
Page 1

U
sin

g
U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
	

O
bj

ec
t-O

ri
en

te
d

So
ftw

ar
e

En
gi

ne
er

in
g	
 Chapter 4

Requirements Elicitation

2!Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java!

Outline

•  Today:
•  Motivation: Software Lifecycle
•  Requirements elicitation challenges
•  Problem statement
•  Requirements specification

•  Types of requirements
•  Validating requirements

•  Optional: Next Lecture
•  SysML
•  Requirements Diagrams

Page 2

3!Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java!

Software Lifecycle Definition

•  Software lifecycle
•  Models for the development of software

•  Set of activities and their dependency
relationships to each other to support the
development of a software system

•  Examples:
• Analysis, design, implementation, testing
• Design depends on analysis, testing can be
done before implementation

4!Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java!

A Typical Example
of Software Lifecycle Activities

System!
Design!

Detailed!
Design!

Implemen-!
tation! Testing!Requirements!

Elicitation! Analysis!

Page 3

5!Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java!

Software Lifecycle Activities

System!
Design!

Detailed!
Design!

Implemen-!
tation! Testing!Requirements!

Elicitation!

Use Case
Model

Analysis!

...and their models

6!Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java!

Software Lifecycle Activities

Application
Domain
Objects

Expressed in
terms of

Use Case
Model

System!
Design!

Detailed!
Design!

Implemen-!
tation! Testing!Requirements!

Elicitation! Analysis!

...and their models

Page 4

7!Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java!

Software Lifecycle Activities

Sub-
systems

Structured
by

Application
Domain
Objects

Expressed in
terms of

Use Case
Model

System!
Design!

Detailed!
Design!

Implemen-!
tation! Testing!Requirements!

Elicitation! Analysis!

...and their models

8!Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java!

Software Lifecycle Activities

Sub-
systems

Structured
by

Solution
Domain
Objects

Realized by

Application
Domain
Objects

Expressed in
terms of

Use Case
Model

System!
Design!

Detailed!
Design!

Implemen-!
tation! Testing!Requirements!

Elicitation! Analysis!

...and their models

Page 5

9!Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java!

Software Lifecycle Activities

Sub-
systems

Structured
by

class...!
class...!
class...!

Source
Code

Implemented by

Solution
Domain
Objects

Realized by

Application
Domain
Objects

Expressed in
terms of

Use Case
Model

System!
Design!

Detailed!
Design!

Implemen-!
tation! Testing!Requirements!

Elicitation! Analysis!

...and their models

10!Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java!

Software Lifecycle Activities

Sub-
systems

Structured
by

class...!
class...!
class...!

Source
Code

Implemented by

Solution
Domain
Objects

Realized by

Application
Domain
Objects

Expressed in
terms of

Test
Case

Model

?

Verified
By

class....!?
Use Case

Model

System!
Design!

Detailed!
Design!

Implemen-!
tation! Testing!Requirements!

Elicitation! Analysis!

...and their models

Page 6

11!Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java!

First step in identifying the Requirements:
System identification

•  Two questions need to be answered:
1.  How can we identify the purpose of a system?

•  What are the requirements, what are the constraints?
2.  What is inside, what is outside the system?

•  These two questions are answered during
requirements elicitation and analysis

•  Requirements elicitation:
•  Definition of the system in terms understood by the

customer and/or user (“Requirements specification”)
•  Analysis:

•  Definition of the system in terms understood by the
developer (Technical specification, “Analysis model”)

•  Requirements Process: Consists of the activities
Requirements Elicitation and Analysis.

12!Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java!

Techniques to elicit Requirements

•  Bridging the gap between end user and
developer:

•  Questionnaires: Asking the end user a list of pre-
selected questions

•  Task Analysis: Observing end users in their
operational environment

•  Scenarios: Describe the use of the system as a series
of interactions between a specific end user and the
system

•  Use cases: Abstractions that describe a class of
scenarios.

Page 7

13!Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java!

Scenarios

•  Scenario
•  A synthetic description of an event or series of actions

and events
•  A textual description of the usage of a system. The

description is written from an end user’s point of view
•  A scenario can include text, video, pictures and story

boards. It usually also contains details about the work
place, social situations and resource constraints.

•  “A narrative description of what people do and
experience as they try to make use of computer
systems and applications”

•  [M. Carroll, Scenario-Based Design, Wiley, 1995]

14!Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java!

Scenario-Based Design

Scenarios can have many different uses during the
software lifecycle

•  Requirements Elicitation: As-is scenario, visionary
scenario

•  Client Acceptance Test: Evaluation scenario
•  System Deployment: Training scenario

Page 8

15!Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java!

Scenario-based Design
•  Focuses on concrete descriptions and particular

instances, not abstract generic ideas
•  It is work driven not technology driven
•  It is open-ended, it does not try to be complete
•  It is informal, not formal and rigorous
•  Is about envisioned outcomes, not about

specified outcomes.

16!Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java!

Types of Scenarios

•  As-is scenario:
•  Describes a current situation. Commonly used in re-

engineering projects. The user describes the system
•  Example: Description of Letter-Chess

•  Visionary scenario:
•  Describes a future system

•  Example: Home Computer of the Future
•  Often used in greenfield engineering and interface

engineering projects
•  Example: Description of an interactive internet-

based Tic Tac Toe game tournament
•  Visionary scenarios are often not done by the user or

developer alone.

Page 9

17!Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java!

Additional Types of Scenarios (2)

•  Evaluation scenario:
•  Description of a user task against which the system is

to be evaluated.
•  Example: Four users (two novice, two experts) play

in a TicTac Toe tournament in ARENA.
•  Training scenario:

•  A description of the step by step instructions that guide
a novice user through a system

•  Example: How to play Tic Tac Toe in the ARENA
Game Framework.

18!Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java!

How do we find scenarios?

•  Don’t expect the client to be verbose if the
system does not exist

•  Client understands the application domain (problem
domain), not the solution domain

•  Don’t wait for information even if the system
exists

•  “What is obvious does not need to be said”

•  Engage in a dialectic approach
•  You help the client to formulate the requirements
•  The client helps you to understand the requirements
•  The requirements evolve while the scenarios are being

developed.

Page 10

19!Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java!

Heuristics for finding scenarios
•  Ask yourself or the client the following questions:

•  What are the primary tasks that the system needs to
perform?

•  What data will the actor create, store, change, remove or
add in the system?

•  What external changes does the system need to know
about?

•  What changes or events will the actor of the system need
to be informed about?

•  However, don’t rely on questions and
questionnaires alone

•  Insist on task observation if the system already
exists (interface engineering or reengineering)

•  Ask to speak to the end user, not just to the client
•  Expect resistance and try to overcome it.

20!Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java!

Scenario example: Warehouse on Fire

•  Bob, driving down main street in his patrol car notices
smoke coming out of a warehouse. His partner, Alice,
reports the emergency from her car.

•  Alice enters the address of the building into her wearable
computer , a brief description of its location (i.e., north
west corner), and an emergency level.

•  She confirms her input and waits for an acknowledgment;
•  John, the dispatcher, is alerted to the emergency by a

beep of his workstation. He reviews the information
submitted by Alice and acknowledges the report. He
allocates a fire unit and sends the estimated arrival time
(ETA) to Alice.

•  Alice received the acknowledgment and the ETA..

Page 11

21!Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java!

Observations about the Warehouse on Fire
Scenario

•  It is a concrete scenario
•  It describes a single instance of reporting a

fire incident
•  It does not describe all possible situations in

which a fire can be reported

•  Participating actors
•  Bob, Alice and John.

After the scenarios are formulated

•  Find all the use cases in the scenario that
specify all instances of how to report a fire

•  Example from the Warehouse on Fire scenario:
•  “Bob… notices smoke coming out of a warehouse. His partner,

Alice, reports the emergency from her car”

•  “Report Emergency“ is a candidate for a use case

•  Describe each of these use cases in more detail
•  Participating actors
•  Describe the entry condition
•  Describe the flow of events
•  Describe the exit condition
•  Describe exceptions
•  Describe nonfunctional requirements

•  The set of all use cases is the basis for the
Functional Model(see next lecture)

Page 12

23!Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java!

Requirements Process
:problem

statement

Requirements
elicitation

Analysis Model

Requirements
Specification

:dynamic model

:analysis object
model

Analysis

:nonfunctional
requirements

:functional
model

UML Activity Diagram

24!Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java!

Requirements Specification vs Analysis
Model

Both are models focusing on the requirements
from the user’s view of the system

•  The requirements specification uses natural
language (derived from the problem statement)

•  The analysis model uses a formal or semi-formal
notation

•  Requirements Modeling Languages
•  Natural Language
•  Graphical Languages: UML, SysML, SA/SD
•  Mathematical Specification Languages: VDM (Vienna

Definition Method), Z (based on Zermelo–Fraenkel set
theory), Formal methods ….

Page 13

25!Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java!

Types of Requirements

•  Functional requirements
•  Describe the interactions between the system and its

environment independent from the implementation
“An operator must be able to define a new game“

•  Nonfunctional requirements
•  Aspects not directly related to functional behavior
“The response time must be less than 1 second”

•  Constraints
•  Imposed by the client or the environment
“The implementation language must be Java “

•  Also called “Pseudo requirements”.

26!Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java!

Functional vs. Nonfunctional Requirements

Functional Requirements
•  Describe user tasks

which the system
needs to support

•  Phrased as actions
“Advertise a new league”
“Schedule tournament”
“Notify an interest group”

Nonfunctional Requirements
•  Describe properties of the

system or the domain

•  Phrased as constraints or
negative assertions
“All user inputs should be

acknowledged within 1
second”
“A system crash should not

result in data loss”.

Page 14

27!Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java!

Types of Nonfunctional Requirements

Quality requirements
Constraints or

Pseudo requirements

28!Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java!

Types of Nonfunctional Requirements

•  Usability
•  Reliability

•  Robustness
•  Safety

•  Performance
•  Response time
•  Scalability
•  Throughput
•  Availability

•  Supportability
•  Adaptability
•  Maintainability

Quality requirements
Constraints or

Pseudo requirements

Page 15

29!Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java!

Types of Nonfunctional Requirements

•  Usability
•  Reliability

•  Robustness
•  Safety

•  Performance
•  Response time
•  Scalability
•  Throughput
•  Availability

•  Supportability
•  Adaptability
•  Maintainability

•  Implementation
•  Interface
•  Operation
•  Packaging
•  Legal

•  Licensing (GPL, LGPL)
•  Certification
•  Regulation

Quality requirements
Constraints or

Pseudo requirements

30!Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java!

Types of Nonfunctional Requirements

•  Usability
•  Reliability

•  Robustness
•  Safety

•  Performance
•  Response time
•  Scalability
•  Throughput
•  Availability

•  Supportability
•  Adaptability
•  Maintainability

•  Implementation
•  Interface
•  Operation
•  Packaging
•  Legal

•  Licensing (GPL, LGPL)
•  Certification
•  Regulation

Quality requirements
Constraints or

Pseudo requirements

Page 16

Some Quality Requirements Definitions
•  Usability "

•  The ease with which actors can perform a function in a system"
•  Usability is one of the most frequently misused terms (“The system is

easy to use”)"
•  Usability must be measurable, otherwise it is marketing!

•  Example: Specification of the number of steps – the measure! -
to perform a internet-based purchase with a web browser"

•  Robustness: The ability of a system to maintain a function "
•  even if the user enters a wrong input"
•  even if there are changes in the environment"

•  Example: The system can tolerate temperatures up to 90 C"
•  Availability: The ratio of the expected uptime of a system to

the aggregate of the expected up and down time"
•  Example: The system is down not more than 5 minutes per week."

32!Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java!

A Task for You

•  Look up the remaining definitions for the
nonfunctional requirements and internalize them

•  Understand their meaning and scope (their
applicability).

•  (par 4.3 of the book)

•  IMPORTANT:
•  FURPS+ (used in Unified Process)

•  Functional, Usability, Reliability, Performance,
Supportability (in ISO 9126 standard on software
quality: portability, adaptability)

Page 17

33!Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java!

Nonfunctional Requirements: Examples

•  “Spectators must be able to watch a match
without prior registration and without prior
knowledge of the match.”
Ø Usability Requirement

•  “The system must support 10 parallel
tournaments”
Ø Performance Requirement

34!Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java!

What should not be in the Requirements?

•  System structure, implementation technology
•  Development methodology
•  Development environment
•  Implementation language
•  Reusability

•  It is desirable that none of these above are
constrained by the client.

Page 18

35!Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java!

Requirements Validation

Requirements validation is a quality assurance
step, usually performed after requirements
elicitation or after analysis

•  Correctness:
•  The requirements represent the client’s view

•  Completeness:
•  All possible scenarios, in which the system can be used,

are described

•  Consistency:
•  There are no requirements that contradict each other.

36!Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java!

Requirements Validation (2)

•  Clarity:
•  Requirements can only be interpreted in one way

•  Realism:
•  Requirements can be implemented and delivered

•  Traceability:
•  Each system component and behavior can be traced to a

set of functional requirements

•  Problems with requirements validation:
•  Requirements change quickly during requirements

elicitation
•  Inconsistencies are easily added with each change
•  Tool support is needed!

Page 19

37!Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java!

Tools for Requirements Management (2)

DOORS (Telelogic)
•  Multi-platform requirements management tool, for

teams working in the same geographical location.
DOORS XT for distributed teams

RequisitePro (IBM/Rational)

•  Integration with MS Word
•  Project-to-project comparisons via XML baselines

RD-Link (http://www.ring-zero.com)
•  Provides traceability between RequisitePro & Telelogic

DOORS

Unicase (http://unicase.org)
•  Research tool for the collaborative development of

system models
•  Participants can be geographically distributed.

38!Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java!

Prioritizing Requirements

•  High priority
•  Addressed during analysis, design, and implementation
•  A high-priority feature must be demonstrated

•  Medium priority
•  Addressed during analysis and design
•  Usually demonstrated in the second iteration

•  Low priority
•  Addressed only during analysis
•  Illustrates how the system is going to be used in the

future with not yet available technology.

Page 20

39!Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java!

Requirements Analysis Document Template
1. Introduction
2. Current system
3. Proposed system

 3.1 Overview
 3.2 Functional requirements
 3.3 Nonfunctional requirements
 3.4 Constraints (“Pseudo requirements”)
 3.5 System models
 3.5.1 Scenarios
 3.5.2 Use case model
 3.5.3 Object model
 3.5.3.1 Data dictionary
 3.5.3.2 Class diagrams
 3.5.4 Dynamic models
 3.5.5 User interface

4. Glossary

Bruegge & Dutoit, 3rd edition, pp. 152 !

40!Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java!

Section 3.3 Nonfunctional Requirements

 3.3.1 User interface and human factors
 3.3.2 Documentation
 3.3.3 Hardware considerations
 3.3.4 Performance characteristics
 3.3.5 Error handling and extreme conditions
 3.3.6 System interfacing
 3.3.7 Quality issues
 3.3.8 System modifications
 3.3.9 Physical environment
3.3.10 Security issues
3.3.11 Resources and management issues

Page 21

41!Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java!

Nonfunctional Requirements
(Questions to overcome “Writers block”)

User interface and human factors
•  What type of user will be using the system?
•  Will more than one type of user be using the

system?
•  What training will be required for each type of

user?
•  Is it important that the system is easy to learn?
•  Should users be protected from making errors?
•  What input/output devices are available

Documentation
•  What kind of documentation is required?
•  What audience is to be addressed by each

document?

42!Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java!

Nonfunctional Requirements (2)

Hardware considerations
•  What hardware is the proposed system to be used on?
•  What are the characteristics of the target hardware,

including memory size and auxiliary storage space?

Performance characteristics
•  Are there speed, throughput, response time constraints

on the system?
•  Are there size or capacity constraints on the data to be

processed by the system?

Error handling and extreme conditions
•  How should the system respond to input errors?
•  How should the system respond to extreme conditions?

Page 22

43!Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java!

Nonfunctional Requirements (3)

System interfacing
•  Is input coming from systems outside the proposed

system?
•  Is output going to systems outside the proposed system?
•  Are there restrictions on the format or medium that must

be used for input or output?

 Quality issues
•  What are the requirements for reliability?
•  Must the system trap faults?
•  What is the time for restarting the system after a failure?
•  Is there an acceptable downtime per 24-hour period?
•  Is it important that the system be portable?

44!Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java!

Nonfunctional Requirements (4)

System Modifications
•  What parts of the system are likely to be modified?
•  What sorts of modifications are expected?

Physical Environment
•  Where will the target equipment operate?
•  Is the target equipment in one or several locations?
•  Will the environmental conditions be ordinary?

Security Issues
•  Must access to data or the system be controlled?
•  Is physical security an issue?

Page 23

45!Bernd Bruegge & Allen H. Dutoit ! ! Object-Oriented Software Engineering: Using UML, Patterns, and Java!

Nonfunctional Requirements (5)

Resources and Management Issues
•  How often will the system be backed up?
•  Who will be responsible for the back up?
•  Who is responsible for system installation?
•  Who will be responsible for system maintenance?

