
Page 1

U
sin

g
U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
	

O
bj

ec
t-O

ri
en

te
d

So
ftw

ar
e

En
gi

ne
er

in
g	

 Chapter 2,

Modeling with UML:
UML 2 Hightlights

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 2!

Outline for this class

ü Overview of important changes in UML 2
Ø Deployment diagrams
•  Sequence diagrams

Page 2

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 3!

UML 2 Deployment Diagrams
Two node types:
•  Device

•  a physical
computational resource
with processing
capability upon which
artifacts may be
deployed for execution.

•  Execution environment
•  a node that offers an

execution environment
for specific types of
components that are
deployed on it in the
form of executable
artifacts.

206 UML Superstructure Specification, v2.1.2

10.3.7 Device (from Nodes)

A Device is a physical computational resource with processing capability upon which artifacts may be deployed for

execution. Devices may be complex (i.e., they may consist of other devices).

Generalizations

• “Node (from Nodes)” on page 210

Description

In the metamodel, a Device is a subclass of Node.

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

A device may be a nested element, where a physical machine is decomposed into its elements, either through namespace

ownership or through attributes that are typed by Devices.

Notation

A Device is notated by a perspective view of a cube tagged with the keyword «device».

Figure 10.14 - Notation for a Device

«device»

:AppServer

:J2EEServer

Order.jar

ShoppingCart.jar

Account.jar

Product.jar

BackOrder.jar

Service.jar

:DBServer

OrderSchema.ddl

ItemSchema.ddl

«executionEnvironment»
«device»

:DBServer

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 4!

Deployment Diagram Changes II
•  Artifacts can now manifest any packageable element,

not just components
•  An artifact is the specification of a physical piece of

information that is used or produced by a software
development process, or by deployment and operation of a
system.

•  Manifestation (the concrete physical rendering of one
or more model elements by an artifact) is shown by
a dependency with keyword «manifest»

UML Superstructure Specification, v2.1.2 199

Figure 10.6 - An Artifact instance

Figure 10.7 - A visual representation of the manifestation relationship between artifacts and components

Changes from previous UML

The following changes from UML 1.x have been made: Artifacts can now manifest any PackageableElement (not just

Components, as in UML 1.x).

10.3.2 CommunicationPath (from Nodes)

A communication path is an association between two DeploymentTargets, through which they are able to exchange

signals and messages.

Generalizations

• “Association (from Kernel)” on page 39

Description

In the metamodel, CommunicationPath is a subclass of Association.

Attributes

No additional attributes

Associations

No additional associations

Constraints

[1] The association ends of a CommunicationPath are typed by DeploymentTargets.

Order.jar

«artifact»

Order

«component»

Order.jar

«artifact»

«manifest»

org.junit

«artifact»
junit-4.5.jar

«manifest»

Page 3

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 5!

Deployment Diagram Changes III

•  A deployment diagram can have a
deployment specification

204 UML Superstructure Specification, v2.1.2

Notation

A DeploymentSpecification is graphically displayed as a classifier rectangle (Figure 10.11) attached to a component

artifact deployed on a container using a regular dependency arrow.

Figure 10.11 - DeploymentSpecification for an artifact (specification and instance levels)

Figure 10.12 - DeploymentSpecifications related to the artifacts that they parameterize

Figure 10.13 - A DeploymentSpecification for an artifact

Name

«deployment spec»

execution: execKind

transaction : Boolean

Name

«deployment spec»

execution: thread

transaction : true

:AppServer1

ShoppinCart.jar
«artifact»

Order.jar
«artifact»

ShoppingApp.ear

«artifact»

Orderdesc.xml

«deployment spec»

ShoppingAppdesc.xml

«deployment spec»

:AppServer

Order.jar

«artifact»

Orderdesc.xml

«deployment spec»
«deploy»

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 6!

Interaction Diagrams

Page 4

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 7!

Interaction Diagrams

•  New concept of interaction fragments

•  Before we go into detail with interaction
fragments, let’s cover the concept of an
interaction.

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 8!

Interaction Diagrams

•  Four types of interaction diagrams:
•  Sequence diagrams
•  We will not study the following (by now at least):

•  Communication diagrams
•  Interaction overview diagrams
•  Timing diagrams

•  The basic building block of an interaction
diagram is the interaction

•  An interaction is a unit of behavior that focuses on the
observable exchange of information between
connectable elements

Page 5

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 9!

Example of an Interaction: Sequence
Diagram

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 10!

Interaction Fragment

•  Interaction Fragment
•  Is a piece of an interaction
•  Acts like an interaction itself

•  Combined Fragment
•  Is a subtype of interaction fragment
•  defines an expression of interaction fragments

•  An expression of interaction fragments is defined
by

•  an interaction operator and interaction operands.

Page 6

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 11!

Interaction Operators

•  The following operators are allowed in the combination
of interaction fragments:

•  alt
•  opt
•  par
•  loop
•  critical
•  neg
•  assert
•  strict
•  seq
•  Ignore
•  consider

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 12!

Alt Operator

•  The interaction operator alt indicates a choice of
behavior between interaction fragments

•  At most one interaction fragment (that is, an
InteractionOperand) is chosen

•  The chosen interaction fragment must have an explicit or
implicit guard expression that evaluates to true at this point in
the interaction

•  A guard can be
•  a boolean expression (called InteractionConstraint)
•  else (a reserved word)

•  If the fragment has no guard expression, true is implied.

Page 7

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 13!

Example of a Combined Fragment using
the alt operator

•  The interaction operator alt indicates a choice of
behavior between interaction fragments

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 14!

Opt and Break Operators

option:
The interaction operator opt designates a choice of

behavior where either the (sole) operand happens or
nothing happens.

break:
The interaction operator break represents a breaking

scenario: The operand is a scenario that is performed
instead of the remainder of the enclosing interaction
fragment.

Page 8

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 15!

Parallel and Critical Operator

par
 The interaction operator par designates a parallel merge

between the behaviors of the operands of a combined
fragment.

critical
 The interaction operator critical designates that the

combined fragment represents a critical region.

Example of a Critical Region
Problem statement: The telephone Operator must make sure to
forward a 911-call from a Caller to the Emergency system before
doing anything else. Normal calls can be freely interleaved.

