
U
sin

g
U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
	

O
bj

ec
t-O

ri
en

te
d

So
ftw

ar
e

En
gi

ne
er

in
g	

Chapter 5, Analysis:
Object Modeling

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 2!

Outline

Recall: System modeling = Functional modeling +
Object modeling + Dynamic modeling

ü Last lecture: Functional modeling
•  Now: Object modeling

•  Activities during object modeling
•  Object identification
•  Object types

•  Entity, boundary and control objects
•  Abott’s technique

•  Helps in object identification.

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 3!

From Use Cases to Objects
Level 1 Use Case!

Level 2 Use Cases!

Level 3 Use Cases!

Operations!

Participating!
Objects!

 Le	
v	
el 2	

 Le	
v	
el 1	

 Le	
v	
el 2	

 Le	
v	
el 3	
 Le	
v	
el 3	

 Le	
v	
el 4	
 Le	
v	
el 4	

 Le	
v	
el 3	

 	

A! B!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 4!

From Use Cases to Objects: Why Functional
Decomposition is not Enough

Scenarios!

Level 1 Use Cases!

Level 2 Use Cases!

Operations!

Participating!
Objects!

 Le	
v	
el 2	

 Le	
v	
el 1	

 Le	
v	
el 2	

 Le	
v	
el 3	
 Le	
v	
el 3	

 Le	
v	
el 4	
 Le	
v	
el 4	

 Le	
v	
el 3	

 	

A! B!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 5!

Activities during Object Modeling
Main goal: Find the important abstractions
•  Steps during object modeling

1. Class identification
•  Based on the fundamental assumption that we can

find abstractions
2. Find the attributes
3. Find the operations
4. Find the associations between classes

•  Order of steps
•  Goal: get the desired abstractions
•  Order of steps is secondary

•  What happens if we find the wrong abstractions?
•  We iterate and revise the model.

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 6!

Class Identification

Class identification is crucial to object-oriented
modeling

•  Helps to identify the important entities of a system

•  Basic assumptions:
1. We can find the classes for a new software system

(Forward Engineering)
2. We can identify the classes in an existing system

(Reverse Engineering)

•  Why can we do this?
•  Philosophy, science, experimental evidence.

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 7!

Class Identification

•  Approaches
•  Application domain approach

•  Ask application domain experts to identify relevant
abstractions

•  Syntactic approach
•  Start with use cases
•  Analyze the text to identify the objects
•  Extract participating objects from flow of events

•  Design patterns approach
•  Identify relevant abstractions that can be reused

(apply design knowledge)
•  Component-based approach

•  Identify existing solution classes.

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 8!

Class identification is a Hard Problem

•  One problem: Definition of the system
boundary:

•  Which abstractions are outside, which abstractions are
inside the system boundary?

•  Actors are outside the system
•  Classes/Objects are inside the system

•  An other problem: Classes/Objects are not just
found by taking a picture of a scene or domain

•  The application domain has to be analyzed
•  Depending on the purpose of the system different

objects might be found
•  How can we identify the purpose of a system?
•  Scenarios and use cases => Functional model.

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 9!

There are different types of Objects

•  Entity Objects
•  Represent the persistent information tracked by the

system (Application domain objects, also called
“Business objects”)

•  Boundary Objects
•  Represent the interaction between the user and the

system
•  Control Objects

•  Represent the control tasks performed by the system.

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 10!

From Use Cases to Objects

Starting from use cases and scenarios, analysis
activities performed to obtain the analysis model
are:

•  Identifying entity objects
•  Identifying boundary objects
•  Identifying control objects
•  Mapping use cases to objects
•  Identifying associations among objects
•  Identifying object attributes
•  Modeling behavior with statecharts
•  Modeling generalization relationships
•  Reviewing the analysis model

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 11!

Example: 2BWatch Modeling

Year!

Month!

Day!

ChangeDate!
Button!

LCDDisplay!

Entity Objects Control Object Boundary Objects

To distinguish different object types
in a model we use the

UML Stereotype mechanism

Naming Object Types in UML

<<Entity>>!
Year! <<Control>>!

ChangeDate!

<<Boundary>>!
Button!

<<Entitity>>!
Month!

<<Entity>>!
Day!

<<Boundary>>!
LCDDisplay!

Entity Object Control Object Boundary Object

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 13!

Icons for Object Types:
Entity, Control and Boundary Object

•  We can also use icons to identify a stereotype
•  When the stereotype is applied to a UML model element, the

icon is displayed beside or above the name

Entity Object Control Object Boundary Object

Year! ChangeDate Button!

Actor

WatchUser"

System
Boundary!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 14!

UML is an Extensible Language
•  Stereotypes allow you to extend the vocabulary of the

UML so that you can create new model elements,
derived from existing ones"

•  Other Examples: "
•  Stereotypes can also be used to classify method behavior such

as <<constructor>>, <<getter>> or <<setter>>"
•  To indicate the interface of a subsystem or system, one can

use the stereotype <<interface>> (Lecture System Design)"
•  Stereotypes can be represented with icons as well as

graphics:"
•  This can increase the readability of UML diagrams."

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 15!

Graphics for Stereotypes

•  One can also use graphical symbols to identify a
stereotype

•  When the stereotype is applied to a UML model element, the
graphic replaces the default graphic for the diagram element.

•  Example: When modeling a network, we can define graphical
symbols to represent classes of type Switch, Server, Router and
Printer."

Graphics for !
Class of type!

Router!

Graphics for !
Class of type!

Switch!
Graphics for !
Server Class!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 16!

Pros and Cons of Stereotype Graphics

•  Advantages:"
•  UML diagrams may be easier to understand if they contain

graphics and icons for stereotypes"
•  This can increase the readability of the diagram, especially

if the client is not trained in UML"
•  And they are still UML diagrams!"

•  Disadvantages:
•  If developers are unfamiliar with the symbols being used, it can

become much harder to understand what is going on
•  Additional symbols add to the burden of learning to read the

diagrams.

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 17!

Object Types allow us to deal with Change

•  Having three types of object leads to models
that are more resilient to change

•  The interface of a system changes more likely than the
control

•  The way the system is controlled changes more likely
than entities in the application domain

•  Object types originated in Smalltalk:
•  Model, View, Controller (MVC)

 Model <-> Entity Object
 View <-> Boundary Object
Controller <-> Control Object

•  Next topic: Finding objects.

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 18!

Finding Participating Objects in Use Cases

•  Pick a use case and look at flow of events
•  Do a textual analysis (noun-verb analysis)

•  Nouns are candidates for objects/classes
•  Verbs are candidates for operations
•  This is also called Abbott’s Technique

•  After objects/classes are found, identify their
types

•  Identify real world entities that the system needs to
keep track of (FieldOfficer Entity Object)

•  Identify real world procedures that the system needs
to keep track of (EmergencyPlan Control Object)

•  Identify interface artifacts (PoliceStation Boundary
Object).

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 19!

Mapping parts of speech to object model
components [Abbot 1983]

 !Part of speech! Model component!

 !Proper noun! object!

 !Improper noun! class!

 !Doing verb! method!

 !being verb! inheritance !

 !having verb! aggregation!

 !modal verb! constraint!

 !adjective! attribute!

 !transitive verb! method!

 !intransitive verb! method (event)! Example à !

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 20!

Example for using the Technique

The customer enters the store to buy a toy !
It has to be a toy that his daughter likes
and it must cost less than 50 Euro !

He tries a videogame, which uses a data
glove and a head-mounted display. He likes
it!

An assistant helps him !
The suitability of the game depends on the
age of the child !

His daughter is 3 years old!
The assistant recommends another type of
toy, the boardgame “Monopoly".!

Flow of Events:!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 21!

Mapping grammatical constructs to model
components (Abbot’s Technique)

 !Grammatical
construct!

 !Proper noun!
 !Improper noun!
 !

 !

 !

UML model	

 component!

object!
class!

Example!

“Monopoly”!
Toy!

Doing verb! operation!Buy, recommend!

 !being verb! inheritance !Is a!
having verb! aggregation!has an!

modal verb! constraint!must be!

 !adjective! attribute!dangerous!

 !transitive verb! operation!enter!

 !intransitive verb! Constraint, class,	

 association!

depends on!

videogame	

	

•  The customer enters the store
to buy a toy. It has to be a
toy that his daughter likes and
it must cost less than 50 Euro.
He tries a videogame, which
uses a data glove and a head-
mounted display. He likes it.!

Generating a Class Diagram from Flow of Events

An assistant helps him. The
suitability of the game depends
on the age of the child. His
daughter is only 3 years old.
The assistant recommends another
type of toy, namely a boardgame.
The customer buy the game and
leaves the store!

customer enters!

depends !

store!
Customer	

?	

	

enter()	

toy	

	

	

daughter	

	

	

suitable	

*	

less than 50!

store	

	

enter()	

toy	

	

buy()	

toy!

age!

videogame!

daughter!

boardgame!

Flow of events:

toy	

	

price	

buy()	

like()	

buy!

type of toy!
boardgame	

	

daughter	

age	

	

Customer"

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 23!

Ways to find Objects

•  Syntactical investigation with Abbot‘s technique:
•  Flow of events in use cases
•  Problem statement

•  Use other knowledge sources:
•  Application knowledge: End users and experts know

the abstractions of the application domain
•  Solution knowledge: Abstractions in the solution

domain
•  General world knowledge: Your generic knowledge and

intution

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 24!

Order of Activities for Object Identification

1.  Formulate a few scenarios with the help from
an end user or application domain expert

2.  Extract the use cases from the scenarios, with
the help of an application domain expert

3. Then proceed in parallel with the following:
•  Analyse the flow of events in each use case

using Abbot's textual analysis technique
•  Generate the UML class diagram.

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 25!

Steps in Generating Class Diagrams

1.  Class identification (textual analysis, domain
expert)

2.  Identification of attributes and operations
(sometimes before the classes are found!)

3.  Identification of associations between classes
4.  Identification of multiplicities
5.  Identification of roles
6.  Identification of inheritance

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 26!

How to identify entity objects

•  terms that developers or users need to clarify in
order to understand the use case

•  recurring nouns in the use cases (e.g., Incident)
•  real-world entities that the system needs to

keep track of (e.g., FieldOfficer, Dispatcher,
Resource)

•  real-world activities that the system needs to
keep track of (e.g., Emergencyoperationsplan)

•  use cases (e.g., ReportEmergency)
•  data sources or sinks (e.g., Printer)
•  always use the user’s terms

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 27!

How to identify boundary objects

•  Identify forms and windows the users needs to
enter data into the system (e.g.,
EmergencyReportForm, ReportEmergencyButton).

•  Identify notices and messages the system uses to
respond to the user (e.g., AcknowledgmentNotice).

•  Do not model the visual aspects of the interface
with boundary objects (user mock-ups are better
suited for that).

•  Always use the user’s terms for describing
interfaces as opposed to terms from the
implementation technology.

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 28!

How to identify control objects

•  Identify one control object per use case or more
if the use case is complex and if it can be
divided into shorter flows of events.

•  Identify one control object per actor in the use
case.

•  The life span of a control object should be extent
of the use case or the extent of a user session.
If it is difficult to identify the beginning and the
end of a control object activation, the
corresponding use case may not have a well-
defined entry and exit condition.

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 29!

Attributes

•  Detection of attributes is application specific
•  Attributes in one system can be classes in

another system
•  Turning attributes to classes and vice versa

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 30!

Associations

•  Types of Associations

•  Canonical associations
•  Part-of Hierarchy (Aggregation)
•  Kind-of Hierarchy (Inheritance)

•  Generic associations

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 31!

Operations

•  Source of operations
•  Use cases in the functional model
•  General world knowledge
•  Generic operations: Get/Set
•  Design Patterns
•  Application domain specific operations
•  Actions and activities in the dynamic model

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 32!

An example: the ReportEmergency use case
Use case name: ReportEmergency

Entry condition: The FieldOfficer activates the “Report Emergency” function

 of her terminal.

Flow of events:

1. FRIEND responds by presenting a form to the officer. The form includes
an emergency type menu (Genera1 emergency, fire, transportation), a
location, incident description, resource request, and hazardous material
fields.

2. The FieldOfficer fills the form, by specifying minimally the emergency type
and description fields. The FieldOfficer may also describes possible
responses to the emergency situation and request specific resources.
Once the form is completed, the FieldOfficer submits the form by pressing
the “Send Report” button, at which point, the Dispatcher is notified.

3. The Dispatcher reviews the information submitted by the FieldOf f icer
and creates an incident in the database by invoking the OpenIncident use
case. Al1 the information contained in the FieldOfficer’s form is
automatically included in the incident. The Dispatcher selects a response
by allocating resources to the incident (with the AllocateResources use
case) and acknowledges the emergency report by sending a FRIENDgram
to the FieldOfficer.

Exit condition: The FieldOfficer receives the acknowledgment and the

 selected response.

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 33!

Entity objects in the example
Dispatcher

Police officer who manages Incidents. A Dispatcher opens,
documents, and closes Incidents in response to Emergency
Reports and other communication with FieldOfficers. Dispatchers
are identified by badge numbers.

EmergencyReport
Initial report about an Incident from a FieldOfficer to a
Dispatcher. An EmergencyReport usually triggers the creation of
an Incident by the Dispatcher. An EmergencyReport is
composed of a emergency level, a type (fire, road accident, or
other), a location, and a description.

Fieldofficer
Police or fire officer on duty. A FieldOfficer can be allocated to,
at most, one Incident at a time. FieldOfficers are identified by
badge numbers.
NOT TRUE in this UC. Here FieldOfficers are actors, they can be
entity objects in the Allocateresource UC

Incident
Situation requiring attention from a FieldOfficer. An Incident
may be reported in the system by a FieldOfficer or anybody else
external to the system. An Incident is composed of a
description, a response, a status (open, closed, documented), a
location, and a number of FieldOfficers.

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 34!

Boundary Objects in the example
AcknowledgmentNotice

Notice used for displaying the Dispatcher’s acknowledgment to the
FieldOfficer.

DispatcherStation
Computer used by the Dispatcher.

ReportEmergencyButton
Button used by a FieldOfficer to initiate the ReportEmergency use
case.

EmergencyReportForm
Form used for the input of the ReportEmergency. This form is
presented to the FieldOfficer on the FieldOfficerstation when the
“Report Emergency” function is selected. The EmergencyReportForm
contains fields for specifying all attributes of an emergency report
and a button (or other control) for submitting the form once it is
completed.

FieldOfficerStation
Mobile computer used by the FieldOfficer.

Incident Form
Form used for the creation of Incidents. This form is presented to the
Dispatcher on the DispatcherStation when the EmergencyReport is
received. The Dispatcher also uses this form to allocate resources and
to acknowledge the FieldOfficer’s report.

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 35!

Control objects in the example
ReportEmergencyControl

Manages the report emergency reporting function on the
FieldOfficerstation. This object is created when the FieldOfficer
selects the “Report Emergency” button. It then creates an
EmergencyReportFom and presents it to the FieldOfficer. After
submission of the form, this object then collects the
information from the form, creates an EmergencyReport, and
forwards it to the Dispatcher. The control object then waits for
an acknowledgment to come back from the DispatcherStation.
When the acknowledgment is received, the
ReportEmergencyControl object creates an
AcknowledgmentNotice and displays it to the Fie1dOfficer .

ManageEmergencyControl
Manages the report emergency reporting function on the
DispatcherStation. This object is created when an
EmergencyReport is received. It then creates an IncidentFom
and displays it to the Dispatcher. Once the Dispatcher has
created an Incident, allocated Resources, and submitted an
acknowledgment, ManageEmergencyControl forwards the
acknowledgment to the FieldOfficerstation.

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 36!

Who uses Class Diagrams?

•  Purpose of class diagrams
•  The description of the static properties of a system

•  The main users of class diagrams:
•  The application domain expert

•  uses class diagrams to model the application
domain (including taxonomies)

• during requirements elicitation and analysis
•  The developer

•  uses class diagrams during the development of a
system

• during analysis, system design, object design
and implementation.

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 37!

Who does not use Class Diagrams?

•  The client and the end user are usually not
interested in class diagrams

•  Clients focus more on project management issues
•  End users are more interested in the functionality of

the system.

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 38!

Summary

•  System modeling
•  Functional modeling+object modeling+dynamic modeling

•  Functional modeling
•  From scenarios to use cases to objects

•  Object modeling is the central activity
•  Class identification is a major activity of object modeling
•  Easy syntactic rules to find classes and objects
•  Abbot’s Technique

•  Class diagrams are the “center of the universe”
for the object-oriented developer

•  The end user focuses more on the functional model and
and usability.

