
Chapter 11, Testing
Part 1: Unit Testing

<Instructor>

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 2	

Outline of the Lectures on Testing

• Terminology
• Failure, Error, Fault

• Test Model
• Model-based testing
• Model-driven testing
• Mock object pattern
• Testing activities

• Unit testing
• Integration testing
• System testing

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 3	

Famous Problems

•  F-16 : crossing equator using autopilot
• Result: plane flipped over
• Reason?
• Reuse of autopilot

software from a rocket

•  NASA Mars Climate Orbiter destroyed due to incorrect orbit
insertion (September 23, 1999)"

• Reason: Unit conversion problem"
•  The Therac-25 accidents (1985-1987), quite possibly the most

serious non-military computer-related failure ever in terms of human
life (at least five died)"

• Reason: Bad event handling in the GUI,"

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 4	

The Therac-25

•  The Therac-25 was a medical linear accelerator
•  Linear accelerators create energy beams to destroy tumors

•  Used to give radiation treatments to cancer patients
• Most of the patients had undergone surgery to remove a tumor and

were receiving radiation to remove any leftover growth

•  For shallow tissue penetration, electron beams are used
•  To reach deeper tissue, the beam is converted into x-rays
•  The Therac-25 had two main types of operation, a low energy

mode and a high energy mode:
•  In low energy mode, an electronic beam of low radiation (200 rads) is

generated
•  In high energy mode the machine generates 25000 rads with 25

million electron volts

•  Therac-25 was developed by two companies, AECL from
Canada and CGR from France
•  Newest version(reusing code from Therac-6 and Therac-20).

A Therac-25 Accident
•  In 1986, a patient went into the clinic to receive his usual low

radiation treatment for his shoulder
•  The technician typed „X“ (x-ray beam), realizing the error,

quickly changed „X" into „E" (electron beam), and hit "enter“:
•  X <Delete char> E <enter>!
•  This input sequence in a short time frame (about 8 sec) was never tested

•  Therac-25 signaled "beam ready“ and it also showed the
technician that it was in low energy mode

•  The technician typed „B" to deliver the beam to the patient
•  The beam that actually came from the machine was a blast of 25 000

rads with 25 million electron volts, more than 125 times the regular dose
•  The machine responded with error message “Malfunction 54”, which was

not explained in the user manual. Machine showed under dosage.
•  Operator hit “P” to continue for more treatment. Again, the same error

message

•  The patient felt sharp pains in his back, much different from his
usual treatment. He died 3 months later.

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 6	

Reasons for the Therac-25 Failure

•  Failure to properly reuse the old software from Therac-6
and Therac-20 when using it for new machine

•  Cryptic warning messages
•  End users did not understand the recurring problem (5

patients died)
•  Lack of communication between hospital and manufacturer
•  The manufacturer did not believe that the machine could

fail
•  No proper hardware to catch safety glitches.

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 7	

How the Problem was solved

•  On February 10, 1987, the Health Protection Branch of the
Canadian government along with the FDA (United States
Food and Drug Administration) announced the Therac-25
dangerous to use

•  On July 21, 1987 recommendations were given by the AECL
company on how to repair the Therac-25. Some of these
recommendations were
•  Operators cannot restart the machine without re-entering the input

command
•  The dose administered to the patient must be clearly shown to the

operator
•  Limiting the input modalities to prevent any accidental typos
•  Error messages must be made clearer
•  All manuals must be rewritten to reflect new changes.

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 8	

Terminology

•  Failure: Any deviation of the observed behavior from the
specified behavior

•  Erroneous state (error): The system is in a state such that
further processing by the system can lead to a failure

•  Fault: The mechanical or algorithmic cause of an error
(“bug”)

•  Validation: Activity of checking for deviations between the
observed behavior of a system and its specification.

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 9	

What is this?

A failure?

An error?

A fault?

We need to describe specified
behavior first!

Specification: “A track shall
support a moving train”

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 10	

Erroneous State (“Error”)

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 11	

Fault

Another possible fault: Communication problems between teams	

Or: Wrong usage of compass	

Possible algorithmic fault: Compass shows wrong reading	

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 12	

Mechanical Fault

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 13	

F-16 Bug

•  Where is the failure?
•  Where is the error?
•  What is the fault?

•  Bad use of implementation
inheritance

•  A Plane is not a rocket. Rocket	

Plane	

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 14	

Examples of Faults and Errors

• Faults in the Interface
specification
• Mismatch between what
the client needs and what
the server offers

• Mismatch between
requirements and
implementation

• Algorithmic Faults
• Missing initialization
•  Incorrect branching
condition

• Missing test for null

• Mechanical Faults
(very hard to find)
• Operating temperature
outside of equipment
specification

• Errors
• Wrong user input
• Null reference errors
• Concurrency errors
• Exceptions.

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 15	

How do we deal with Errors, Failures
and Faults?

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 16	

Modular Redundancy

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 17	

Declaring the Bug
as a Feature

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 18	

Patching

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 19	

Testing

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 20	

Another View on How to Deal with Faults

•  Fault avoidance
•  Use methodology to reduce complexity
•  Use configuration management to prevent inconsistency
•  Apply verification to prevent algorithmic faults
•  Use reviews to identify faults already in the design

•  Fault detection
•  Testing: Activity to provoke failures in a planned way
•  Debugging: Find and remove the cause (fault) of an observed

failure
• Monitoring: Deliver information about state and behavior => Used

during debugging

•  Fault tolerance
•  Exception handling
• Modular redundancy.

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 21	

Taxonomy for Fault Handling Techniques

Fault Handling	

Fault ���
Avoidance	

Fault ���
Detection	

Fault ���
Tolerance	

Verification	

Configuration ���
Management	

Methodoloy	

 Atomic���

Transactions	

Modular���

Redundancy	

System ���
Testing	

Integration ���
Testing	

Unit	

Testing	

Testing	

 Debugging	

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 22	

Observations

•  It is impossible to completely test
any nontrivial module or system
•  Practical limitations: Complete testing is

prohibitive in time and cost
•  Theoretical limitations: e.g. Halting

problem

•  “Testing can only show the
presence of bugs, not their
absence” (Dijkstra).

•  Testing is not for free
=> Define your goals and priorities

Edsger W. Dijkstra (1930-2002) 	

 - First Algol 60 Compiler	

 - 1968:	

 - T.H.E. 	

 - Go To considered Harmful, CACM	

 - Since 1970 Focus on Verification	

 and Foundations of Computer Science 	

 - 1972 A. M. Turing Award	

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 23	

Testing takes creativity

•  To develop an effective test, one must have:
•  Detailed understanding of the system
•  Application and solution domain knowledge
•  Knowledge of the testing techniques
•  Skill to apply these techniques

•  Testing is done best by independent testers
• We often develop a certain mental attitude that the

program should in a certain way when in fact it does
not

•  Programmers often stick to the data set that makes
the program work

•  A program often does not work when tried by
somebody else.

behave	

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 24	

Test Model

•  The Test Model consolidates all test related decisions and
components into one package (sometimes also test
package or test requirements)

•  The test model contains tests, test driver, input data,
oracle and the test harness
•  A test driver (the program executing the test)
•  The input data needed for the tests
•  The oracle comparing the expected output with the actual test

output obtained from the test
•  The test harness

•  A framework or software components that allow to run the tests
under varying conditions and monitor the behavior and outputs
of the system under test (SUT)

•  Test harnesses are necessary for automated testing.

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 25	

Model-Based Testing
Definition: Model Based Testing

•  The system model is used for the generation of the test
model

Definition: System under test (SUT)
•  (Part of) the system model which is being tested

•  Advantages of model-based testing:
•  Increased effectiveness of testing
•  Decreased costs, better maintenance
•  Reuse of artifacts such as analysis and design models
•  Traceability of requirements

System under Test	

(SUT)	

Minor Variant: Extreme Programming	

“Construct the test model first,	

before the system model”	

Test Model	

	

	

	

System Model	

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 26	

Model-Driven Testing (MDT)

Remember: Model-Driven Architecture (MDA)
•  The system model can be separated into a platform

independent system model (PIM) and a platform
specific system model (PSM)

•  The PIM describes the system independently from the platform
that may be used to realize and execute the system

•  The PIM can be transformed into a PSM. PSMs contain
information on the underlying platform

•  In another transformation step, the system code is derived
from the PSM

•  The completeness of the system code depends on the completeness
of the system model

•  Model-driven testing has its roots in the idea of MDA
•  Model-driven testing distinguishes between:

•  Platform independent test models (PIT)
•  Platform specific test models (PST)
•  Test code is generated from these models.

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 27	

Model-Driven Testing
•  System models are transformed into

test models
•  When the system model is defined at the

PIM level, the platform-independent test
model (PIT) can be derived

•  When PSM level is defined, the platform-
specific test model (PST) can be derived

•  The PST can also be derived by
transforming the PIT model

•  Executable test code is then derived from
the PST and PIT models

•  After each transformation, the test
model may have to be enriched with
test specific properties. Examples:

•  If PIT and PST models must cover
unexpected system behavior, special
exception handling code must be added
to the test code

•  Test control and deployment information
is usually added at the PST level

•  Model-driven testing enables the early integration of testing into the
system development process.

System 	

Model	

Test 	

Model	

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 28	

Automated Testing

•  There are two ways to generate the test model
• Manually: The developers set up the test data, run the test and

examine the results themselves. Success and/or failure of the test
is determined through observation by the developers

•  Automatically: Automated generation of test data and test cases.
Running the test is also done automatically, and finally the
comparison of the result with the oracel is also done automatically

•  Definition Automated Testing
•  All the test cases are automatically executed with a test harness

•  Advantage of automated testing:
•  Less boring for the developer
•  Better test thoroughness
•  Reduces the cost of test execution
•  Indispensible for regression testing.

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 29	

Object-Oriented Test Modeling
•  We start with the system model
•  The system contains the SUT (the unit we want to test)
•  The SUT does not exist in isolation, it collaborates with other objects in the

system model
•  The test model is derived from the SUT
•  To be able to interact with collaborators, we add objects to the test model
•  These objects are called test doubles

System Model	

 Test Model	

System under Test	

(SUT)	

Double 1	

Double 2	

Double 3	

Collaborators 	

(Objects interacting with the SUT)	

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 30	

Object-Oriented Test Modeling
•  We start with the system model
•  The system contains the SUT (the unit we want to test)
•  The SUT does not exist in isolation, it collaborates with other objects in the

system model
•  The test model is derived from the SUT
•  To be able to interact with collaborators, we add objects to the test model
•  These objects are called test doubles
•  These doubles are substitutes for the Collaborators during testing

System Model	

 Test Model	

System under Test	

(SUT)	

Double 1	

Double 2	

Double 3	

Collaborators 	

(Objects interacting with the SUT)	

Collaborators 	

(Objects interacting with the SUT)	

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 31	

Test Doubles

•  A test double is like a double in the movies („stunt double“)
replacing the movie actor, whenever it becomes dangerous

•  A test double is used if the collaborator in the system model
is awkward to work with

•  There are 4 types of test doubles. All doubles try to make the
SUT believe it is talking with its real collaborators:
•  Dummy object: Passed around but never actually used. Dummy

objects are usually used to fill parameter lists
•  Fake object: A fake object is a working implementation, but usually

contains some type of “shortcut” which makes it not suitable for
production code (Example: A database stored in memory instead of a
real database)

•  Stub: Provides canned answers to calls made during the test, but is
not able to respond to anything outside what it is programmed for

• Mock object: Mocks are able to mimic the behavior of the real object.
They know how to deal with sequence of calls they are expected to
receive.

Timing

Policy

Bidding

Policy

Auction Person

«interface»

BiddingPolicy

«interface»

TimingPolicy

* *

biddersauctions

Motivation for the Mock Object Pattern
•  Let us assume we have a system model for an auction system with 2

types of policies. We want to unit test Auction, which is our SUT

Timing

Policy

Bidding

Policy

Auction Person

«interface»

BiddingPolicy

«interface»

TimingPolicy

* *

biddersauctions

MockBidding

Policy

MockTiming

Policy
Mock Person

Motivation for the Mock Object Pattern
•  Let us assume we have a system model for an auction system with 2

types of policies. We want to unit test Auction, which is our SUT
•  The mock object test pattern is based on the idea to replace the

interaction with the collaborators in the system model, that is Person,
the Bidding Policy and the TimingPolicy by mock objects

•  These mock objects can be created at startup-time (factory pattern).

Bridge
Pattern!

Bridge
Pattern!

Simple
Inheritance!

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 34	

Mock-Object Pattern

•  In the mock object pattern
a mock object replaces the
behavior of a real object
called the collaborator and
returns hard-coded values

•  These mock objects can
be created at startup-time
with the factory pattern

•  Mock objects can be used
for testing state of
individual objects as well
as the interaction between
objects, that is, to validate
that the interactions of the
SUT with collaborators
behave is as expected.

«Interface»

Collaborator

Interface

Mock

Collaborator
Collaborator

FactoryPolicy

instantiates one of

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 35	

Outline of the Lectures on Testing

ü Terminology
ü Failure, Error, Fault

ü Test Model
ü Model-based testing
ü Model-driven testing
ü Testing activities
ü Mock object pattern
Ø Testing activities
•  Unit testing

•  Integration testing
• Testing strategy
• Design patterns &
testing

• System testing
• Function testing
• Acceptance testing.

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 36	

Testing Activities and Models

Unit���
Testing	

Acceptance���
Testing	

Integration ���
Testing	

System���
Testing	

Developer	

 Client	

Object���
Design	

	

Client	

Expectations	

Requirements ���
Analysis	

	

System���
Design	

	

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 37	

Types of Testing

•  Unit Testing
•  Individual components (class

or subsystem) are tested
•  Carried out by developers
•  Goal: Confirm that the

component or subsystem is
correctly coded and carries out
the intended functionality

•  Integration Testing
•  Groups of subsystems

(collection of subsystems) and
eventually the entire system
are tested

•  Carried out by developers
•  Goal: Test the interfaces

among the subsystems.

•  System Testing
•  The entire system is tested
•  Carried out by developers
•  Goal: Determine if the system

meets the requirements
(functional and nonfunctional)

•  Acceptance Testing
•  Evaluates the system

delivered by developers
•  Carried out by the client. May

involve executing typical
transactions on site on a trial
basis

•  Goal: Demonstrate that the
system meets the
requirements and is ready to
use.

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 38	

Static Analysis vs Dynamic Analysis

•  Static Analysis
• Hand execution: Reading the source code
• Walk-Through (informal presentation to others)
• Code Inspection (formal presentation to others)
• Automated Tools checking for

•  syntactic and semantic errors
•  departure from coding standards

• Dynamic Analysis
• Black-box testing (Test the input/output behavior)
• White-box testing (Test the internal logic of the
subsystem or class)

• Data-structure based testing (Data types determine test
cases)

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 39	

 Black-box Testing

• Focus: I/O behavior. If for any given input, we
can predict the output, then the unit passes the
test.
• Almost always impossible to generate all possible inputs
("test cases")

• Goal: Reduce number of test cases by
equivalence partitioning:
• Divide inputs into equivalence classes
• Choose test cases for each equivalence class

•  Example: If an object is supposed to accept a negative
number, testing one negative number is enough.

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 40	

Black box testing: An example

public class MyCalendar {

 public int getNumDaysInMonth(int month, int year)
 throws InvalidMonthException
 { … }
}

 Assume the following representations:

Month: (1,2,3,4,5,6,7,8,9,10,11,12) !
 where 1= Jan, 2 = Feb, …, 12 = Dec

Year: (1904,…,1999,2000,…,2010)!

How many test cases do we need to do a full black
box unit test of getNumDaysInMonth()?

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 41	

Black box testing: An example
• Depends on calendar. We assume the Gregorian
calendar

• Equivalence classes for the month parameter
• Months with 30 days, Months with 31 days, February, Illegal

months: 0, 13, -1

• Equivalence classes for the Year parameter
•  A normal year
•  Leap years

•  Dividable by /4
•  Dividable by /100
•  Dividable by /400

•  Illegal years: Before 1904, After 2010

12 test cases	

How many test cases do we need to do a full black box
unit test of getNumDaysInMonth()?

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 42	

Black-box Testing (Continued)

• Selection of equivalence classes (No rules, only
guidelines):
•  Input is valid across range of values. Select test cases from 3

equivalence classes:
•  Below the range
•  Within the range
•  Above the range

•  Input is valid if it is from a discrete set. Select test cases from 2
equivalence classes:

•  Valid discrete value
•  Invalid discrete value

• Another solution to select only a limited amount of
test cases:
• Get knowledge about the inner workings of the unit being tested

=> white-box testing

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 43	

White-box Testing

• Focus: Thoroughness (Coverage). Every
statement in the component is executed at least
once

• Four types of white-box testing
•  Statement Testing
•  Loop Testing
•  Path Testing
• Branch Testing.

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 44	

White-box Testing (Continued)

• Statement Testing (Algebraic Testing)
•  Tests each statement (Choice of operators in polynomials, etc)

• Loop Testing
•  Loop to be executed exactly once
•  Loop to be executed more than once
• Cause the execution of the loop to be skipped completely

• Path testing:
• Makes sure all paths in the program are executed

• Branch Testing (Conditional Testing)
•  Ensure that each outcome in a condition is tested at least once
•  Example:

 How many test cases do we need to unit test this statement?

if (i = 	

TRUE) printf(”Yes"); 	

else	

 printf(”No");	

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 45	

Example of Branch Testing

•  We need two test cases with the following input data
 1) i = TRUE
 2) i = FALSE

•  What is the expected output for the two cases?
•  In both cases: Yes
•  This a typical beginner‘s mistake in languages, where the

assignment operator also returns the value assigned ((C, Java)

•  So tests can be faulty as wellL
•  Some of these faults can be identified with static analysis.

if (i = 	

TRUE) printf(”Yes"); 	

else	

 printf(”No");	

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 46	

Static Analysis Tools in Eclipse

•  Compiler Warnings and Errors
•  Possibly uninitialized variable
•  Undocumented empty block
•  Assignment with no effect
• Missing semicolon, …

•  Checkstyle
•  Checks for code guideline violations
•  http://checkstyle.sourceforge.net

•  Metrics
•  Checks for structural anomalies
•  http://metrics.sourceforge.net

•  FindBugs
•  Uses static analysis to look for bugs in Java code
•  http://findbugs.sourceforge.net

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 47	

FindBugs

•  FindBugs is an open source static analysis tool, developed
at the University of Maryland
•  Looks for bug patterns, inspired by real problems in real code

•  Example: FindBugs is used by Google at socalled
„engineering fixit“ meetings

•  Example from an engineering fixit at May 13-14, 2007
•  Scope: All the Google software written in Java

•  700 engineers participated by running FindBugs
•  250 provided 8,000 reviews of 4,000 issues

•  More than 75% of the reviews contained issues that were marked „should
fix“ or „must fix“, „I will fix“

•  Engineers filed more than 1700 bug reports
•  Source: http://findbugs.sourceforge.net/

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 48	

Observation about Static Analysis

•  Static analysis typically finds mistakes but some mistakes
don’t matter
•  Important to find the intersection of stupid and important mistakes

•  Not a magic bullet but if used effectively, static analysis is
cheaper than other techniques for catching the same bugs

•  Static analysis, at best, catches 5-10% of software quality
problems

•  Source: William Pugh, Mistakes that Matter, JavaOne
Conference
•  http://www.cs.umd.edu/~pugh/MistakesThatMatter.pdf

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 49	

Comparison of White & Black-box Testing

•  White-box Testing
•  Potentially infinite number of

paths have to be tested
• White-box testing often tests

what is done, instead of
what should be done

• Cannot detect missing use
cases

•  Black-box Testing
•  Potential combinatorical

explosion of test cases (valid
& invalid data)

• Often not clear whether the
selected test cases uncover
a particular error

• Does not discover
extraneous use cases
("features")

•  Both types of testing are
needed

•  White-box testing and black
box testing are the extreme
ends of a testing
continuum.

•  Any choice of test case lies
in between and depends on
the following:
• Number of possible logical

paths
• Nature of input data
•  Amount of computation
• Complexity of algorithms and

data structures

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 50	

Unit Testing Heuristics
1. Create unit tests when

object design is completed
• Black-box test: Test the
functional model

• White-box test: Test the
dynamic model

2. Develop the test cases
• Goal: Find effective num-
ber of test cases

3. Cross-check the test cases
to eliminate duplicates
• Don't waste your time!

4. Desk check your source code
• Sometimes reduces testing
time

5. Create a test harness
• Test drivers and test stubs
are needed for integration
testing

6. Describe the test oracle
• Often the result of the first
successfully executed test

7. Execute the test cases
• Re-execute test whenever a
change is made (“regression
testing”)

8. Compare the results of the
test with the test oracle
• Automate this if possible.

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 51	

When should you write a test?

•  Traditionally after the source code is written
•  In XP before the source code is written

•  Test-Driven Development Cycle
• Add a new test to the test model
• Run the automated tests
 => the new test will fail

• Write code to deal with the failure
• Run the automated tests

 => see them succeed
• Refactor code.

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 52	

Additional Readings

•  [Herman Bruyninckx] Embedded Control Systems Design,
WikiBook, Learning from Failure:
http://en.wikibooks.org/wiki/
Embedded_Control_Systems_Design/Learning_from_failure

•  Joanne Lim, An Engineering Disaster: Therac-25
•  http://www.bowdoin.edu/~allen/courses/cs260/readings/

therac.pdf
•  Martin Fowler, Mocks are not Stubs
• 

http://martinfowler.com/articles/mocksArentStubs.html

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 53	

Backup Slides

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 54	

/*Read in and sum the scores*/

White-box Testing Example
FindMean(float Mean, FILE ScoreFile)
{ SumOfScores = 0.0; NumberOfScores = 0; Mean = 0;
 Read(Scor eFile, Score);
 while (! EOF(ScoreFile) {

 if (Score > 0.0) {
 SumOfScores = SumOfScores + Score;

 NumberOfScores++;
 }

 Read(ScoreFile, Score);
 }
 /* Compute the mean and print the result */
 if (NumberOfScores > 0) {
 Mean = SumOfScores/NumberOfScores;

printf("The mean score is %f \n", Mean);
 } else

printf("No scores found in file\n");
}

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 55	

White-box Testing Example: Determining the
Paths

FindMean (FILE ScoreFile)
{ float SumOfScores = 0.0;

int NumberOfScores = 0;
float Mean=0.0; float Score;
Read(ScoreFile, Score);
while (! EOF(ScoreFile) {

if (Score > 0.0) {
SumOfScores = SumOfScores + Score;
NumberOfScores++;
}

Read(ScoreFile, Score);
}
/* Compute the mean and print the result */
if (NumberOfScores > 0) {

Mean = SumOfScores / NumberOfScores;
printf(“ The mean score is %f\n”, Mean);

} else
printf (“No scores found in file\n”);

}

1	

2	

3	

4	

5	

7	

6	

8	

9	

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 56	

Constructing the Logic Flow Diagram

Start

2

3

4 5

6

7

8 9

 Exit

1

F

T F

T F

T

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 57	

Finding the Test Cases
Start	

2	

3	

4	

 5	

6	

7	

8	

 9	

 Exit	

1	

b	

d	

 e	

g	

f	

i	

 j	

h	

c	

k	

 l	

a (Covered by any data)	

(Data set must	

(Data set must contain at least	

 one value)	

 be empty)	

(Total score > 0.0)	

(Total score < 0.0)	

(Positive score)	

 (Negative score)	

(Reached if either f or	

 e is reached)	

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 58	

Test Cases

•  Test case 1 : ? (To execute loop exactly once)
•  Test case 2 : ? (To skip loop body)
•  Test case 3: ?,? (to execute loop more than once)

   These 3 test cases cover all control flow paths

