
U
sin

g
U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
	

O
bj

ec
t-O

ri
en

te
d

So
ftw

ar
e

En
gi

ne
er

in
g	

 Functional Modeling

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 2!

Outline

ü Scenarios (Lecture Requirements Elicitation)

ü Finding Scenarios
ü Identifying actors

Ø Use Cases
•  Finding Use Cases
•  Flow of Events
•  Use Case Associations
•  Use Case Refinement

•  Summary

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 3!

Scenario example from Tuesday’slecture:
Warehouse on Fire

•  Bob, driving down main street in his patrol car notices smoke
coming out of a warehouse. His partner, Alice, reports the
emergency from her car.

•  Alice enters the address of the building into her wearable
computer , a brief description of its location (i.e., north west
corner), and an emergency level.

•  She confirms her input and waits for an acknowledgment.
•  John, the dispatcher, is alerted to the emergency by a beep of

his workstation. He reviews the information submitted by Alice
and acknowledges the report. He allocates a fire unit and sends
the estimated arrival time (ETA) to Alice.

•  Alice received the acknowledgment and the ETA.

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 4!

Observations about Warehouse on Fire
Scenario

•  Concrete scenario
•  Describes a single instance of reporting a fire

incident.
•  Does not describe all possible situations in which a

fire can be reported.

•  Participating actors
•  Bob, Alice and John

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 5!

Other Scenarios Possibilities for an Incident
Management System

•  What needs to be done to report a “Cat in a Tree”
incident?

•  Who is involved in reporting the incident?
•  What does the system do, if no police cars are

available? If the police car has an accident on the
way to the “Cat in a Tree” incident?

•  What do you need to do if the “Cat in the Tree” turns
into a “Grandma Has Fallen From the Ladder”?

•  Can the system cope with simultaneous incident
reports “Cat in the Tree” and “Warehouse on Fire?”

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 6!

After the scenarios are formulated

•  Find all the use cases in the scenario that specify all
instances of how to report a fire and model them in
a use case model

•  Example: “Report Emergency“ in the first paragraph of the
scenario is a candidate for a use case

•  Then add more detail to each of these use cases by
describing:
1. Name of the use case
2. Participating actors
3. Describe the entry condition
4. Describe the flow of events
5. Describe the exit condition
6. Describe exceptions
7. Describe quality requirements (nonfunctional requirements).

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 7!

Use Case Model for Incident Management

ReportEmergency

FieldOfficer Dispatcher
OpenIncident

AllocateResources

<<initiates>>
<<initiates>>

<<initiates>>

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 8!

How to find Use Cases

•  Select a narrow vertical slice of the system (i.e. one
scenario)

•  Discuss it in detail with the user to understand the user’s
preferred style of interaction

•  Select a horizontal slice (i.e. many scenarios) to
define the scope of the system.

•  Discuss the scope with the user

•  Use illustrative prototypes (mock-ups) as visual
support

•  Find out what the user does
•  Task observation (Good)
•  Questionnaires (Bad)

Use Case Example: ReportEmergency
1. Use case name: ReportEmergency
2. Participating Actors:

Field Officer, Dispatcher

3. Entry Condition:
The FieldOfficer is logged into the FRIEND System

4. Flow of Events: on next slide
5. Exit Condition:

The FieldOfficer has received an acknowledgement and the selected
response OR The FieldOfficer has received an explanation
indicating why the transaction could not be processed

6. Exceptions:
•  The FieldOfficer is notified immediately if the connection between

terminal and central is lost
7. Quality Requirements:

•  The FieldOfficer’s report is acknowledged within 30 seconds.

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 10!

Use Case Example: ReportEmergency (ctd)

4. Flow of Events:
1.  The FieldOfficer activates the “Report Emergency” function of

her terminal. The system responds by presenting a form to the
officer.

2.  The FieldOfficer fills the form, by selecting the emergency level,
type, location, and brief description of the situation. The
FieldOfficer also describes a response to the emergency situation.
Once the form is completed, the FieldOfficer submits the form,
and the Dispatcher is notified.

3.  The Dispatcher creates an Incident in the database by invoking
the OpenIncident use case. He selects a response and
acknowledges the report.

4.  The FieldOfficer receives the acknowledgment and the selected
response.

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 11!

Order of steps when formulating use cases

•  First step: Name the use case
•  Use case name: ReportEmergency

•  Second step: Find the actors
•  Generalize the concrete names from the scenario to

participating actors
•  Participating Actors:

•  Field Officer (Bob and Alice in the Scenario)
•  Dispatcher (John in the Scenario)

•  Third step: Concentrate on the flow of events
•  Use informal natural language

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 12!

Another Use Case Example

Flow of Events
•  The Bank Customer specifies a Account and provides

credentials to the Bank proving that he is authorized
to access the Bank Account

•  The Bank Customer specifies the amount of money
he wishes to withdraw

•  The Bank checks if the amount is consistent with the
rules of the Bank and the state of the Bank
Customer’s account. If that is the case, the Bank
Customer receives the money in cash.

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 13!

Use Case Attributes

Use Case Name Withdraw Money Using ATM

Participating Actor: Bank Customer

Entry condition:
•  Bank Customer has opened a Bank Account with the

Bank and
Bank Customer has received an ATM Card and PIN

Exit condition:
•  Bank Customer has the requested cash or
 Bank Customer receives an explanation from the ATM

about why the cash could not be dispensed.

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 14!

7. The Bank Customer inputs an
amount

3. The Bank Customer types in PIN

5. The Bank Customer selects an
account

Flow of Events: A Request-Response Interaction
between Actor and System

1.The Bank Customer inserts the
card into the ATM

8.The ATM outputs the money and a
receipt and stops the interaction.

4. If several accounts are recorded on
the card, the ATM offers a choice of the
account numbers for selection by the
Bank Customer

6.If only one account is recorded on
the card or after the selection, the ATM
requests the amount to be withdrawn

System steps

2.The ATM requests the input of a
four-digit PIN

Actor steps

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 15!

Use Case Exceptions

Actor steps
1. The Bank Customer inputs

her card into the ATM.
[Invalid card]

3. The Bank Customer types in

PIN. [Invalid PIN]

5. The Bank Customer selects

an account .

7. The Bank Customer inputs

an amount. [Amount over
limit]

[Invalid card]
The ATM outputs the card and
stops the interaction.

[Invalid PIN]
The ATM announces the failure
and offers a 2nd try as well as
canceling the whole use case.
After 3 failures, it announces the
possible retention of the card.
After the 4th failure it keeps the
card and stops the interaction.

[Amount over limit]
The ATM announces the failure
and the available limit and offers a
second try as well as canceling the
whole use case.

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 16!

From Use Cases to Objects

Top Level Use Case!

A and B!
are called !

Participating!
Objects!

 Le	
v	
el 1	
 	

A! B!

Level 3 Use Cases! Le	
v	
el 3	
 Le	
v	
el 3	
 Le	
v	
el 3	

Operations! Le	
v	
el 4	
 Le	
v	
el 4	

Level 2 Use Cases! Le	
v	
el 2	
 Le	
v	
el 2	

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 17!

Use Cases used by more than one Object

Top Level Use Case!

Level 2 Use Cases!

Level 3 Use Cases!

Operations!

Participating!
Objects!

 Le	
v	
el 2	

 Le	
v	
el 1	

 Le	
v	
el 2	

 Le	
v	
el 3	
 Le	
v	
el 3	

 Le	
v	
el 4	
 Le	
v	
el 4	

 Le	
v	
el 3	

 	

A! B!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 18!

Guidelines for Formulation of Use Cases (1)

•  Name
•  Use a verb phrase to name the use case
•  The name should indicate what the user is trying to

accomplish
•  Examples:

•  “Request Meeting”, “Schedule Meeting”, “Propose
Alternate Date”

•  Length
•  A use case description should not exceed 1-2 pages. If

longer, use include relationships
•  A use case should describe a complete set of interactions.

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 19!

Guidelines for Formulation of Use Cases (2)

Flow of events:
•  Use the active voice. Steps should start either with
“The Actor” or “The System …”

•  The causal relationship between the steps should be
clear

•  All flow of events should be described (not only the
main flow of event)

•  The boundaries of the system should be clear.
Components external to the system should be
described as such

•  Define important terms in the glossary.

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 20!

7. The Bank Customer inputs an amount

3. The Bank Customer types in PIN

5. The Bank Customer selects an account

Event Flow: Use Indentation to show the
Interaction between Actor and System

1.The Bank Customer inserts the card into the ATM

8.The ATM outputs the money and a receipt and stops the
interaction.

4. If several accounts are recorded on the card, the ATM offers a
choice of the account numbers for selection by the Bank Customer

6.If only one account is recorded on the card or after the selection,
the ATM requests the amount to be withdrawn

2.The ATM requests the input of a four-digit PIN

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 21!

Example of a badly written Use Case

“The driver arrives at the parking gate, the driver
receives a ticket from the distributor, the gate is
opened, the driver drives through.”

What is wrong with this use case?
•  It has no actors
•  It is not clear which action triggers the ticket being issued
•  Because of the passive form, it is not clear who opens the
 gate

•  The driver? The computer? A gate keeper?
•  It is not a complete transaction

•  A complete transaction would also describe the driver paying
for the parking and driving out of the parking lot.

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 22!

Use Case Associations

•  Dependencies between use cases are represented
with use case associations

•  Associations are used to reduce complexity
•  Decompose a long use case into shorter ones
•  Separate alternate flows of events
•  Refine abstract use cases

•  Types of use case associations
•  Includes
•  Extends
•  Generalization

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 23!

<<include>>: Functional Decomposition

•  Problem:
•  A function in the original problem statement is too complex

•  Solution:
•  Describe the function as the aggregation of a set of simpler

functions. The associated use case is decomposed into shorter
use cases

ManageIncident

CreateIncident HandleIncident CloseIncident

<<include>>

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 24!

<<include>>: Reuse of Existing Functionality
•  Problem: There are overlaps among use cases. How

can we reuse flows of events instead of duplicating
them?

•  Solution: The includes association from use case A to
use case B indicates that an instance of use case A
performs all the behavior described in use case B (“A
delegates to B”)

•  Example: Use case “ViewMap” describes behavior that
can be used by use case “OpenIncident” (“ViewMap”
is factored out)

ViewMap
OpenIncident

AllocateResources

<<include>>

<<include>>

Base Use!
Case!

Supplier!
Use Case!

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 25!

<<extend>> Association for Use Cases

•  Problem: The functionality in the original problem
statement needs to be extended.

•  Solution: An extend association from use case A to
use case B

•  Example: “ReportEmergency” is complete by itself,
but can be extended by use case “Help” for a scenario
in which the user requires help

Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java 26!

Generalization in Use Cases
•  Problem: We want to factor out common (but not

identical) behavior.
•  Solution: The child use cases inherit the behavior and

meaning of the parent use case and add or override
some behavior.

•  Example: “ValidateUser” is responsible for verifying the
identity of the user. The customer might require two
realizations: “CheckPassword” and “CheckFingerprint”

ValidateUser
Parent!
Case!

Child!
Use Case!

CheckPassword

CheckFingerprint

