2004.

�  Stephen H. Kan. Metrics and Models in Software Quality Engineering,
Second Edition. Addison Wesley. 2002.

�  R.Solingen, E.Berghout: "The Goal/Question/ Metric Method“ McGraw-
Hill Publishing Company, 1999

�  Grady, Robert; Caswell, Deborah (1987). Software Metrics: Establishing a
Company-wide Program. Prentice Hall. p. 159. ISBN 0-13-821844-7.

�  Grady, Robert (1992). Practical Software Metrics for Project Management
and Process Improvement. Prentice Hall. p. 32. ISBN 0-13-821844-7.

�  Lorenz, M., Object-Oriented Software Development: A Practical Guide,
Englewood Cliffs, N.J.: PTR Prentice Hall, 1993

�  GQM Method Application:
http://ivs.cs.uni-magdeburg.de/sw-eng/us/java/GQM/

09-06-2014	

Software Metrics-M. Cossentino	

 83	

Sources and References /2
�  C. Lange. Metrics in Software Architecting. Online at: http://

www.win.tue.nl/~mchaudro/sa2006/

�  C. Larman. Applying UML and Patterns – Second Edition

�  B. Bruegge, A. H. Dutoit – Object Oriented Software
Engineering. Using UML, Patterns and Java. Third Edition.
Prentice Hall. 2010.

�  Victor R. Basili, Gianluigi Caldiera, H. Dieter Rombach. The
Goal Question Metric Approach. Encyclppedia of Software
Engineering. John Wiley & Sons. 1994. Pagg. 528-532.

09-06-2014	

Software Metrics-M. Cossentino	

 84	

Thank you for your
attention

Any question?

cossentino@pa.icar.cnr.it

09-06-2014	

Software Metrics-M. Cossentino	

 85	

