
1!

U
sin

g
U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
	

O
bj

ec
t-O

ri
en

te
d

So
ftw

ar
e

En
gi

ne
er

in
g	
 Chapter 2,

Modeling with UML, Part 2

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 2!

Outline of this Class

•  What is UML?
•  A more detailed view on

ü Use case diagrams
ü Class diagrams
ü Sequence diagrams
ü Activity/Statecharts diagrams

2!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 3!

UML Basic Notation: First Summary

•  UML provides a wide variety of notations for
modeling many aspects of software systems

•  UML diagrams cover the three fundamental
models for software design:

•  Functional model: Use case diagrams
•  Object model: Class diagrams
•  Dynamic model: Sequence diagrams, statechart diagram

•  Now we go into a little bit more detail…

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 4!

UML First Pass (covered in Last Lecture)

•  Use case diagrams
•  Describe the functional behavior of the system as seen

by the user

•  Class diagrams
•  Describe the static structure of the system: Objects,

attributes, associations

•  Sequence diagrams
•  Describe the dynamic behavior between objects of the

system

•  Statechart diagrams
•  Describe the dynamic behavior of an individual object

•  Activity diagrams
•  Describe the dynamic behavior of a system, in

particular the workflow.

3!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 5!

UML Use Case Diagram

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 6!

UML first pass: Use case diagrams

Use case diagrams represent the functionality of the system"
from user’s point of view"

Actor."

Use Case"

System boundary"

Classifier"

4!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 7!

UML Use Case Diagrams

An Actor represents a role, that
is, a type of user of the system

Passenger"

PurchaseTicket"

Used during requirements elicitation
and analysis to represent external
behavior (“visible from the outside of
the system”)

Use case model:
The set of all use cases that
completely describe the
functionality of the system.

A use case represents a class of
functionality provided by the system

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 8!

Actors

•  An actor is a model for an external
entity which interacts
(communicates) with the system:

•  User
•  External system (Another system)
•  Physical environment (e.g. Weather)

•  An actor has a unique name and an
optional description

•  Examples:
•  Passenger: A person in the train
•  GPS satellite: An external system that

provides the system with GPS
coordinates.

Passenger"

Name!

Optional !
Description!

5!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 9!

Use Case
• A use case represents a class of

functionality provided by the
system

• Use cases can be described
textually, with a focus on the
event flow between actor and
system

• The textual use case description
consists of 6 parts:
1. Unique name
2.  Participating actors
3.  Entry conditions
4.  Exit conditions
5.  Flow of events
6.  Special requirements.

PurchaseTicket"

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 10!

Textual Use Case
Description Example

1. Name: Purchase ticket
2. Participating actor:
Passenger

3. Entry condition:
•  (GOOD) Passenger selects

an option from the display!
•  (WRONG) Passenger

stands in front of ticket
distributor

•  (Very WRONG) Passenger
has sufficient money to
purchase ticket

4. Exit condition:
•  Passenger has ticket
•  (Better): System

delivered ticket

5. Flow of events:
1. Passenger selects the

number of zones to be
traveled

2. Ticket Distributor
displays the amount due

3. Passenger inserts
money, at least the
amount due

4. Ticket Distributor returns
change

5. Ticket Distributor issues
ticket

6. Special requirements:
None.

Passenger" PurchaseTicket"

6!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 11!

Uses Cases can be related

•  Extends Relationship
•  To represent seldom invoked use cases or exceptional

functionality

•  Includes Relationship
•  To represent functional behavior common to more than

one use case.

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 12!

The <<extends>> Relationship
•  <<extends>> relationships

model exceptional or seldom
invoked cases

•  The exceptional event flows
are factored out of the main
event flow for clarity

•  The direction of an
<<extends>> relationship is to
the extended use case

•  Use cases representing
exceptional flows can extend
more than one use case.

Passenger"

PurchaseTicket"

TimeOut"

<<extends>>!

NoChange"

<<extends>>!OutOfOrder"

<<extends>>!

Cancel"

<<extends>>!

7!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 13!

The <<includes>> Relationship
•  <<includes>> relationship

represents common
functionality needed in more
than one use case

•  <<includes>> behavior is
factored out for reuse, not
because it is an exception

•  The direction of a
<<includes>> relationship is
to the using use case (unlike
the direction of the
<<extends>> relationship).

Passenger"

PurchaseSingleTicket"

PurchaseMultiCard"

<<includes>>!

CollectMoney"

<<includes>>!

NoChange"

<<extends>>!

Cancel"

<<extends>>!

Cancel"

<<extends>>!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 14!

Use Case Models can be packaged

Actor."

Use Case"

System boundary"

Classifier"

8!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 15!

Historical Remark: UML 1 used packages

Instructor"

Package"
 Course"

GiveLecture"

HoldExercise"

DoHomework"

Student"

Teaching !
Assistent!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 16!

UML Class Diagram

9!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 17!

UML first pass: Class diagrams

Class"
Association"

Multiplicity"

Class diagrams represent the structure of the system"

2
1 1

1
1

1
1

2

SimpleWatch

Display Battery Time PushButton

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 18!

UML first pass: Class diagrams

1"
2"

!
push()  
release()"

1"

1"

blinkIdx!
blinkSeconds()!
blinkMinutes()!
blinkHours()!
stopBlinking()!
referesh()"

LCDDisplay! Battery!
Load"

1"

2"

1"

Time!
Now"

1"

Watch"

Operations"

state!
PushButton!

Attribute"

Class diagrams represent the structure of the system"

Class"
Association"

Multiplicity"

10!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 19!

Class Diagrams

•  Class diagrams represent the structure of the
system

•  Used
•  during requirements analysis to model application

domain concepts
•  during system design to model subsystems
•  during object design to specify the detailed behavior

and attributes of classes.

Table zone2price!
Enumeration getZones()!
Price getPrice(Zone)!

TarifSchedule!

*" *"

Trip!
zone:Zone!

Price: Price!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 20!

Classes

•  A class represents a concept
•  A class encapsulates state (attributes) and behavior

(operations)

Table zone2price!
Enumeration getZones()!
Price getPrice(Zone)!

TarifSchedule!

zone2price!
getZones()!
getPrice()!

TarifSchedule!

Name"

Attributes"

Operations"

Signature"

TarifSchedule!

The class name is the only mandatory information

Each attribute has a type
Each operation has a signature	

Type"

11!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 21!

Actor vs Class vs Object

•  Actor
•  An entity outside the system to be modeled,

interacting with the system (“Passenger”)
•  Class

•  An abstraction modeling an entity in the application or
solution domain

•  The class is part of the system model (“User”, “Ticket
distributor”, “Server”)

•  Object
•  A specific instance of a class (“Joe, the passenger who

is purchasing a ticket from the ticket distributor”).

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 22!

Instances

•  An instance represents a phenomenon
•  The attributes are represented with their values
•  The name of an instance is underlined
•  The name can contain only the class name of the instance

(anonymous instance)

zone2price = {!
{‘1’, 0.20},  
{‘2’, 0.40},!
{‘3’, 0.60}}!

tarif2006:TarifSchedule!
zone2price = {!
{‘1’, 0.20},  
{‘2’, 0.40},!
{‘3’, 0.60}}!

:TarifSchedule!

	

	

12!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 23!

Associations

Associations denote relationships between classes

Price  
Zone!
!

!
Enumeration getZones()!
Price getPrice(Zone)!

TarifSchedule! TripLeg!

*" *"

	

The multiplicity of an association end denotes how many
objects the instance of a class can legitimately reference.

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 24!

1-to-1 and 1-to-many Associations

1-to-1 association	

1-to-many association	

Polygon!

draw()"

Point!

x: Integer"

y: Integer"

*!

Country!

name:String"

City!

name:String"

1!1!

13!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 25!

Many-to-many Associations

StockExchange	
 Company	

tickerSymbol	
Lists 	

!!

•  A stock exchange lists many companies.
•  Each company is identified by a ticker symbol

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 26!

From Problem Statement To Object Model

 	

Class Diagram:!

StockExchange	
 Company	

tickerSymbol	

Lists 	

!!

Problem Statement: A stock exchange lists many companies.
Each company is uniquely identified by a ticker symbol	

14!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 27!

From Problem Statement to Code

Pr	
oblem Statement	
: 	
A	
 stock exchange lists many companies. 	

Each company is identified by a ticker symbol	

Class Diagram:!

 private Vector m_Company = new Vector();	

 public int m_tickerSymbol;	

 private Vector m_StockExchange = new Vector();	

public class StockExchange	

{	

};	

public class Company	

{	

};	

Java Code!

StockExchange	
 Company	

tickerSymbol	
Lists 	

!!

Associations!
are mapped to !

Attributes!!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 28!

Qualifiers

•  Qualifiers can be used to reduce the multiplicity
of an association

Directory"
File"

filename"

Without qualification"
1" *"

With qualification"
0..1"

Directory" File"1"
filename"

15!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 29!

Qualification: Another Example

*!StockExchange	

Company	
Lists 	
*!tickerSymbol	

1!

StockExchange	

Company	

tickerSymbol	

Lists 	
 !!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 30!

Aggregation
•  An aggregation is a special case of association denoting

a “consists-of” hierarchy
•  The aggregate is the parent class,

the components are the children classes

Exhaust system!

Muffler!
diameter"

Tailpipe!
diameter"

1" 0..2"

TicketMachine!

ZoneButton!
3"

A solid diamond denotes composition: A strong form of
aggregation where the life time of the component instances
is controlled by the aggregate. That is, the parts don’t exist
on their won (“the whole controls/destroys the parts”)

16!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 31!

Inheritance

•  Inheritance is another special case of an
association denoting a “kind-of” hierarchy

•  Inheritance simplifies the analysis model by
introducing a taxonomy

•  The children classes inherit the attributes and
operations of the parent class.

Button!

ZoneButton!CancelButton!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 32!

Packages

•  Packages help you to organize UML models to
increase their readability

•  We can use the UML package mechanism to
organize classes into subsystems

•  Any complex system can be decomposed into
subsystems, where each subsystem is modeled as
a package.

Account"

Customer"Bank"

17!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 33!

Object Modeling in Practice

Class Identification: Name of Class, Attributes and Methods
Is Foo the right name?!

Foo!

Amount!
CustomerId!

Deposit()!
Withdraw()!
GetBalance()!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 34!

Object Modeling in Practice: Brainstorming

Foo!

Amount!
CustomerId!

Deposit()!
Withdraw()!
GetBalance()!

Account!

Amount!
CustomerId!

Deposit()!
Withdraw()!
GetBalance()!

!
Is Foo the right name?

“Dada”!

Amount!
CustomerId!

Deposit()!
Withdraw()!
GetBalance()!

18!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 35!

Object Modeling in Practice: More classes

Account!

Amount!

Deposit()!
Withdraw()!
GetBalance()!

Customer!

Name!
CustomerId!

CustomerId!AccountId!Bank!

Name!

1) Find New Classes!
2) Review Names, Attributes and Methods!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 36!

Object Modeling in Practice: Associations

Account!

Amount!

Deposit()!
Withdraw()!
GetBalance()!

Customer!

Name!
CustomerId!

CustomerId!AccountId!AccountId!Bank!

Name!

1) Find New Classes!
2) Review Names, Attributes and Methods!

3) Find Associations between Classes!

owns!

4) Label the generic assocations!

6) Review associations!

*!
2!

*!?!
has!

5) Determine the multiplicity of the assocations!

19!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 37!

Practice Object Modeling: Find Taxonomies

Savings!
Account!

Withdraw()!

Checking!
Account!

Withdraw()!

Mortgage!
Account!

Withdraw()!

Account!

Amount!

Deposit()!
Withdraw()!
GetBalance()!

CustomerId!AccountId!AccountId!

Customer!

Name!

CustomerId()!

Has!*!
Bank!

Name!
*!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 38!

Practice Object Modeling: Simplify, Organize

Savings!
Account!

Withdraw()!

Checking!
Account!

Withdraw()!

Mortgage!
Account!

Withdraw()!

Account!

Amount!

Deposit()!
Withdraw()!
GetBalance()!

CustomerId!AccountId!AccountId!
Show Taxonomies!

separately!

20!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 39!

Practice Object Modeling: Simplify, Organize

Customer!

Name!

CustomerId()!

Account!

Amount!

Deposit()!
Withdraw()!
GetBalance()!

CustomerId!AccountId!AccountId!

Bank!

Name! Has!*!*!

Use the 7+-2 heuristics!
or better 5+-2!!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 40!

UML Sequence Diagram

21!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 41!

Message"

UML first pass: Sequence diagram

:Time" :Watch":WatchUser"

Object"

Activation"

Sequence diagrams represent the behavior of a system "
as messages (“interactions”) between different objects"

Actor"

pressButton1()"

Lifeline"

blinkHours()"

pressButton2()"
incrementMinutes()"

:LCDDisplay"

pressButton1and2()"
commitNewTime()"

stopBlinking()"

refresh()"

pressButton1()"
blinkMinutes()"

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 42!

Sequence Diagrams

•  Used during analysis
•  To refine use case descriptions
•  to find additional objects

(“participating objects”)
•  Used during system design

•  to refine subsystem interfaces
•  Instances are represented by

rectangles. Actors by sticky
figures

•  Lifelines are represented by
dashed lines

•  Messages are represented by
arrows

•  Activations are represented
by narrow rectangles.

selectZone()"

pickupChange()"

pickUpTicket()"

insertCoins()"

TicketMachine"Passenger"

Focus on !
Controlflow!

Messages ->"
Operations on"

 participating Object"

zone2price!
selectZone()!
insertCoins()!
pickupChange()!
pickUpTicket()!

TicketMachine!

22!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 43!

Scenarios, use case and sequence
diagrams

•  A scenario is an instance of a use case
describing a concrete set of actions (no
alternative paths are in it)

•  A use case is an abstraction that describes all
possible scenarios involving the described
functionality.

•  Scenarios are used as examples for illustrating
common cases;

•  their focus is on understandability.

•  Use cases are used to describe all possible
cases;

•  their focus is on completeness.

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 44!

How to describe scenarios

•  We describe a scenario using a template with
three fields:

•  The name of the scenario enables us to refer to it
unambiguously. The name of a scenario is underlined
to indicate that it is an instance.

•  The participating actor instances field indicates
which actor instances are involved in this scenario.
Actor instances also have underlined names.

•  The flow of events of a scenario describes the
sequence of events step by step.

23!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 45!

Scenario: an example

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 46!

Sequence Diagrams can also model the
Flow of Data

•  The source of an arrow indicates the activation which sent
the message

•  Horizontal dashed arrows indicate data flow, for example
return results from a message

Passenger"
selectZone()"

ZoneButton" TarifSchedule" Display"

lookupPrice(selection)"

displayPrice(price)"
price"

Dataflow"
…continued on next slide..."

24!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 47!

Sequence Diagrams: Iteration & Condition

•  Iteration is denoted by a * preceding the message name
•  Condition is denoted by boolean expression in [] before

the message name

Passenger" ChangeProcessor"
insertChange(coin)"

CoinIdentifier" Display" CoinDrop"

displayPrice(owedAmount)"

lookupCoin(coin)"
price"

[owedAmount<0] returnChange(-owedAmount)"

Iteration"

Condition"

…continued on next slide...

…continued from previous slide..."

*!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 48!

Creation and destruction

•  Creation is denoted by a message arrow pointing to the object
•  Destruction is denoted by an X mark at the end of the

destruction activation
•  In garbage collection environments, destruction can be used to

denote the end of the useful life of an object.

Passenger" ChangeProcessor"

…continued from previous slide..."

Ticket"
createTicket(selection)"

free()"

Creation of Ticket"

Destruction of Ticket"

print()"

25!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 49!

Message Types

•  Asynchronous
•  Synchronous
•  Call and Object creation
•  Reply
•  Lost
•  Found

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 50!

Sequence Diagram Properties

•  UML sequence diagram represent behavior in
terms of interactions

•  Useful to identify or find missing objects
•  Time consuming to build, but worth the

investment
•  Complement the class diagrams (which

represent structure).

26!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 51!

UML Statechart Diagram

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 52!

UML first pass: Statechart diagrams

State"

Initial state"

Final state"

Transition"

Event"

Represent behavior of a single object with interesting
dynamic behavior."

button1&2Pressed

button1Pressed

button2Pressed

button2Pressed

button2Pressed

button1Pressed

button1&2Pressed Increment
Minutes

Increment
Hours

Blink
Hours

Blink
Seconds

Blink
Minutes

Increment
Seconds

Stop
Blinking

27!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 53!

State machine diagram for 2Bwatch

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 54!

Internal transitions in 2BWatch statechart

28!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 55!

UML Activity Diagram

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 56!

UML Activity Diagrams

An activity diagram consists of nodes and edges
•  Nodes describe activities and objects

•  Control nodes
•  Executable nodes

• Most prominent: Action
•  Object nodes

• E.g. a document

•  Edge is a directed connection between nodes
•  There are two types of edges

• Control flow edges
• Object flow edges

29!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 57!

Example: Structure of the Text Book

Requirements"
elicitation ("Ch.4)"

Analysis (Ch.5)"

System design"

Problem Statement"

functional model"nonfunctional  
requirements"

analysis object
model"

dynamic model"
"

class diagram"
"

use case diagram"
"

("Ch.6" & 7")"

statechart diagram"
"

sequence diagram"
"

Object Node!

An object node is an activity node that indicates an
instance of a particular classifier, possibly in a particular

state"

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 58!

Example: Structure of the Text Book (2)

System design!
 (Ch. 6 & 7)!

!

Object design !
(Ch. 8 & 9)!

!

Implementation !
(Ch. 10)!

!

object design model!

design goals!

subsystem
decomposition!

source code!

Test (Ch. 11)!
!

deliverable system!

class diagram!

30!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 59!

Activity Diagrams: Grouping of Activities

•  Activities may be grouped into swimlanes to
denote the object or subsystem that implements
the activities.

Open!
Incident!

Allocate!
Resources!

Coordinate!
Resources!

Document!
Incident!

Archive!
Incident!

Dispatcher!

FieldOfficer!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 60!

State Chart Diagrams vs Activity Diagrams

•  An activity diagram that contains only activities
can be seen as a special case of a state chart
diagram

•  Such an activity diagram is useful to describe the
overall workflow of a system

Handle
Incident

Document
Incident

Archive
Incident

31!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 61!

Statechart Diagram vs Activity Diagram

Handle
Incident

Document
Incident

Archive
Incident

Active! Inactive! Closed! Archived!
Incident-!
Handled!

Incident-!
Documented! Incident-!

Archived!

Statechart Diagram for Incident!
Focus on the set of attributes of a single abstraction (object, system)!

Activity Diagram for Incident !
(Focus on dataflow in a system) !

Triggerless"
transition"Completion of activity "

causes state transition"

Event causes"
state transition"

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 62!

What should be done first? Coding or Modeling?

•  It depends….
•  Forward Engineering

•  Creation of code from a model
•  Start with modeling
•  Greenfield projects

•  Reverse Engineering
•  Creation of a model from existing code
•  Interface or reengineering projects

•  Roundtrip Engineering
•  Move constantly between forward and reverse

engineering
•  Reengineering projects
•  Useful when requirements, technology and schedule

are changing frequently.

32!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 63!

Additional References

•  Martin Fowler
•  UML Distilled: A Brief Guide to the Standard Object

Modeling Language, 3rd ed., Addison-Wesley, 2003

•  Grady Booch,James Rumbaugh,Ivar Jacobson
•  The Unified Modeling Language User Guide, Addison

Wesley, 2nd edition, 2005

•  Open Source UML tools
•  Astah Community:

http://astah.net/editions/community
•  http://java-source.net/open-source/uml-modeling

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 64!

UML Summary

•  UML provides a wide variety of notations for
representing many aspects of software
development

•  Powerful, but complex

•  UML is a programming language
•  Can be misused to generate unreadable models
•  Can be misunderstood when using too many exotic

features

•  We concentrated on a few notations:
•  Functional model: Use case diagram
•  Object model: class diagram
•  Dynamic model: sequence diagrams, statechart and

activity diagrams.

