
U
sin

g
U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
	

O
bj

ec
t-O

ri
en

te
d

So
ftw

ar
e

En
gi

ne
er

in
g	

Object Design I: Reuse	

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 2	

Where are we? What comes next?

•  We have covered:
•  Introduction to Software Engineering (Chapter 1)
•  Modeling with UML (Chapter 2)
•  Requirements Elicitation (Chapter 4)
•  Analysis (Chapter 5)
•  System Design (Chapter 6 and 7)

•  Today and next class
•  Object Design (Chapter 8).

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 3	

Outline of Today

•  Definition and Terminology: Object Design vs
Detailed Design

•  System Design vs Object Design
•  Object Design Activities
•  Reuse examples

•  Whitebox and Blackbox Reuse

•  Object design leads also to new classes
•  Implementation vs Specification Inheritance
•  Inheritance vs Delegation
•  Class Libraries and Frameworks

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 4	

Object Design

•  Purpose of object design:
•  Prepare for the implementation of the system model

based on design decisions
•  Transform the system model (optimize it)

•  Investigate alternative ways to implement the
system model

•  Use design goals: minimize execution time, memory
and other measures of cost.

•  Object design serves as the basis of
implementation.

System Development as a Set of Activities

Custom objects	

Analysis

 System Design

 Object Design

System Model	

Design

Application objects	

Solution objects	

Existing Machine

Problem

Off-the-Shelf Components	

Design means “Closing the Gap” between
Problem and Existing Machine

Solution objects	

System Model	

Application objects	

Custom objects	

System design gap	

Object !
design gap	

Requirements gap	

Problem	

Machine	

Develop-	

ment	

Gap	

“Higher level Virtual
Machine”	

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 7	

Focus on
Reuse
and

Specification

Towards
Mapping
Models to

 Code
	

Object Design Activities consists of 4
Activities

1. Reuse: Identification of existing solutions
•  Use of inheritance
•  Off-the-shelf components and

additional solution objects
•  Use of Design patterns

2. Interface specification
•  Describes precisely each class interface

3. Object model restructuring
•  Transforms the object design model to

improve its understandability and extensibility

4. Object model optimization
•  Transforms the object design model to address

performance criteria such as response
time or memory utilization.

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 8	

Object Design
Activities

Specifying constraints

Specifying types &
signatures

Identifying patterns

Adjusting patterns

Identifying missing
attributes & operations

Specifying visibility

Specification

Specifying exceptions

Reuse

Identifying components

Adjusting components

Select Subsystem We start here	

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 9	

Detailed View of Object Design Activities
(ctd)

Collapsing classes

Restructuring Optimization

Revisiting
inheritance

Optimizing access
paths

Caching complex
computations

Delaying complex
computations

Check Use Cases

Realizing associations

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 10	

One Way to do Object Design

1.  Identify the missing components in the design gap
2.  Make a build or buy decision to obtain the missing

component

 => Component-Based Software Engineering:
 The design gap is filled with available
components (“0 % coding”)

•  Special Case: COTS-Development

•  COTS: Commercial-off-the-Shelf
•  The design gap is filled with commercial-off-the-shelf-

components.

=> Design with standard components.

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 11	

Modeling of the Real World

•  Design knowledge such as the adapter pattern
complements application domain knowledge and
solution domain knowledge

•  Modeling of the real world leads to a system that
reflects today’s realities but not necessarily
tomorrow’s

•  There is a need for reusable and extendable
(“flexible”) designs.

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 12	

Review: Design pattern

A design pattern is…
…a reusable template for solving a recurring

design problem
•  Basic idea: Don’t re-invent the wheel!

… design knowledge
•  Knowledge on a higher level than classes, algorithms

or data structures (linked lists, binary trees...)
•  Lower level than application frameworks

…an example of modifiable design
•  Learning how to design starts by studying other

designs.

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 13	

Why are modifiable designs important?

A modifiable design…
…enables an iterative and incremental

development
•  concurrent development
•  risk management
•  flexibility to change

… minimizes the introduction of new problems
when fixing old ones

… allows to easily add more functionality after the
delivery of the system

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 14	

What makes a design modifiable?

•  Low coupling and high cohesion
•  Clear dependencies
•  Explicit assumptions

How do design patterns help?

•  They are generalized from existing systems
•  They provide a shared vocabulary to designers
•  They provide examples of modifiable designs

•  Abstract classes
•  Delegation

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 15	

Adapter Pattern .

•  Adapter Pattern: Connects incompatible
components

•  It converts the interface of one component into
another interface expected by the other (calling)
component

•  Used to provide a new interface to existing legacy
components (Interface engineering, reengineering)

•  Also known as a wrapper.

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 16	

Adapter Pattern

ClientInterface

Request()

LegacyClass

ExistingRequest()

adaptee

Adapter

Request().

Client

Old System	

(“Legacy System”) 	

New System 	

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 17	

Where are we?
ü Object Design vs Detailed Design
ü System design vs object design
ü Overview of object design activities
ü Adapter pattern
•  Types of Reuse

•  Code reuse
•  Interface reuse
•  Class reuse
•  Whitebox and blackbox reuse

•  Object design leads also to new classes
•  Implementation vs Specification Inheritance
•  Inheritance vs Delegation
•  Class Libraries and Frameworks

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 18	

Reuse of Code

•  I have a list, but the customer wants to have a stack
•  The list offers the operations Insert(), Find(), Delete()
•  The stack needs the operations Push(), Pop() and Top()
•  Can I reuse the existing list?

•  I am an employee in a company that builds cars with
expensive car stereo systems

•  Can I reuse the existing car software in a home stereo
system?

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 19	

Reuse of interfaces

•  I am an off-shore programmer in Hawaii. I have a
contract to implement an electronic parts catalog
for Daimler

•  How can my contractor make sure that I implement it
correctly?

•  I would like to develop a window system for Linux
that behaves the same way as in Vista

•  How can I make sure that I follow the conventions for
Vista and not those of MacOS X?

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 20	

Reuse of existing classes

•  I have an implementation for a list of elements
of Type int

•  Can I reuse this list to build
•  a list of customers
•  a spare parts catalog
•  a flight reservation schedule?

•  I have developed a class “Addressbook” in a
previous project

•  Can I add it as a subsystem to my e-mail program
which I purchased from a vendor (replacing the
vendor-supplied address book)?

•  Can I reuse this class in the billing software of my
dealer management system?

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 21	

Customization: Build Custom Objects

•  Problem: Closing the object design gap
•  Develop new functionality

•  Main goals:
•  Reuse functionality already available
•  Use design knowledge (from previous experience)

•  Composition (also called Black Box Reuse)
•  The new functionality is obtained by aggregation
•  The new object with more functionality is an

aggregation of existing objects
•  Inheritance (also called White-box Reuse)

•  The new functionality is obtained by inheritance.

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 22	

Example of Composition

Incident	

Report	

Requirements Analysis
(Language of Application

Domain)	

Object Design
(Language of Solution

Domain)

Incident	

Report	

Text box	
 Menu	
 Scrollbar	

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 23	

Other Reasons for additional Objects in
Object Design

•  The implementation of algorithms may
necessitate objects to hold values

•  New low-level operations may be needed during
the decomposition of high-level operations

•  Example: EraseArea() in a drawing program
•  Conceptually very simple
•  Implementation is complicated:

•  Area represented by pixels
•  We need a Repair() operation to clean up objects

partially covered by the erased area
•  We need a Redraw() operation to draw objects

uncovered by the erasure
•  We need a Draw() operation to erase pixels in

background color not covered by other objects.

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 24	

White Box and Black Box Reuse

•  White box reuse (inheritance)
•  Access to the development artifacts (analysis model,

system design, object design, source code) must be
available

•  Black box reuse (composition)
•  Access to models and designs is not available, or

models do not even exist
•  Worst case: Only executables (binary code) are

available
•  Better case: A specification of the system interface

is available.

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 25	

Types of Whitebox Reuse

1. Implementation inheritance
•  Reuse of Implementations

2. Specification Inheritance
•  Reuse of Interfaces

•  Programming concepts to achieve reuse
Ø Inheritance
•  Delegation
•  Abstract classes and Method Overriding
•  Interfaces

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 26	

Why Inheritance?

1. Organization (during analysis):
•  Inheritance helps us with the construction of

taxonomies to deal with the application domain
•  when talking the customer and application domain

experts we usually find already existing
taxonomies

2. Reuse (during object design):
•  Inheritance helps us to reuse models and code to deal

with the solution domain
•  when talking to developers

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 27	

The use of Inheritance

•  Inheritance is used to achieve two different goals
•  Description of Taxonomies
•  Interface Specification

•  Description of Taxonomies
•  Used during requirements analysis
•  Activity: identify application domain objects that are

hierarchically related
•  Goal: make the analysis model more understandable

•  Interface Specification
•  Used during object design
•  Activity: identify the signatures of all identified objects
•  Goal: increase reusability, enhance modifiability and

extensibility

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 28	

Example of using Inheritance for Taxonomy
Superclass:

!
drive()!
brake()	

accelerate()	

Car	

playMusic()	

ejectCD()	

resumeMusic()	

pauseMusic()	

LuxuryCar	

Subclass: 	

public class LuxuryCar extends Car
{
 public void playMusic() {…}
 public void ejectCD() {…}
 public void resumeMusic() {…}
 public void pauseMusic() {…}
}	

public class Car {
 public void drive() {…}
 public void brake() {…}
 public void accelerate() {…}
}	

	

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 29	

Inheritance can be used during Analysis as
well as during Design

•  Starting point is always the requirements
analysis phase:

•  We start with use cases
•  We identify existing objects (“class identification“)
•  We investigate the relationship between these objects;
“Discovering associations“:

• general associations
•  aggregations
•  inheritance associations.

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 30	

Discovering Inheritance Associations

•  To “discover“ inheritance associations, we can
proceed in two ways, which we call
specialization and generalization

•  Generalization: the discovery of an inheritance
relationship between two classes, where the sub
class is discovered first.

•  Specialization: the discovery of an inheritance
relationship between two classes, where the
super class is discovered first.

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 31	

Generalization

•  First we find the subclass, then the super class
•  This type of discovery occurs often in science

and engineering:
•  Biology: First we find individual animals (Elefant, Lion,

Tiger), then we discover that these animals have
common properties (mammals).

•  Engineering: What are the common properties of cars
and airplanes?

Generalization Example: Modeling
Vending Machines

totalReceipts	

numberOfCups	

coffeeMix	

collectMoney()	

makeChange()	

heatWater()	

dispenseBeverage()	

addSugar()	

addCreamer()	

CoffeeMachine	

VendingMachine	

Generalization:
The class CoffeeMachine is
discovered first, then the class
SodaMachine, then the
superclass
VendingMachine	

totalReceipts
cansOfBeer
cansOfCola
collectMoney()
makeChange()
chill()
dispenseBeverage()

SodaMachine

Generalizing often leads to Restructuring

totalReceipts	

collectMoney()	

makeChange()	

dispenseBeverage()	

VendingMachine	

numberOfCups	

coffeeMix	

heatWater()	

addSugar()	

addCreamer()	

CoffeeMachine	

cansOfBeer	

cansOfCola	

chill()	

SodaMachine	

totalReceipts	

numberOfCups	

coffeeMix	

collectMoney()	

makeChange()	

heatWater()	

dispenseBeverage()	

addSugar()	

addCreamer()	

CoffeeMachine	

VendingMachine	

totalReceipts
cansOfBeer
cansOfCola
collectMoney()
makeChange()
chill()
dispenseBeverage()

SodaMachine

Called Remodeling if done on ���
the model level;	

called Refactoring if done on ���
the source code level.	

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 34	

Specialization
•  Specialization occurs, when we find a subclass

that is very similar to an existing class
•  Example: A theory postulates certain particles and

events which we have to find

•  New products
•  Last year we finished a project, in which we developed

a machine, that delivers coffee and tea with automatic
detection of empty containers.

•  In the new project we have to develop the same
functionality for a new candy machine.

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 35	

Another Example of a Specialization

numberOfCups	

coffeeMix	

heatWater()	

addSugar()	

addCreamer()	

CoffeeMachine	

totalReceipts	

collectMoney()	

makeChange()	

dispenseBeverage()	

VendingMaschine	

cansOfBeer	

cansOfCola	

chill()	

SodaMachine	

bagsofChips	

numberOfCandyBars	

dispenseSnack()	

CandyMachine	

CandyMachine is a new
product. We design it as a sub
class of the superclass
VendingMachine

A change of names might now
be useful: dispenseItem()
instead of

 dispenseBeverage()
 and
 dispenseSnack()

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 36	

Example of a Specialization (2)

numberOfCups	

coffeeMix	

heatWater()	

addSugar()	

addCreamer()	

dispenseItem()	

CoffeeMachine	

totalReceipts	

collectMoney()	

makeChange()	

dispenseItem()	

VendingMaschine	

cansOfBeer	

cansOfCola	

chill()	

dispenseItem()	

SodaMachine	

bagsofChips	

numberOfCandyBars	

dispenseItem()	

CandyMachine	

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 37	

Meta-Model for Inheritance

Inheritance

Specification

Inheritance

Implementation

Inheritance

Inheritance
for Reuse Taxonomy

Inheritance
detected by

generalization

Inheritance
detected by

specialization

Analysis	

activity	

Object 	

Design	

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 38	

Implementation Inheritance and
Specification Inheritance

•  Implementation inheritance
•  Also called class inheritance
•  Goal:

•  Extend an applications’ functionality by reusing
functionality from the super class

•  Inherit from an existing class with some or all
operations already implemented

•  Specification Inheritance
•  Also called subtyping
•  Goal:

•  Inherit from a specification
•  The specification is an abstract class with all the

operations specified but not yet implemented.

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 39	

Implementation Inheritance vs.
Specification Inheritance

•  Implementation inheritance: The combination of
inheritance and implementation

•  The interface of the superclass is completely inherited
•  Implementations of methods in the superclass

("Reference implementations") are inherited by any
subclass

•  Specification inheritance: The combination of
inheritance and specification

•  The interface of the superclass is completely inherited
•  Implementations of the superclass (if there are any)

are not inherited.

  Problem with implementation inheritance:
•  The inherited operations might exhibit unwanted behavior
•  Example: What happens if the Stack user calls Remove()

instead of Pop()?

Example:
 • I have a List, I need a Stack
 • How about subclassing the

Stack class from the List
class and implementing
Push(), Pop(), Top() with
Add() and Remove()?

Add()	

Remove()	

List	

Push	
()	

	
Pop()	

Stack	

Top()	

“Already
 implemented”!

Example for Implementation Inheritance

A class is already implemented that does almost
the same as the desired class

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 41	

Delegation instead of Implementation
Inheritance
•  Inheritance: Extending a Base class by a new

operation or overwriting an operation
•  Delegation: Catching an operation and sending it

to another object
•  Which of the following models is better?

+Add()	

+Remove()	

List	

Stack	

+Push()	

+Pop()	

+Top()	

+Push()	

+Pop()	

+Top()	

Stack	

+Add()	

+Remove(
)	

List	

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 42	

delegates to Client Receiver Delegate calls

Delegation

•  Delegation is a way of making composition as
powerful for reuse as inheritance

•  In delegation two objects are involved in
handling a request from a Client

• The Receiver object delegates operations to
the Delegate object
• The Receiver object makes sure, that the
Client does not misuse the Delegate object.

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 43	

Comparison: Delegation vs Implementation
Inheritance

•  Delegation
☺ Flexibility: Any object can be replaced at run time by

another one (as long as it has the same type)
☹  Inefficiency: Objects are encapsulated

•  Inheritance
☺ Straightforward to use
☺ Supported by many programming languages
☺ Easy to implement new functionality in the subclass
☹ Inheritance exposes a subclass to the details of its

parent class
☹ Any change in the parent class implementation forces

the subclass to change (which requires recompilation of
both).

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 44	

Recall: Implementation Inheritance v.
Specification-Inheritance

•  Implementation Inheritance: The combination of
inheritance and implementation

•  The interface of the super class is completely inherited
•  Implementations of methods in the super class

("Reference implementations") are inherited by any
subclass

•  Specification Inheritance: The combination of
inheritance and specification

•  The interface of the super class is completely inherited
•  Implementations of the super class are not inherited
•  Or the super class is an abstract class.

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 45	

Abstract Operations and Abstract Classes

•  Abstract method:
•  A method with a signature but without an

implementation. Also called abstract operation

•  Abstract class:
•  A class which contains at least one abstract method is

called abstract class

•  UML Interface: An abstract class which has only
abstract operations

•  An interface is primarily used for the specification of
a system or subsystem. The implementation is
provided by a subclass or by other mechanisms.

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 46	

Example of an Abstract Operation

totalReceipts	

collectMoney()	

makeChange()	

dispenseItem()	

VendingMaschine	

numberOfCups	

coffeeMix	

heatWater()	

addSugar()	

addCreamer()	

dispenseItem()	

CoffeeMachine	

cansOfBeer	

cansOfCola	

chill()	

dispenseItem()	

SodaMachine	

bagsofChips	

numberOfCandyBars	

dispenseItem()	

CandyMachine	

dispenseItem() 	

dispenseItem() must be
implemented in each subclass.
We do this by specifying the
operation as abstract. Abstract
operations are written in UML
in italics. 	

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 47	

Rewriteable Methods and Strict Inheritance

•  Rewriteable Method: A method which allows a
reimplementation

•  In Java methods are rewriteable by default, i.e. there
is no special keyword

•  Strict inheritance
•  The subclass can only add new methods to the

superclass, it cannot over write them
•  If a method cannot be overwritten in a Java program,

it must be prefixed with the keyword final.

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 48	

Strict Inheritance
Superclass:

!
drive()!
brake()	

accelerate()	

Car	

playMusic()	

ejectCD()	

resumeMusic()	

pauseMusic()	

LuxuryCar	

Subclass: 	

public class LuxuryCar extends Car
{
 public void playMusic() {…}
 public void ejectCD() {…}
 public void resumeMusic() {…}
 public void pauseMusic() {…}
}	

public class Car {
 public final void drive() {…}
 public final void brake() {…}
 public final void accelerate()
{…}
}	

	

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 49	

Example: Strict Inheritance and
Rewriteable Methods

Original Java-Code:	

class Device {	

 int serialnr;	

 public final void help() {….}	

 public void setSerialNr(int n) {���
 serialnr = n;���
}	

}	

class Valve extends Device {	

 Position s;	

 public void on() {���
 ….���
 }	

}	

 	

	

help() not 	

overwritable	

setSerialNr()	

overwritable	

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 50	

Example: Overwriting a Method
Original Java-Code:	

class Device {	

 int serialnr;	

 public final void help() {….}	

 public void setSerialNr(int n) {���
 serialnr = n;���
 }	

}	

class Valve extends Device {	

 Position s;	

 public void on() {���
 ….���
 }	

} // class Valve	

 	

	

New Java-Code :	

class Device {	

 int serialnr;	

 public final void help() {….}	

 public void setSerialNr(int n) {���
 serialnr = n;���
 }	

}	

class Valve extends Device {	

 Position s;	

 public void on() {���
 … 	

 }	

 public void setSerialNr(int n) {���
 serialnr = n + 100;���
 }	

} // class Valve	

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 51	

UML Class Diagram

Device	
	

- int serialnr	

	

+setSerialNr(int n)	

	

	

Valve	
	

- Position s	
	

+on()	

	

	

Device	

- int serialnr	

	

+ setSerialNr(int n)	

Valve	
	

-Position s	
	

+ on()	

+ setSerialNr()	

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 52	

Overwriteable Methods:
Usually implemented with Empty Body

class Device {	

 int serialnr;	

 public void setSerialNr(int n) {}	

}	

class Valve extends Device {	

 Position s;	

 public void on() {	

 …..	

 }	

 public void setSerialNr(int n) {	

 serialnr = n + 100;	

 }	

} // class Valve	

I expect, that the method
setSerialNr()will be
overwritten. I only write an

empty body	

Overwriting of the method
setSerialNr() of Class

Device	

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 53	

Bad Use of Overwriting Methods

One can overwrite the operations of a superclass with
completely new meanings

Example:
Public class SuperClass {
 public int add (int a, int b) { return a+b; }
 public int subtract (int a, int b) { return a-b; }
}
Public class SubClass extends SuperClass {
 public int add (int a, int b) { return a-b; }
 public int subtract (int a, int b) { return a+b; }
}

•  We have redefined addition as subtraction and subtraction
as addition!!

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 54	

Bad Use of Implementation Inheritance
•  We have delivered a car with software that allows to

operate an on-board stereo system
•  A customer wants to have software for a cheap stereo

system to be sold by a discount store chain

•  Dialog between project manager and developer:
•  Project Manager:

•  „Reuse the existing car software. Don‘t change this
software, make sure there are no hidden surprises.
There is no additional budget, deliver tomorrow!“

•  Developer:
•  „OK, we can easily create a subclass BoomBox inheriting

the operations from the existing Car software“
•  „And we overwrite all method implementations from Car

that have nothing to do with playing music with empty
bodies!“

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 55	

What we have and what we want

musicSystem
playMusic()
ejectCD()
resumeMusic()
pauseMusic()

BoomBox
engine
windows
musicSystem
brake()
accelerate()
playMusic()
ejectCD()
resumeMusic()
pauseMusic()

Auto

New Product!
ExistingProduct!

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 56	

What we do to save money and time

Existing Product:
public class Auto {
 public void drive() {…}
 public void brake() {…}
 public void accelerate() {…}
 public void playMusic() {…}
 public void ejectCD() {…}
 public void resumeMusic() {…}
 public void pauseMusic() {…}
}

New Product: 	

public class Boombox extends
Auto {
 public void drive() {};
 public void brake() {};
 public void accelerate() {};
}

engine
windows
musicSystem
brake()
accelerate()
playMusic()
ejectCD()
resumeMusic()
pauseMusic()

Auto

musicSystem
playMusic()
ejectCD()
resumeMusic()
pauseMusic()

BoomBox

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 57	

Contraction

•  Contraction: Implementations of methods in
the super class are overwritten with empty
bodies in the subclass to make the super class
operations “invisible“

•  Contraction is a special type of inheritance
•  It should be avoided at all costs, but is used

often.

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 58	

Contraction should be avoided

A contracted subclass delivers the desired
functionality expected by the client, but:

•  The interface contains operations that make no sense
for this class

•  What is the meaning of the operation brake() for a
BoomBox?

The subclass does not fit into the taxonomy
A BoomBox ist not a special form of Auto

•  The subclass violates Liskov's Substitution
Principle:

•  I cannot replace Auto with BoomBox to drive to work.
•  Liskov’s Substitution Principle:

•  If an object of type S can be substituted in all the
places where an object of type T is expected, then
S is a subtype of T.

Revised Metamodel for Inheritance

Inheritance

Specification
Inheritance

Implementation
Inheritance

Inheritance
for Reuse Taxonomy

Inheritance
detected by

generalization

Inheritance
detected by

specialization

Analysis	

activity	

Object 	

Design	

Strict
Inheritance

Contraction

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 60	

Frameworks

•  A framework is a partial application that can be
specialized to produce custom applications

•  The key benefits of frameworks are reusability
and extensibility:

•  Reusability leverages on the application domain
knowledge and prior effort of experienced developers

•  Extensibility is provided by methods which can be
overwritten by the application to extend the
framework.

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 61	

Classification of Frameworks

•  Frameworks can be classified by their position in
the software development process:

•  Infrastructure frameworks
•  Middleware frameworks

•  Frameworks can also be classified by the
techniques used to extend them:

•  Whitebox frameworks
•  Blackbox frameworks

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 62	

Frameworks in the Development Process

•  Infrastructure frameworks aim to simplify the
software development process

•  Used internally, usually not delivered to a client

•  Middleware frameworks are used to integrate
existing distributed applications

•  Examples: Java RMI, CORBA, WebObjects, WebSphere.
•  Enterprise application frameworks are

application specific and focus on domains
•  Example of application domains: telecommunications,

avionics, environmental modeling, manufacturing,
financial engineering, enterprise business activities.

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 63	

Class libraries vs. Frameworks

•  Class Library:
•  Provide a smaller scope of reuse
•  Is less domain specific
•  Class libraries are passive; there is no constraint on

the flow of control
•  Framework:

•  Classes cooperate for a family of related applications.
•  Frameworks are active; they affect the flow of control.

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 64	

Components vs. Frameworks

•  Components:
•  Self-contained instances of classes
•  Plugged together to form complete applications
•  Can even be reused on the binary code level

•  The advantage is that applications do not have to be
recompiled when components change

•  Framework:
•  Often used to develop components
•  Components are often plugged into blackbox

frameworks.

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 65	

Documenting the Object Design

•  Object design document (ODD)
= The Requirements Analysis Document (RAD) plus...

… additions to object, functional and dynamic
 models (from the solution domain)

… navigational map for object model
… Specification for all classes (use Javadoc)

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 66	

Documenting Object Design: ODD
Conventions

•  Each subsystem in a system provides a service
•  Describes the set of operations provided by the

subsystem
•  Specification of the service operations

•  Signature: Name of operation, fully typed parameter
list and return type

•  Abstract: Describes the operation
•  Pre: Precondition for calling the operation
•  Post: Postcondition describing important state after the

execution of the operation

•  Use JavaDoc and Contracts for the specification
of service operations

•  Contracts are covered in one of the next lectures.

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 67	

Package it all up
•  Pack up object design into discrete units that can

be edited, compiled, linked, reused
•  Construct physical modules

•  Ideally use one package for each subsystem
•  But system design might not be good enough for

packaging
•  Two design principles for packaging

•  Minimize coupling:
•  Classes in client-supplier relationships are usually

loosely coupled
•  Avoid large number of parameters in methods to

avoid strong coupling (should be less than 4-5)
•  Maximize cohesion: Put classes connected by

associations into one package.

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 68	

Packaging Heuristics

•  Each subsystem service is made available by
one or more interface objects within the package

•  Start with one interface object for each
subsystem service

•  Try to limit the number of interface operations (7+-2)

•  If an interface object has too many operations,
reconsider the number of interface objects

•  If you have too many interface objects,
reconsider the number of subsystems

•  Interface objects vs Java interface:
•  Interface object: Used during requirements analysis,

system design, object design. Denotes a service or API
•  Java interface: Used during implementation in Java

(May or may not implement an interface object).

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 69	

Summary
•  Object design closes the gap between the

requirements and the machine
•  Object design adds details to the requirements

analysis and makes implementation decisions
•  Object design activities include:

ü  Identification of Reuse
ü  Identification of Inheritance and Delegation

opportunities
ü  Component selection
•  Interface specification (Next lecture)
•  Object model restructuring
•  Object model optimization

•  Object design is documented in the Object
Design Document (ODD).

Lectures on Mapping
Models to Code

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 70	

Backup Slides

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 71	

Apollo 13: “Houston, we’ve had a Problem!”
Service Module (SM):	

Batteries, etc	

Command Module (CM):	

Living quarters for 3	

astronauts during the trip	

to and from the moon	

Lunar Module (LM):	

Living quarters for 2 	

astronauts on the moon	

The LM was designed for 2 astronauts staying 2 days on the moon (4 man-days)	

Redesign challenge: Can the LM be used for 12 man-days (2 1/2 days until reentry

into Earth)?	

Proposal: Use the lithium hydride cartridges from the CM to extend life in LM	

Problem: Lithium hydride openings in CM were incompatible with scrubber in LM!	

	

Available lithium 	

hydride in LM: 	

60 hours for 2	

Astronauts	

Available lithium hydride	

(for removing carbon dioxide) 	

in CM: “Plenty”	

But: only 15 min power left	

Needed: 	

88 hours for 3	

Astronauts	

Failure!	

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 72	

Incompatibility between LM Scrubber and
CM Cartridge System

Astronaut

CM_Cartridge

ScrubCarbonMonoxide()

Opening: Square

LM Scrubber

ObtainOxygen()

Opening: Round

LM Environmental Subsystem 	
 CM Environmental Subsystem 	

Design Gap	

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 73	

Apollo 13: “Fitting a square peg in a round
hole”

Source: http://www.hq.nasa.gov/office/pao/History/SP-350/ch-13-4.html	

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 74	

A Typical Object Design Challenge:
Connecting Incompatible Components

Source: http://www.hq.nasa.gov/office/pao/History/SP-350/ch-13-4.html	

	

Lithium hydride canister	

 in Command Module subsystem 	

(which used square openings)	

	

Interface to the Lunar Module 	

Environmental Subsystem (which used 	

round openings)	

Command Module 	

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 75	

Adapter for Scrubber in Lunar Module

•  Using a carbon monoxide scrubber (round opening) in the lunar
module with square cartridges from the command module
(square opening).

Scrubber

ObtainOxygen()

adaptee

Round_To_Square_Adapter

ObtainOxygen()

Astronaut

Opening: Round

CM_Cartridge

ScrubCarbonMonoxide()

Opening: Square

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 76	

Reuse
•  Main goal:

•  Reuse knowledge from previous experience to current
problem

•  Reuse functionality already available

•  Composition (also called Black Box Reuse)
•  New functionality is obtained by aggregation
•  The new object with more functionality is an

aggregation of existing components
•  Inheritance (also called White-box Reuse)

•  New functionality is obtained by inheritance.

•  Three ways to get new functionality:
•  Implementation inheritance
•  Interface inheritance
•  Delegation

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 77	

Example: Framework for Building Web
Applications

WebBrowser

RelationalDatabase

StaticHTML

WOAdaptor
WebServer

WoRequest Template

WebObjectsApplication

WORequest

EOF

WebObjects	

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 78	

Customization Projects are like Advanced Jigsaw
Puzzles

Source http://www.puzzlehouse.com/_!

Design Patterns!

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 79	

Application Domain vs Solution Domain Objects

Requirements Analysis (Language of Application Domain)	

Subject!

subscribe(subscriber)
unsubscribe(subscriber)
notify()

update()

Observer!
*!observers!

Object Design (Language of Solution Domain)

ConcreteSubject!
state

getState()
setState()

ConcreteObserver!
observeState

update()

Bernd Bruegge & Allen H. Dutoit 	
 	
 Object-Oriented Software Engineering: Using UML, Patterns, and Java 80	

White-box and Black-box Frameworks

•  White-box frameworks:
•  Extensibility is achieved through inheritance and

dynamic binding
•  Existing functionality is extended by subclassing

framework base classes and overwriting specific
methods designed to be overwritten(so-called hook
methods)

•  Black-box frameworks:
•  Extensibility is achieved by defining interfaces for

components that can be plugged into the framework.
•  Existing functionality is reused by defining components

that conform to a particular interface
•  These components are integrated with the framework

via delegation.

