
U
sin

g
U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
	

O
bj

ec
t-O

ri
en

te
d

So
ftw

ar
e

En
gi

ne
er

in
g	
 Chapter 10,

Mapping Models to
Code

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 2	

Lecture Plan

•  Part 1
•  Operations on the object model:

•  Optimizations to address performance requirements
•  Implementation of class model components:

•  Realization of associations
•  Realization of operation contracts

•  Part 2
•  Realizing entity objects based on selected storage

strategy
•  Mapping the object model to a storage schema
•  Mapping class diagrams to tables

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 3	

Problems with implementing an Object
Design Model
•  Programming languages do not support the

concept of UML associations
•  The associations of the object model must be

transformed into collections of object references

•  Many programming languages do not support
contracts (invariants, pre and post conditions)

•  Developers must therefore manually transform contract
specification into source code for detecting and handling
contract violations

•  The client changes the requirements during
object design

•  The developer must change the contracts in which the
classes are involved

•  All these object design activities cause problems,
because they need to be done manually.

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 4	

4 Different Types of Transformations

Source code space

Forward
engineering

Refactoring

Reverse
engineering

Model space

Model
transformation

System Model	

(in UML)	

Another	

System Model	

Program	

(in Java)	

Another	

Program	

Yet Another	

System Model	

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 5	

Model Transformation

•  Takes as input a model conforming to a meta
model (for example the MOF metamodel) and
produces as output another model conforming to
the metamodel

•  Model transformations are used in MDA (Model
Driven Architecture).

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 6	

Model Transformation Example

Object design model before transformation:

Object design model
after transformation:

Advertiser

+email:Address

Player

+email:Address
LeagueOwner

+email:Address

Player Advertiser LeagueOwner

User

+email:Address

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 7	

Source code space

Forward
engineering

Refactoring

Reverse
engineering

Model space

Model
transformation

System Model	

(in UML)	

Another	

System Model	

Program	

(in Java)	

Another	

Program	

Yet Another	

System Model	

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 8	

Refactoring : Pull Up Field

public class Player {

 private String email;

 //...
}

public class LeagueOwner {

 private String eMail;

 //...

}

public class Advertiser {

 private String
email_address;
 //...

}

public class User {
 private String email;

}
public class Player extends User {

 //...

}

public class LeagueOwner extends

User {

 //...

}
public class Advertiser extends

User {

 //...
}.

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 9	

Refactoring Example: Pull Up Constructor Body
public class User {
 private String email;

}

public class Player extends User {
 public Player(String email) {
 this.email = email;
 }

}
public class LeagueOwner extends

User{
 public LeagueOwner(String email)

{
 this.email = email;
 }

}
public class Advertiser extends

User{
 public Advertiser(String email) {
 this.email = email;
 }

}

public class User {
 public User(String email) {
 this.email = email;
 }

}

public class Player extends User {
 public Player(String email) {
 super(email);

 }
}

public class LeagueOwner extends
User {
 public LeagueOwner(String email) {
 super(email);

 }
}

public class Advertiser extends
User {
 public Advertiser(String email) {

 super(email);
 }

}.	

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 10	

4 Different Types of Transformations

Source code space

Forward
engineering

Refactoring

Reverse
engineering

Model space

Model
transformation

System Model	

(in UML)	

Another	

System Model	

Program	

(in Java)	

Another	

Program	

Yet Another	

System Model	

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 11	

Forward Engineering Example

public class User {
 private String email;
 public String getEmail() {
 return email;
 }
 public void setEmail(String e){
 email = e;
 }
 public void notify(String msg) {
 //
 }

}

public class LeagueOwner extends User {

 private int maxNumLeagues;

 public int getMaxNumLeagues() {

 return maxNumLeagues;

 }

 public void setMaxNumLeagues(int n) {

 maxNumLeagues = n;

 }

}

User

Object design model before transformation:

Source code after transformation: 	

-email:String
+getEmail():String
+setEmail(e:String)
+notify(msg:String)

LeagueOwner
-maxNumLeagues:int
+getMaxNumLeagues():int
+setMaxNumLeagues(n:int)	

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 12	

More Forward Engineering Examples

•  Model Transformations
•  Goal: Optimizing the object design model

•  Collapsing objects
•  Delaying expensive computations

•  Forward Engineering
•  Goal: Implementing the object design model in a

programming language
•  Mapping inheritance
•  Mapping associations
•  Mapping contracts to exceptions
•  Mapping object models to tables

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 13	

Collapsing Objects

Person SocialSecurity

number:String

Person

SSN:String

Object design model before transformation: 	

Object design model after transformation:

Turning an object into an attribute of another object is usually
done, if the object does not have any interesting dynamic
behavior (only get and set operations).

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 14	

Examples of Model Transformations and
Forward Engineering

•  Model Transformations
•  Goal: Optimizing the object design model

•  Collapsing objects
•  Delaying expensive computations

•  Forward Engineering
•  Goal: Implementing the object design model in a

programming language
•  Mapping inheritance
•  Mapping associations
•  Mapping contracts to exceptions
•  Mapping object models to tables

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 15	

Forward Engineering: Mapping a UML
Model into Source Code

•  Goal: We have a UML-Model with inheritance.
We want to translate it into source code

•  Question: Which mechanisms in the
programming language can be used?

•  Let’s focus on Java

•  Java provides the following mechanisms:
•  Overwriting of methods (default in Java)
•  Final classes
•  Final methods
•  Abstract methods
•  Abstract classes
•  Interfaces.

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 16	

Realizing Inheritance in Java

•  Realisation of specialization and generalization
•  Definition of subclasses
•  Java keyword: extends

•  Realisation of simple inheritance
•  Overwriting of methods is not allowed
•  Java keyword: final

•  Realisation of implementation inheritance
•  Overwriting of methods
•  No keyword necessary:

•  Overwriting of methods is default in Java

•  Realisation of specification inheritance
•  Specification of an interface
•  Java keywords: abstract, interface.

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 17	

Examples of Model Transformations and
Forward Engineering

•  Model Transformations
•  Goal: Optimizing the object design model

ü Collapsing objects
ü Delaying expensive computations

•  Forward Engineering
•  Goal: Implementing the object design model in a

programming language
ü Mapping inheritance
•  Mapping associations
•  Mapping contracts to exceptions
•  Mapping object models to tables

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 18	

Mapping Associations

1.  Unidirectional one-to-one association
2.  Bidirectional one-to-one association
3.  Bidirectional one-to-many association
4.  Bidirectional many-to-many association
5.  Bidirectional qualified association.

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 19	

Unidirectional one-to-one association

Account Advertiser
1 1

Object design model before transformation:

Source code after transformation: 	

public class Advertiser {

 private Account account;
 public Advertiser() {
 account = new Account();
 }

}

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 20	

Bidirectional one-to-one association

public class Advertiser {

/* account is initialized

 * in the constructor and never

 * modified. */

 private Account account;

 public Advertiser() {

 account = new Account(this);

 }

 public Account getAccount() {

 return account;

 }

}

1 1

Object design model before transformation:

Source code after transformation:	

public class Account {

 /* owner is initialized

 * in the constructor and

 * never modified. */

 private Advertiser owner;

 public Account(owner:Advertiser) {

 this.owner = owner;

 }

 public Advertiser getOwner() {

 return owner;

 }

}

Account

+ getOwner (): Advertiser	

Advertiser

+ getAcount (): Account	

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 21	

Bidirectional one-to-many association

public class Advertiser {

 private Set accounts;

 public Advertiser() {

 accounts = new HashSet();
 }

 public void addAccount(Account a) {

 accounts.add(a);

 a.setOwner(this);
 }
 public void removeAccount(Account a) {
 accounts.remove(a);
 a.setOwner(null);
 }

}

public class Account {
 private Advertiser owner;

 public void setOwner(Advertiser
newOwner) {
 if (owner != newOwner) {
 Advertiser old = owner;
 owner = newOwner;
 if (newOwner != null)
 newOwner.addAccount(this);
 if (oldOwner != null)
 old.removeAccount(this);
 }
 }

}

Advertiser Account
1 *

Object design model before transformation:	

Source code after transformation:

+ addAcount (a: Account)	

+ removeAcount (a: Account)	
 + setOwner (Advertiser: NewOwner)	

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 22	

Bidirectional many-to-many association

public class Tournament {
 private List players;
 public Tournament() {
 players = new ArrayList();
 }
 public void addPlayer(Player p) {
 if (!players.contains(p)) {
 players.add(p);
 p.addTournament(this);
 }
 }

}

public class Player {
 private List tournaments;
 public Player() {
 tournaments = new ArrayList();
 }
 public void
addTournament(Tournament t) {
 if (!tournaments.contains(t)) {
 tournaments.add(t);
 t.addPlayer(this);
 }
 }

}

Tournament * *

Source code after transformation

{ordered}

Object design model before transformation

+ addPlayer(p: Player)	

Player *

+addTournament(t: Tournament)	

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 23	

Examples of Model Transformations and
Forward Engineering

•  Model Transformations
•  Goal: Optimizing the object design model

ü Collapsing objects
ü Delaying expensive computations

•  Forward Engineering
•  Goal: Implementing the object design model in a

programming language
ü Mapping inheritance
ü Mapping associations
•  Mapping contracts to exceptions
•  Mapping object models to tables

Next!	

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 24	

Implementing Contract Violations

•  Many object-oriented languages do not have
built-in support for contracts

•  However, if they support exceptions, we can use
their exception mechanisms for signaling and
handling contract violations

•  In Java we use the try-throw-catch mechanism
•  Example:

•  Let us assume the acceptPlayer() operation of
TournamentControl is invoked with a player who is
already part of the Tournament

•  UML model
•  In this case acceptPlayer() in TournamentControl

should throw an exception of type KnownPlayer
•  Java Source code.

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 25	

The Try-throw-catch mechanism

•  The first step in constructing an exception
handler is to enclose the code that might throw
an exception within a try block. In general, a try
block looks like the following:

try {
 code
}
catch (ExceptionType name) {
…
}
catch (ExceptionType name) {
…
}

From: 	

Catching and Handling
Exceptions	

http://docs.oracle.com/javase/
tutorial/essential/exceptions/
handling.html	

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 26	

The Try-throw-catch mechanism/2

•  Each catch block is an exception handler and
handles the type of exception indicated by its
argument.

•  The argument type, ExceptionType, declares the type of
exception that the handler can handle and must be the
name of a class that inherits from the Throwable class.
The handler can refer to the exception with name.

try {
 code
}
catch (ExceptionType name) {
…
}
catch (ExceptionType name) {
…
}

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 27	

The Try-throw-catch mechanism/3

•  The catch block contains code that is executed if
and when the exception handler is invoked.

try {
 code
}
catch (ExceptionType name) {
…
}
catch (ExceptionType name) {
…
}

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 28	

The Try-throw-catch mechanism/4

•  The following are examples of exception handlers
•  The first handler, in addition to printing a message,

throws a user-defined exception: SampleException(e).

try {

} catch (FileNotFoundException e) {
 System.err.println("FileNotFoundException: " +
 e.getMessage());
 throw new SampleException(e);

} catch (IOException e) {
 System.err.println("Caught IOException: " +
 e.getMessage());
}

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 29	

The Try-throw-catch mechanism/5

•  The finally block always executes when the try block
exits. This ensures that the finally block is executed
even if an unexpected exception occurs.

try {

} catch (FileNotFoundException e) {
 System.err.println("FileNotFoundException: " +
 e.getMessage());
 throw new SampleException(e);

} catch (IOException e) {
 System.err.println("Caught IOException: " +
 e.getMessage());
}
finally {
 if (out != null) {
 System.out.println("Closing PrintWriter");
 out.close();
 } else {
 System.out.println("PrintWriter not open");
 }
}

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 30	

UML Model for Contract Violation Example

TournamentControl

Player
players *

Tournament

1

1

+applyForTournament()

Match

+playMove(p,m)
+getScore():Map

matches
*

+start:Date
+status:MatchStatus

-maNumPlayers:String
+start:Date
+end:Date

1
1

*

matches *

TournamentForm

*

*

+acceptPlayer(p)
+removePlayer(p)
+isPlayerAccepted(p)

Advertiser
sponsors *

*
*

*

*

+selectSponsors(advertisers):List
+advertizeTournament()
+acceptPlayer(p)
+announceTournament()
+isPlayerOverbooked():boolean

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 31	

Implementation in Java

public class TournamentForm {
 private TournamentControl control;
 private ArrayList players;
 public void processPlayerApplications() {
 for (Iteration i = players.iterator(); i.hasNext();) {
 try {

 control.acceptPlayer((Player)i.next());
 }

 catch (KnownPlayerException e) {
 // If exception was caught, log it to console
 ErrorConsole.log(e.getMessage());
 }
 }
 }

}

TournamentControl

Player
players *

Tournament

1
1

+applyForTournament()

Match

+playMove(p,m)
+getScore():Map

matches
*

+start:Date
+status:MatchStatus

-maNumPlayers:String
+start:Date
+end:Date

1 1

*

matches *

TournamentForm

*

*

+acceptPlayer(p)
+removePlayer(p)
+isPlayerAccepted(p)

Advertiser
sponsors * *

*

*

*

+selectSponsors(advertisers):List
+advertizeTournament()
+acceptPlayer(p)
+announceTournament()
+isPlayerOverbooked():boolean

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 32	

The try-throw-catch Mechanism in Java
public class TournamentControl {
 private Tournament tournament;
 public void addPlayer(Player p) throws KnownPlayerException
{
 if (!tournament.isPlayerAccepted(p)) {
 throw new KnownPlayerException(p);
 }
 //... Normal addPlayer behavior
 }

}
public class TournamentForm {
 private TournamentControl control;
 private ArrayList players;
 public void processPlayerApplications() {
 for (Iteration i = players.iterator(); i.hasNext();) {
 try {

 control.acceptPlayer((Player)i.next());
 }

 catch (KnownPlayerException e) {
 // If exception was caught, log it to console
 ErrorConsole.log(e.getMessage());
 }
 }
 }

}

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 33	

Implementing a Contract
•  Check each precondition:

•  Before the beginning of the method with a test to check
the precondition for that method

•  Raise an exception if the precondition evaluates to false

•  Check each postcondition:
•  At the end of the method write a test to check the

postcondition
•  Raise an exception if the postcondition evaluates to
false. If more than one postcondition is not satisfied,
raise an exception only for the first violation.

•  Check each invariant:
•  Check invariants at the same time when checking

preconditions and when checking postconditions
•  Deal with inheritance:

•  Add the checking code for preconditions and postconditions
also into methods that can be called from the class.

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 34	

Summary
•  Strategy for implementing associations:

•  Be as uniform as possible
•  Individual decision for each association

•  Example of uniform implementation
•  1-to-1 association:

•  Role names are treated like attributes in the classes
and translate to references

•  1-to-many association:
•  "Ordered many" : Translate to Vector
•  "Unordered many" : Translate to Set

•  Qualified association:
•  Translate to Hash table

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 35	

Additional Slides

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 36	

TournamentControl

Player
players *

Tournament

1

1

+applyForTournament()

Match

+playMove(p,m)
+getScore():Map

matches
*

+start:Date
+status:MatchStatus

-maNumPlayers:String
+start:Date
+end:Date

1
1

*

matches *

TournamentForm

*

*

+acceptPlayer(p)
+removePlayer(p)
+isPlayerAccepted(p)

Advertiser
sponsors *

*
*

*

*

+selectSponsors(advertisers):List
+advertizeTournament()
+acceptPlayer(p)
+announceTournament()
+isPlayerOverbooked():boolean

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 37	

A complete implementation of the
Tournament.addPlayer() contract

«precondition»
!isPlayerAccepted(p)

«invariant»
getMaxNumPlayers() > 0

«precondition»
getNumPlayers() <

getMaxNumPlayers()	

Tournament

+isPlayerAccepted(p:Player):boolean
+addPlayer(p:Player)

+getMaxNumPlayers():int

-maxNumPlayers: int
+getNumPlayers():int

«postcondition»
isPlayerAccepted(p)

