
U
sin

g
U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
	

O
bj

ec
t-O

ri
en

te
d

So
ftw

ar
e

En
gi

ne
er

in
g	

Chapter 8, Object Design: 	

Object Constraint

Language	

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 2	

Outline of the Lecture

•  OCL
•  Simple predicates
•  Preconditions
•  Postconditions
•  Contracts
•  Sets, Bags, and Sequences

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 3	

OCL Basic Concepts

•  OCL expressions
•  Return True or False
•  Are evaluated in a specified context, either a class or

an operation
•  All constraints apply to all instances.

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 4	

OCL Simple Predicates

Example:

context Tournament inv:!
!self.getMaxNumPlayers() > 0!

In English:
“The maximum number of players in any tournament

should be a postive number.”

Notes:
•  “self” denotes all instances of “Tournament”
•  OCL uses the same dot notation as Java.

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 5	

OCL Preconditions

Example:
context Tournament::acceptPlayer(p) pre:!
!not self.isPlayerAccepted(p)!

In English:
“The acceptPlayer(p) operation can only be invoked if

player p has not yet been accepted in the tournament.”
Notes:

•  The context of a precondition is an operation
•  isPlayerAccepted(p) is an operation defined by the

class Tournament.

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 6	

OCL Postconditions

Example:
context Tournament::acceptPlayer(p) post:!
!self.getNumPlayers() = ! ! 

!self@pre.getNumPlayers() + 1!

In English:
“The number of accepted player in a tournament

increases by one after the completion of
acceptPlayer()”

Notes:
•  self@pre denotes the state of the tournament before

the invocation of the operation.
•  Self denotes the state of the tournament after the

completion of the operation.

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 7	

OCL Contract for acceptPlayer() in
Tournament
context Tournament::acceptPlayer(p) pre:
 not isPlayerAccepted(p)

context Tournament::acceptPlayer(p) pre:

 getNumPlayers() < getMaxNumPlayers()

context Tournament::acceptPlayer(p) post:
 isPlayerAccepted(p)

context Tournament::acceptPlayer(p) post:

 getNumPlayers() = @pre.getNumPlayers() + 1

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 8	

OCL Contract for removePlayer() in
Tournament
context Tournament::removePlayer(p) pre:
 isPlayerAccepted(p)

context Tournament::removePlayer(p) post:

 not isPlayerAccepted(p)

context Tournament::removePlayer(p) post:
 getNumPlayers() = @pre.getNumPlayers() - 1

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 9	

JavaDoc

•  Add documentation comments to the source
code.

•  A doc comment consists of characters between
/** and */

•  When JavaDoc parses a doc comment, leading *
characters on each line are discarded. First,
blanks and tabs preceding the initial *
characters are also discarded.

•  Doc comments may include HTML tags
•  Example of a doc comment:

/**
* This is a doc comment
*/

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 10	

More on Java Doc

•  Doc comments are only recognized when placed
immediately before class, interface, constructor,
method or field declarations.

•  When you embed HTML tags within a doc
comment, you should not use heading tags
such as <h1> and <h2>, because JavaDoc
creates an entire structured document and these
structural tags interfere with the formatting of
the generated document.

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 11	

Java Implementation of Tournament class
(Contract as a set of JavaDoc comments)

public class Tournament {
/** The maximum number of players
 * is positive at all times.
 * @invariant maxNumPlayers > 0
 */
private int maxNumPlayers;

/** The players List contains
 * references to Players who are
 * are registered with the
 * Tournament. */
private List players;

/** Returns the current number of
 * players in the tournament. */
public int getNumPlayers() {…}

/** Returns the maximum number of
 * players in the tournament. */
public int getMaxNumPlayers() {…}

/** The acceptPlayer() operation
 * assumes that the specified
 * player has not been accepted
 * in the Tournament yet.
 * @pre !isPlayerAccepted(p)
 * @pre getNumPlayers()<maxNumPlayers
 * @post isPlayerAccepted(p)
 * @post getNumPlayers() =
 * @pre.getNumPlayers() + 1
 */
public void acceptPlayer (Player p) {…}

/** The removePlayer() operation
 * assumes that the specified player
 * is currently in the Tournament.
 * @pre isPlayerAccepted(p)
 * @post !isPlayerAccepted(p)
 * @post getNumPlayers() =
 * @pre.getNumPlayers() - 1
 */
public void removePlayer(Player p) {…}

}	

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 12	

Constraints can involve more than one
class

How do we specify constraints on !
on a group of classes?!

 Starting from a specific class in the UML class diagram,
we navigate the associations in the class diagram to
refer to the other classes and their properties (attributes and
Operations).
!

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 13	

Example from ARENA: League,
Tournament and Player

players

* tournaments
{ordered}

Tournament

+start:Date
+end:Date
+acceptPlayer(p:Player)

*
League

+start:Date
+end:Date
+getActivePlayers()

*
Player

+name:String
+email:String

* players

tournaments *

Constraints:
1.  A Tournament’s planned

duration must be under one
week.

2.  Players can be accepted in a
Tournament only if they are
already registered with the
corresponding League.

3.  The number of active
Players in a League are
those that have taken part
in at least one Tournament
of the League.

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 14	

Instance Diagram: 2 Leagues

tttExpert:League chessNovice:League

alice:Player

bob:Player

marc:Player

joe:Player

zoe:Player

winter:Tournament

start=Jan 12
end= Jan 14

Xmas:Tournament

start=Dec 23
end= Dec 25

, 5 Players,
2 Tournaments

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 15	

3 Types of Navigation through a Class
Diagram

1. Local attribute! 2. Directly related class! 3. Indirectly related class!

Tournament

League

*

*

Player
*

League

Player
*

*
Tournament
start:Date
end:Date

Any constraint for an arbitrary UML class diagram can
be specified using only a combination of these

3 navigation types!

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 16	

Specifying the Model Constraints in OCL

Local attribute navigation

players

* tournaments
{ordered}

Tournament

+start:Date
+end:Date
+acceptPlayer(p:Player)

*
League

+start:Date
+end:Date
+getActivePlayers()

*
Player

+name:String
+email:String

* players

tournaments *

Directly related class navigation

context Tournament inv:
 end - start <= 7

	

 context
 Tournament::acceptPlayer(p)

pre:
league.players->includes(p)

	

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 17	

OCL-Collection

•  The OCL-Type Collection is the generic
superclass of a collection of objects of Type T

•  Subclasses of Collection are
•  Set: Set in the mathematical sense. Every element
 can appear only once

•  Bag: A collection, in which elements can appear more
than once (also called multiset)

•  Sequence: A multiset, in which the elements are
ordered

•  Example for Collections:
•  Set(Integer): a set of integer numbers
•  Bag(Person): a multiset of persons
•  Sequence(Customer): a sequence of customers

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 18	

OCL Sets, Bags and Sequences

•  Sets, Bags and Sequences are predefined in OCL and
subtypes of Collection. OCL offers a large number of
predefined operations on collections. They are all of the
form:!
! !collection->operation(arguments)!

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 19	

OCL-Operations for OCL-Collections (1)
size: Integer

Number of elements in the collection
includes(o:OclAny): Boolean

True, if the element o is in the collection
count(o:OclAny): Integer

Counts how many times an element is contained in the
collection

isEmpty: Boolean
True, if the collection is empty

notEmpty: Boolean

 True, if the collection is not empty

The OCL-Type OclAny is the most general OCL-Type.

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 20	

OCL-Operations for OCL-Collections(2)
union(c1:Collection)

Union with collection c1
intersection(c2:Collection)

Intersection with Collection c2 (contains only elements,
which appear in the collection as well as in collection c2
auftreten)

including(o:OclAny)
Collection containing all elements of the Collection and
element o

select(expr:OclExpression)

Subset of all elements of the collection, for which the OCL-
expression expr is true.

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 21	

Other examples of OCL

(optional)

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 22	

OCL supports Quantification

•  OCL forall quantifier
/* All Matches in a Tournament occur within the

Tournament’s time frame */

context Tournament inv:
matches->forAll(m:Match |

 m.start.after(t.start) and m.end.before(t.end))

•  OCL exists quantifier
/* Each Tournament conducts at least one Match on the

first day of the Tournament */

context Tournament inv:
 matches->exists(m:Match | m.start.equals(start))

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 23	

Backup and Additional Slides

Bernd Bruegge & Allen H. Dutoit 	

 	

 Object-Oriented Software Engineering: Using UML, Patterns, and Java 24	

How do we get OCL-Collections?

•  A collection can be generated by explicitly
enumerating the elements from the UML model

•  A collection can be generated by navigating
along one or more 1-N associations in the UML
model

•  Navigation along a single 1:n association yields a Set
•  Navigation along a couple of 1:n associations yields a

Bag (Multiset)
•  Navigation along a single 1:n association labeled with

the constraint {ordered} yields a Sequence

